001     1052072
005     20260120203627.0
024 7 _ |a 10.1016/j.seppur.2025.134177
|2 doi
024 7 _ |a 1383-5866
|2 ISSN
024 7 _ |a 1873-3794
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00742
|2 datacite_doi
037 _ _ |a FZJ-2026-00742
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Zhai, Song
|0 0000-0002-1820-9369
|b 0
245 _ _ |a Experimental determination and model-based prediction of flooding points in a pilot-scale continuous liquid-liquid gravity separator
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768923176_1107
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Funding: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 466656378 – within the Priority Programme “SPP 2331:Machine Learning in Chemical Engineering”
520 _ _ |a Liquid-liquid gravity phase separation is crucial in chemical, biotechnological, metallurgical, and recycling processes. However, fluctuations in the feed stream conditions of the separator significantly affect the coalescence of dispersed drops, leading to the accumulation of a dense-packed zone (DPZ) and flooding. In this study, we investigate the relationship between feed stream conditions, such as temperature, and flooding points in a pilot-scale DN200 liquid–liquid gravity separator. A temperature-controlled experimental setup enabling a temperature range of 20°C to 50 °C was constructed with artificial-intelligence-assisted online measurements of separation curves, drop size distributions, and DPZ heights. Experiments were conducted with 1-octanol dispersed in water at dispersed phase fractions of 0.3 and 0.5. Experimental data show that temperature-dependent coalescence parameters, Sauter mean diameter , and phase fraction primarily influence flooding points. Further, we evaluated the prediction accuracy and consistency of two models from the literature, a lumped zero-dimensional model and the established Henschke model, which require solely feed stream data, geometry data, and physical properties. Both models underestimate experimental flooding points by a mean absolute percentage error and relative standard deviation MAPE ± RSD of (21.5 ± 12.2) % and (24.8 ± 14.8) % for the Henschke and 0D model, respectively. Considering the experimental relative standard error of 8.2 % accounting for 95 % confidence, the prediction accuracy and consistency of both models are reasonable. This study suggests batch settling experiments and endoscope measurements in the feed stream of the liquid–liquid separator to predict its flooding point due to fluctuations in the feed.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bartkowiak, Niklas
|b 1
700 1 _ |a Sibirtsev, Stepan
|0 0000-0002-2123-4776
|b 2
700 1 _ |a Jupke, Andreas
|0 P:(DE-Juel1)194474
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.seppur.2025.134177
|g Vol. 377, p. 134177 -
|0 PERI:(DE-600)2022535-0
|p 134177 -
|t Separation and purification technology
|v 377
|y 2025
|x 1383-5866
856 4 _ |u https://juser.fz-juelich.de/record/1052072/files/1-s2.0-S1383586625027741-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052072
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194474
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21