001052089 001__ 1052089
001052089 005__ 20260120203627.0
001052089 0247_ $$2doi$$a10.1016/j.jmb.2025.169048
001052089 0247_ $$2ISSN$$a0022-2836
001052089 0247_ $$2ISSN$$a1089-8638
001052089 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00754
001052089 037__ $$aFZJ-2026-00754
001052089 082__ $$a610
001052089 1001_ $$0P:(DE-HGF)0$$aSchützmann, Marie P.$$b0
001052089 245__ $$aOff-pathway oligomers of α-synuclein and Aβ inhibit secondary nucleation of α-synuclein amyloid fibrils
001052089 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001052089 3367_ $$2DRIVER$$aarticle
001052089 3367_ $$2DataCite$$aOutput Types/Journal article
001052089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768923626_2757
001052089 3367_ $$2BibTeX$$aARTICLE
001052089 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052089 3367_ $$00$$2EndNote$$aJournal Article
001052089 520__ $$aα-Synuclein (αSyn) is a key culprit in the pathogenesis of synucleinopathies such as Parkinson’s Disease (PD), in which it forms not only insoluble aggregates called amyloid fibrils but also smaller, likely more detrimental species termed oligomers. This property is shared with other amyloidogenic proteins such as the Alzheimer’s Disease-associated amyloid-β (Aβ). We previously found an intriguing interplay between off-pathway Aβ oligomers and Aβ fibrils, in which the oligomers interfere with fibril formation via inhibition of secondary nucleation by blocking secondary nucleation sites on the fibril surface. Here, using ThT aggregation kinetics and atomic force microscopy (AFM), we tested if the same interplay applies to αSyn fibrils. Both homotypic (i.e. αSyn) and heterotypic (i.e. Aβ) off-pathway oligomers inhibited αSyn aggregation in kinetic assays of secondary nucleation. Initially soluble, kinetically trapped Aβ oligomers co-precipitated with αSyn(1–108) fibrils. The resulting co-assemblies were imaged as clusters of curvilinear oligomers by AFM. The results indicate that off-pathway oligomers have a general tendency to bind amyloid fibril surfaces, also in the absence of sequence homology between fibril and oligomer. The interplay between off-pathway oligomers and amyloid fibrils adds another level of complexity to the homo- and hetero-assembly processes of amyloidogenic proteins.
001052089 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001052089 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001052089 7001_ $$0P:(DE-Juel1)201143$$aHoyer, Wolfgang$$b1$$eCorresponding author$$ufzj
001052089 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2025.169048$$gVol. 437, no. 10, p. 169048 -$$n10$$p169048 -$$tJournal of molecular biology$$v437$$x0022-2836$$y2025
001052089 8564_ $$uhttps://juser.fz-juelich.de/record/1052089/files/1-s2.0-S0022283625001147-main.pdf$$yOpenAccess
001052089 909CO $$ooai:juser.fz-juelich.de:1052089$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001052089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201143$$aForschungszentrum Jülich$$b1$$kFZJ
001052089 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001052089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL BIOL : 2022$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052089 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL BIOL : 2022$$d2024-12-13
001052089 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001052089 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052089 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001052089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001052089 920__ $$lyes
001052089 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001052089 980__ $$ajournal
001052089 980__ $$aVDB
001052089 980__ $$aUNRESTRICTED
001052089 980__ $$aI:(DE-Juel1)IBI-7-20200312
001052089 9801_ $$aFullTexts