001052081 001__ 1052081
001052081 005__ 20260120203627.0
001052081 0247_ $$2doi$$a10.1007/s00249-025-01788-2
001052081 0247_ $$2ISSN$$a0340-1057
001052081 0247_ $$2ISSN$$a0175-7571
001052081 0247_ $$2ISSN$$a1432-1017
001052081 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00749
001052081 037__ $$aFZJ-2026-00749
001052081 082__ $$a570
001052081 1001_ $$00009-0006-5060-2124$$aTucholski, Florian T.$$b0$$eCorresponding author
001052081 245__ $$aTracking reduction-induced molecular changes in pathological free light chains by SV-AUC
001052081 260__ $$aNew York$$bSpringer$$c2025
001052081 3367_ $$2DRIVER$$aarticle
001052081 3367_ $$2DataCite$$aOutput Types/Journal article
001052081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768919537_12394
001052081 3367_ $$2BibTeX$$aARTICLE
001052081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052081 3367_ $$00$$2EndNote$$aJournal Article
001052081 520__ $$aMultiple myeloma is a blood cancer characterized by plasma cell proliferation and excessive production of monoclonal proteins, often leading to renal complications and other forms of organ damage. A set of nine immunoglobulin free light chain (FLC) samples purified from urine of multiple myeloma patients was subjected to sedimentation velocity analysis. Aim of the study was to track changes of the oligomerization state of each FLC while triggering reduction-induced aggregation into larger structures. Sedimentation velocity experiments, combined with further techniques sensitive to structural changes, were performed to determine the degree of FLC oligomerization in each patient sample under different experimental conditions. Structurally, the FLC monomers are stabilized by two intramolecular disulfide bonds, while covalent dimerization occurs through an unpaired C-terminal cysteine residue. Incubation with the reducing agent TCEP cleaves intra- and intermolecular disulfide bonds, destabilizing both monomers and dimers. Remarkably, different incubation times revealed that destabilized dimers do not dissociate into stable monomers but instead accumulate directly into oligomers and higher-order aggregates. In addition to larger aggregates, fragments with sizes around 1 S were detected with increasing TCEP incubation time. This fragmentation behavior was consistent among FLCs originating from the immunoglobulin kappa variable 1-33 gene (IGKV1-33). Sedimentation velocity-based characterization of FLCs can provide insights into the relationship between their stability and aggregation capacity. An understanding of this relationship is crucial for the development of therapeutic strategies to prevent renal complications associated with monoclonal gammopathies such as multiple myeloma.
001052081 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001052081 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001052081 7001_ $$0P:(DE-HGF)0$$aSternke-Hoffmann, Rebecca$$b1
001052081 7001_ $$0P:(DE-Juel1)184822$$aPauly, Thomas$$b2
001052081 7001_ $$0P:(DE-HGF)0$$aNorrild, Rasmus K.$$b3
001052081 7001_ $$0P:(DE-HGF)0$$aBoquoi, Amelie$$b4
001052081 7001_ $$0P:(DE-HGF)0$$aFenk, Roland$$b5
001052081 7001_ $$0P:(DE-HGF)0$$aNagel, Luitgard$$b6
001052081 7001_ $$0P:(DE-HGF)0$$aBuell, Alexander K.$$b7
001052081 7001_ $$0P:(DE-HGF)0$$aHaas, Rainer$$b8
001052081 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b9$$ufzj
001052081 773__ $$0PERI:(DE-600)1398349-0$$a10.1007/s00249-025-01788-2$$gVol. 54, no. 6, p. 365 - 383$$n6$$p365 - 383$$tEuropean biophysics journal$$v54$$x0340-1057$$y2025
001052081 8564_ $$uhttps://juser.fz-juelich.de/record/1052081/files/s00249-025-01788-2.pdf$$yOpenAccess
001052081 909CO $$ooai:juser.fz-juelich.de:1052081$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001052081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b9$$kFZJ
001052081 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001052081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR BIOPHYS J BIOPHY : 2022$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-20$$wger
001052081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001052081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001052081 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001052081 920__ $$lyes
001052081 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001052081 980__ $$ajournal
001052081 980__ $$aVDB
001052081 980__ $$aUNRESTRICTED
001052081 980__ $$aI:(DE-Juel1)IBI-7-20200312
001052081 9801_ $$aFullTexts