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Arbor-TVB: a novel multi-scale
co-simulation framework with a
case study on neural-level
seizure generation and
whole-brain propagation
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Julich GmbH, Julich, Germany, 2ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy,
France, *Department of Computer Science, University of Warwick, Coventry, United Kingdom

Computational neuroscience has traditionally focused on isolated scales, limiting
understanding of brain function across multiple levels. While microscopic
models capture biophysical details of neurons, macroscopic models describe
large-scale network dynamics. Integrating these scales, however, remains a
significant challenge. In this study, we present a novel co-simulation framework
that bridges these levels by integrating the neural simulator Arbor with The
Virtual Brain (TVB) platform. Arbor enables detailed simulations from single-
compartment neurons to populations of such cells, while TVB models whole-
brain dynamics based on anatomical features and the mean neural activity of
a brain region. By linking these simulators for the first time, we provide an
example of how to model and investigate the onset of seizures in specific
areas and their propagation to the whole brain. This framework employs an MPI
intercommunicator for real-time bidirectional interaction, translating between
discrete spikes from Arbor and continuous TVB activity. Its fully modular design
enables independent model selection for each scale, requiring minimal effort
to translate activity across simulators. The novel Arbor-TVB co-simulator allows
replacement of TVB nodes with biologically realistic neuron populations, offering
insights into seizure propagation and potential intervention strategies. The
integration of Arbor and TVB marks a significant advancement in multi-scale
modeling, providing a comprehensive computational framework for studying
neural disorders and optimizing treatments.
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1 Introduction

The human brain consists of billions of neurons and an equally vast population
of non-neuronal cells, intricately organized into layers and regions (Herculano-Houzel,
2009, 2012). Each neuron operates as a highly sophisticated biochemical machinery (West
et al., 2002; Augustine et al., 2003; Darnell, 2013; Lu et al.,, 2025), coordinating signal
transmission within an extensive network in health (Reyes, 2003; Barral et al., 2019; Dicks,
2022) and disease (see e.g., Tetzlaff et al., 2025). Ever since the Hodgkin-Huxley model
was introduced to describe membrane potential dynamics (Hodgkin and Huxley, 1952¢),
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computational neuroscience has played a pivotal role in enhancing
our understanding of brain function. Yet, due to the immense
complexity of the brain and computational constraints, most
modeling studies focus on a single scale simulator or rely on
standalone simulation codes.

Modeling the large-scale electrical activity of the brain is a
complex task. It not only demands familiarity with advanced
mathematical methods, but also a solid grasp of the brain’s
physiology and anatomy. Neural field theory offers a way to study
the nonlinear behavior of large groups of neurons at a population
level, while still keeping the mathematics manageable. These
models give us a strong theoretical framework for understanding
key processes in neural tissue, including how the brain transitions
between different activity states, such as those seen in sleep or
during epileptic events, see e.g., Cook et al. (2022) for a recent
review. Moreover, multi-scale computational modeling provides a
framework for connecting neural mechanisms with measurements
ranging from unit recordings to electroencephalogram (EEG),
magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI). Such models clarify how neural systems
compute and interact, and they are essential for integrating
empirical findings into a robust theoretical understanding of brain
function, see e.g., Deco et al. (2008) and Cooray et al. (2023).
Along this direction, recently in Cooray et al. (2025), the authors
also studied oscillatory activity in cortical tissue arising from not
uniform neural connections. and showed that oscillations can be
maintained under a wide range of anisotropic and time-varying
connectivity patterns.

Simulations incorporating biophysical properties and neural
morphology typically concentrate on individual neurons using
simulators such as the NEURON simulator (Carnevale and
Hines, 2006). At the microscopic level, studies have explored
questions such as how the ion channel kinetics influence neural
excitability (see e.g., Gurkiewicz et al., 2011; Suma et al., 2024),
how proteins, enzymes, and calcium concentration are distributed
among neighboring spines to impact plasticity (see e.g., Luboeinski
and Tetzlaff, 2021; Chater et al., 2024), and how signal propagation
along axonal fibers relates to neuropathic pain (see e.g., Tigerholm
etal,, 2014, 2015). Some studies examine how neural morphology—
such as dendritic tree growth (see e.g., Yasumatsu et al., 2008)
and morphology-dependent plastic interactions (see e.g., Hananeia
et al., 2024)—affects function. These studies, while often limited to
small patches of the neural membrane, a few dendritic segments, or
a small local network, provide valuable approximations of broader
neural phenomena.

At the mesoscopic level, researchers simplify neuronal
representations using point leaky-integrate-and-fire neurons
[based on simulators such as NEST (Gewaltig and Diesmann,
2007) or Brian/Brian2 (Stimberg et al., 2019)], allowing studies
on larger networks without explicit neuronal morphology or
with some degree of self-customized morphology, using, e.g.,
NESTML (Linssen et al., 2024). This approach has advanced our
understanding of neural heterogeneity (Demirtag et al, 2019;
Nayebi et al., 2021; Gast et al., 2024), self-organization (Zheng
et al., 2013; Diaz-Pier et al., 2016; Miner and Triesch, 2016), neural
capacity (Emina and Kropff, 2022), energy efficiency (Sacramento
et al.,, 2015), and neural plasticity in disease and health (Manos
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et al., 2021; Lu et al., 2024). Most microscopic and mesoscopic
models remain theory-driven, using mathematical approximations
to infer neural behavior rather than directly establishing model
based on large datasets (see e.g., Popovych et al., 2019 for a recent
review).

Data-driven modeling has gained traction at the macroscopic
level with the rise of open-source brain imaging databases [such
as OpenfMRI (Poldrack and Gorgolewski, 2017)]. High-resolution
structural and functional data from magnetic resonance imaging
(MRI) and diffusion tensor imaging (DTI) enable whole-brain
modeling based on real anatomical features. The Virtual Brain
(TVB) (Sanz Leon et al, 2013; Sanz-Leon et al.,, 2015; Ritter
et al., 2013) and Virtual Brain Twin (VBT) (Hashemi et al.,
2025) platforms, for instance, integrate functional MRI and DTI
datasets to build individualized models, using coupled oscillators
to represent regional activity. TVB has contributed significantly to
the understanding of neurological disorders and serves as a testing
ground for therapeutic interventions (see e.g., Stefanovski et al.,
2021; Monteverdi et al., 2023; Courson et al., 2024 and references
therein), for studying self-organization on macroscale (see e.g.,
Fousek et al., 2024), consciousness (see e.g., Breyton et al., 2024)
and healthy aging (see e.g., Lavanga et al., 2023).

With advances in computing resources and simulation
technologies, the integration of models across different scales
has become both feasible and essential to strike a balance
between retaining detailed information and achieving a broad-
scale understanding. Recently, a co-simulation framework was
introduced that employs NEST and TVB to bridge mesoscopic
and macroscopic modeling. This work has pioneered cross-scale
modeling (Kusch et al., 2024) and has demonstrated the benefits of
integrating models across spatial levels. A notable application of the
virtual deep brain stimulation model (Meier et al., 2022; Shaheen
etal., 2022; Wang et al., 2025) demonstrated its utility in multiscale
simulations. Similar tools have been made available within the
European digital neuroscience platform, EBRAINS (Schirner et al.,
2022).

However, integrating microscopic and macroscopic models
remains technically challenging. At the core lies the vast amount
of information being processed, billions of cells with thousands
of connections, and the immense gap in timescales, from
microseconds in ion channel dynamics to minutes or hours for
plastic changes of the connectome. To solve this challenge, we used
the Arbor simulator (Abi Akar et al.,, 2019) and, more specifically,
its most recent next-generation version (Cumming et al., 2024), at
the microscopic end. Designed for single-neuron and large-scale
network simulations, Arbor leverages GPU resources to enhance
computational speed and energy efficiency.

In this Methods paper, we successfully established efficient
communication between Arbor and the TVB that respects their
different operational time scales and provided a use case example
of the cross-scale interaction. To demonstrate a first showcase,
we used a mouse brain connectome provided by TVB, where
each region represents the mean mass neural activity of a brain
area modeled by a macroscopic model. Using the co-simulation
interface, we replaced one TVB node with a network of detailed
neurons modeled in Arbor. An extended Hodgkin-Huxley-based
neuron model (Depannemaecker et al., 2022) was utilized in Arbor
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to simulate different neural activity patterns (e.g., spiking, bursting,
seizure-like, etc.). By tweaking a single parameter, we showcased
that the seizure-like events generated in Arbor propagated to
other nodes modeled in TVB. This platform provides users with
the freedom to use existing models across scales with minimal
additions and enabled future development in building brain digital
twins that contain both micro- and macroscopic information for
therapeutic applications.

2 Materials and methods
2.1 The Arbor simulator

Arbor is an open-source library for building simulations of
biophysically detailed neuron models (Abi Akar et al., 2019). It
provides an alternative to software like NEURON (Carnevale and
Hines, 2006), but with a strong emphasis on modern hardware
and scalability to large-scale systems (Hines, 1984). Its overall
set of capabilities allows Arbor to model neural networks at a
level of resolution beyond point models to explore phenomena
like dendritic computation. Thus, support for bulk-synchronous
parallelism via MPI, shared memory parallelism by utilizing a
thread-pool and job system is central to Arbor, and certain cell
types—primarily cable cells—can further leverage SIMD and GPU
hardware. Arbor is written in C++, though most users interface
with it through an intuitive, high-level Python interface built on
top of the lower level implementation. The underlying numerical
model of Arbor is the cable equation:

U 8 [ AU\ X
c§ = o (o a) + i (1)
where the membrane potential U is computed over the
morphological structure of the neural tree; the spatial coordinate
x and the derivative are to be understood within this structure
(Von Helmbholtz, 1850; Thompson and Kelvin, 1855; Hodgkin
et al., 1952; Hodgkin and Huxley, 1952a,b; Loligo, 1952; Hodgkin
and Huxley, 1952¢; Scott, 1975). The parameters ¢ and o define
the membrane capacitance and longitudinal resistance. The
trans-membrane current density i models the entirety of ionic
and non-ionic currents. In both NEURON and Arbor, these
are calculated from user-specified sets of differential equations,
potentially varying along the morphology. The equations for i
and U are solved in alternation (Lie-Trotter splitting) using a
first-order implicit method.

2.2 Single neuron and network models in
Arbor

We begin by selecting a dynamical model that allows for
relatively easy yet realistic simulation of a broad spectrum of neural
activity at the single-neuron level, governed by a small set of
biophysical parameters. The neural model from Depannemaecker
et al. (2022) was formulated for Arbor in the Neuron MODeling
Language (NMODL). The following equations form the slow part
of the system, describing the evolution of ion concentrations due to
voltage-gated channels, active pumps, and buffering by an external
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bath, see Figure 1 for a schematic of the dynamics. It describes
the ionic exchanges between the intracellular and extracellular
spaces (ICS, ECS) of a neuron immersed within an external bath,
acting as a potassium buffer of concentration Kp,y,. Ions flow
between the ICS and ECS through a sodium-potassium pump
and the sodium, potassium and chloride voltage-gated channels,
driving changes in the internal (K;, Na;, Cl;) and external (K,,
Na,, Cl,) ionic concentrations. By gradually increasing the external
bath concentration of potassium ions Kp,,, the model sequentially
presents these patterns: resting state (RS), spike train (ST), tonic
spiking (TS), bursting, seizure-like events (SLE), sustained ictal
activity (SIA) and depolarization block (DB), see Figure 2. The fast
dynamics of the membrane potential V is modeled in Arbor via
the cable equations, see above, which require computing the ion
current densities ix used in the simulator update as:

ix = gx(V — Ex) (2)

Ex =C-log (%) (3)

1
with the ion species X = {K, Na, Cl} and a non-ion current density:

P
(1 + exp(10.5 — 0.5Na;))(1 + exp(5.5 — K,))

“)

fpump =

These currents enter the cable equation Equation 1 as the
trans-membrane current i via:

i= ipump + Z ix
X

Following the Hodgkin-Huxley model, conductivities gx are

written as:
&K = gk + g Na = go.Namh + gINa gl = gl
(5)
The—internal i and external o—ion concentrations are
modeled as:
Ki = Ko,i + AK,‘ Nai = Nao,,‘ — AK,’ Cli = Cloyi
KO = KO,O — IBAKZ =+ Kg Na,, = Nao)o =+ ,BAK, Clo = Clo’o
(6)
The variables {AK,-, Kg} evolve as:
dAK; . .
dt =Y (lK - lpump) (7)
dK,
T € (Kpath — Ko) (8)

where y converts the current density ix to molar flux, summarizing
the effect of the ion pump in Figure 1A and the external buffer.
Finally, fast dynamics were reduced and adjusted to mammalian

neurons:
dn 1

@ L o= ) ®)

1
noo(V) = 17 exp(—(19 + V)/18) "

1
m=Meo(V) = - + exp(—(2 + V/12)) "
h = h(n) =1.1-— 1 (12)

1+ exp(3.2 — 0.8n)
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FIGURE 1
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Biophysical neuron model and Arbor network. (A) For single cell dynamics, three ion concentrations (K, Na, and Cl) are modeled in the cell's interior
and a thin shell of its extracellular medium. The latter is, in turn, surrounded by a bath of a fixed potassium concentration Kpath. The model simulates
changes to the concentration in addition to the current contributions based on three voltage-gated ion channels, an active pump between
potassium and sodium, and the buffering effect of the surrounding potassium bath. (B) We choose typical values of Kpatn for the single models to
generate the tonic spiking and seizure-like event behaviors. In most cases, a fully connected network using exponential synapses with weight

w = 0.5 is used. As an example, we show here the network instantiation for a network size N = 5 and a ratio of SLE to tonic neurons of f = 0.2.

(B)

based on the observations that the reaction of the sodium gating
variable to changes in V is nigh instantaneous and h(t) + n(t) =
const.

The resulting ion channel was added to a basic, spherical,
single-compartment neuron. After implementing this biophysical
model, we reproduced the firing patterns using the parameters
of the reported model (Figures 2A-F), see also Depannemaecker
et al. (2022) for more details and motivation for model parameter
choices. Note that despite the values given in the original
publication, neither the Arbor nor the published reference
implementation produces the depolarization block pattern at
Kpath = 20mM but only at around Kpag, = 22.5mM. From here,
a simple model network was developed, comprising N total cells,
with a mixture of tonic f - N and SLE (1 — f) - N cells, where both
sub-populations are assigned individual values for Ky, sketched
in Figure 1. Cells are connected using exponential synapses with an
internal weight of w = 0.5 chosen to produce an activity similar
to Rabuffo et al. (2025) which uses delta synapses.

In addition to the elementary spherical morphology, we also
investigated two multi-compartmental neuron models. The first
model included a single dendritic segment of 25um, subdivided
into 5pum compartments. The second model extended the dendrite
into a randomly generated tree composed of 5jum compartments.
To introduce variability across cells, the random number generator
was seeded with each cell’s unique identifier (see Figure 3 for
examples). In future work, these synthetic morphologies will be
replaced with reconstructions derived from neural imaging data
available in public databases. Supporting such models in Arbor will

require only a simple command to load per-cell morphology data
from disk.

2.3 TVB network model

Following Deco et al. (2013), we used the reduced Wong-
Wang model (Wang, 2002) to simulate resting-state activity and to
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investigate the dynamics of local brain regions embedded within
a large-scale brain network. The mean firing rate H(x;) and mean
synaptic gating variable Sy of region I are described by:

ds S
7’ = 4 (1-S)yH() (13)
t T
B ax;—b
HGa) = 1 — exp(—d(ax; — b)) (14)
x = w]NS1+ GIn Z cix Sk + los (15)
K

where x; is the synaptic input to the I-th region, @ = 1 denotes
the local excitatory recurrence, crx is the strength of the structural
connection from the local area I to K, and G is a global coupling
strength. The parameters are set to the same values as those used in
the TVB implementation. /y = 0.2609nA is the synaptic coupling
of NMDA receptors and Iy = 0.33nA is the baseline external input.
0.641. The
parameters of the input-output function H are a = 0.27nC~1,
b = 0.108kHz, and d = 154ms. Depending on the tuning of G,
the system exhibits a multi-stable regime, with steady states of high

The kinetic parameters are 7y, = 100ms and y =

and low spiking activity. Here, we set G = 0.096.

2.4 Co-simulation framework of Arbor and
TVB

Both Arbor and TVB offer support for attaching a second
simulator to perform co-simulation, potentially at different scales.
Co-simulation from TVB’s viewpoint is the simpler technology of
the two frameworks, since TVB is designed to execute as a single
process. TVB allows for exchange of any variable relevant to the
region models and any number of variables. The co-simulation
partner is encapsulated in one or more TVB regions, called proxy
nodes, see Figure 4. These proxies present a conforming interface
to TVB, exchanging the salient variables as a table, one row per
time-step, one column per variable. As TVB advances in lockstep
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FIGURE 2

Different neural spiking patterns. (A) Spike Train, Kpath =7.5mM. (B) Tonic Spikes, Kpath =9.5mM. (C) Bursting, Kpath =12.5mM. (D) Seizure-Like Event
(SLE), Kpath =17.0mM. (E) Sustained Ictal Activity (SIA), Kpath =17.5mM. (F) Depolarization Block, Kpan =22.5mM. Note that by setting Kpatn =4mM, one
can obtain Resting State (RS) activity too (result not shown here).

synapses

spike detector

10um

(A) (B) ©)

FIGURE 3

Compartmental neuronal morphologies used for simulations. Each morphology comprises a soma (blue) and a dendritic section (violet). For
numerical simulations, dendritic segments are discretized into 5um compartments, whereas the soma is modeled as a single compartment. Since
the cable model neglects extracellular effects, a 1.5-dimensional morphology is employed internally, rendering spatial relationships irrelevant to the
model dynamics. When multiple connections converge onto a single cell, synaptic assignments follow a round-robin scheme. (A) Soma only.
Equivalent to a point model, the cylindrical segment has a radius r and a length of 2r, chosen to yield the same surface area as a sphere of radius r.
Both synapses and spike detectors are attached at the center of the soma. (B) Ball and stick. A straight dendritic segment is added, featuring passive
current flow and a synapse attached at a fixed distance from the soma. (C) Random trees. More complex morphologies are generated as random
binary trees of depth five. Synapses are placed at a fixed distance from the soma and may be targeted by connections originating from spike
detectors, which are positioned at the soma center. See Supplementary Figure S1 for more examples of randomly generated morphologies.

on a global time-step, this is almost identical to normal operation.
However, co-simulation introduces the concept of an ‘epoch’ to
TVB, i.e., the length of time that conforms to the smallest delay
Tmin in the set of inter-region connections delays tj;, with I and
J referring to two connected regions. These delays are part of
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the connectome data used to construct a TVB simulation. In the
case that a connectome contains zero-valued delays these must
be replaced with a pre-defined finite value. Further, it is required
that the time-step evenly divides tyin. Co-simulation thus can
integrate all nodes’ state, including the proxy, for one epoch Tmin
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without exchanging data. This is correct as an event emanating
from any region I at time ¢ influences any other region J at time
t+ Ty > t + Timin. Only after an epoch, data need to be exchanged
between the proxy and the rest of the TVB regions. A TVB-NEST
demonstration has been published to showcase the interaction
between a local network of spiking neurons and the whole-brain
network dynamics (Kusch et al., 2024).

Arbor has a different design in terms of connectivity.
Interaction between physically separate cells is mediated by
action potentials, e.g., when the membrane potential triggered
by dedicated sources crosses a configurable threshold. Cells are
connected by wiring these sources to corresponding sinks like
synapses via an abstract connection object comprising a delay
and weight, modeling transmission and attenuation via an axon.
In contrast to TVB, Arbor is fundamentally a distributed system
and internally employs the same approach to decoupling via
the minimum network delay as explained above. To initiate co-
simulation, Arbor utilizes an additional interface to manage the
spike exchange from external connections that are originated from
outside but terminate at cells simulated in Arbor. On the technical
side, the latter part leverages MPI_Allgatherv through an inter-
communicator and effects that the concatenation of all spikes sent
from all MPI ranks running TVB arrive on all ranks running
Arbor and vice versa (Figure 4B). This allows co-simulation in
conjunction with arbitrary numbers of ranks on both sides and even
in compounds with more than two simulators.

Finally, bi-directional translation between TVB’s variable
concept and Arbor’s representation of action potentials is required.
As the former depends on the region models used, we chose to
bundle this with the remaining TVB functionality as part of the
Arbor proxy node. For the TVB models used in this study, the main
variable is the per-region mean activity rate v; which is conceptually
compatible with the concept of spike generation. For each region
I connected to the proxy node P, i.e., with connectome weight
cip > 0, a set of synthetic events must be generated such that
the mean activity conforms to v;. This is an ambiguous process,
even if we prescribe a population (list of cell identifiers) and a per-
cell distribution, e.g., a Poisson point process, from which to draw
events, which likely must be resolved by ensembles of simulations.
In general, this is both model dependent and mathematically
intractable, so we leave the general case as a customization point
in the framework. For our running example, however, we make the
following choice: Event timings for the current step k will be drawn
from a uniform distribution and dispatched to all cells in the Arbor
network. Note that while these events are created at given time a
per-connection delay is applied and thus delivery occurs at a later
time.

The inverse direction, converting spike events to mean rates,
while being well-defined, is still subject to customization. We
explore two options here. First, simple running averages, i.e., all
spikes that originate within the Arbor network during the current
epoch, are collected and sorted into bins of width At. This list is
then normalized to the cell count and time step and sent to TVB as
the mean activities as a function of time. Although straightforward,
this can lead to unrealistically rough activity traces, especially if cell
populations are small. Second, as inspired by high-speed calcium
imaging experiments (Grewe et al., 2010), a mechanism to track cell
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activity through calcium level is implemented as:

dc,

Cp(0) =0
ot »(0)

Cp(1)
—E B D B~ tipikep), (16)

tspike,p

with per cell p having a decay parameter v and a weight B.
Computing the activity becomes the average:

up(t) = (Cp(D)) (17)
yielding a smooth trace. This method of converting discrete spiking
events into a continuous interval variable is also used in a few
plasticity models recruiting a negative feedback control mechanism
such as synaptic scaling (Van Rossum et al., 2000) and homeostatic
structural plasticity (Butz and Van Ooyen, 2013; Diaz-Pier et al,,
2016; Lu et al., 2024) models. The choice of the calcium kernel
parameters is based on trial-and-error to match the output of Arbor
and the magnitude of activity generated by TVB. Figure 5 compares
the impact of this choice on the macro-scale network. In small
networks and over short timescales defined by the epoch length
as shown in the example, spiking activity occurs in noncontinuous
bursts, which is dubious in conjunction with the smooth dynamics
of the chosen TVB model. Figure 5A shows the propagation of this
noncontinuous activity into the TVB regions, while using the Ca-
like model (B) provides smooth dynamics in both the Arbor and
TVB models. We thus will use the latter in all simulations from here
on out. In general, both methods require scaling by the number of
cells in the proxy region to arrive at a scale-free activity measure. A
local scaling factor G, is used to convert between the activity of the
detailed network and the activity of the region modeled in TVB. In
general, Ga needs to be adjusted to the choice of connectome and
TVB model, similar to the choice of the global coupling strength G
in the RWW model. In this study, Go = 100 is used as it produces
seizure-like propagation patterns comparable to those found in
similar studies, see e.g., Melozzi et al. (2017) and Courson et al.
(2024) and references therein.

3 Results

So far, we have described the components of the co-simulation
framework. It consists of the following components: a TVB model
based on the connectome and node dynamics, a specified set
of TVB nodes where the Arbor models will be placed, one or
more internally connected network models in Arbor, a defined
mechanism for routing events from TVB to individual cells in
Arbor, a method for translating Arbor-generated events into
TVB variables, and a translation process for converting TVB
variables into events originating from synthetic cells. Each of
these components serves as a customization point for the user.
While reasonable default configurations can be provided for some,
others require user-defined specifications to suit specific modeling
needs.

The single cell model has been demonstrated to exhibit
the necessary range of behaviors. We have also motivated our
choice for converting spikes to rates of using a biologically-
inspired exponential smoothing filter via a Ca-like activity over
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FIGURE 4

Arbor-TVB co-simulation schematic and communication pattern. (A) In a TVB simulation of regions /, K, and P, one region P will be replaced by a
proxy containing a network of detailed cells simulated in Arbor. Regions are connected via the weights of the connectome and produce an activity
values based on the chosen region model. When crossing the boundary between TVB and Arbor models, care needs to be taken to convert between
discrete action potentials in Arbor to continuous, region-model-specific variables in TVB. (B) Spikes generated by Arbor and TVB—converted from
activity values interpreted as mean spiking rates—are exchanged using an MPI intercommunicator and the All-gather primitive. This is equivalent to
concatenating all contributions from all Arbor MPI ranks and sending the result to all TVB ranks and vice-versa.
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FIGURE 5

Impact of conversion method on activity exchange. For an all-to-all connected network of a mixture of 10 SLE cells (Kpath = 17.5mM) and 90 tonic
(Kpath = 9.5mM) neurons in Arbor, we plot the membrane potential traces for four tonic and one SLE cell in (A). This simulation is repeated for two
activity exchanging methods, either spikes were binned into buckets of width At to extract instantaneous rates, or the differential equation
Equation 16 emulating the change in Calcium concentration of a biological cell after spiking was used (with 7 = 100ms and g = %). The resulting
activity traces for the Arbor network (B) and selected TVB nodes (out of 98 regions) are displayed in (C—F).

simple binning and fix parameters to T = 100ms and f = To induce seizure propagation in mice brain, we use the
(}71. This normalization is important, as it produces results that  structural connectivity derived from the Allen mouse brain atlas
are invariant under changes in the number of cells N in the  (Oh et al, 2014), also used in Melozzi et al. (2017), to embed the
detailed network. TVB nodes. Following the work presented in Courson et al. (2024),
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the proxy node modeling the Arbor population of tonic-spiking
and SLE point neurons is set within left the Hippocampus and in
particular in the left-field CA1 (1 CAl), a region that is prone to
generate widespread seizures.

3.1 Seizure induction among
morphologically detailed cells

As an initial step, we examined a network of morphologically
detailed cells (comprising of a single-compartment soma and a
random dendritic tree, see bottom-right inset panel of Figure 6)
without embedding them into a co-simulation framework. The
objective was to assess how interactions among neurons exhibiting
distinct firing patterns influence network dynamics within a
small population of SLE neurons at the local (Arbor) level.
We constructed a network comprising 80 tonic-spiking neurons
(Kpath = 9.5mM) and 20 SLE neurons (Kpyp = 17.0mM),
initially without internal synaptic connectivity. The system was
simulated for T = 5s, and the resulting membrane potentials are
presented in Figure 6 (this initial phase is indicated by the gray-
shaded region). During this initial phase, all neurons independently
showed their intrinsic firing behavior, consistent with the activity
shown in Figure 6. Following this baseline simulation, integration
was paused, the network was reconfigured to full connectivity,
and the simulation was resumed. The introduction of connectivity
produced an immediate response across the network. The SLE
neurons progressively transitioned toward tonic-like spiking,
mirroring the dominant (80%) tonic-spiking subpopulation. At the
same time, tonic-spiking neurons began to exhibit the bursting
activity characteristic of the SLE phenotype (Figure 6, T > 5s)).
Note that the use of different Ky, values for neurons within the
same group is, at this stage, driven by computational considerations
and the need to validate the performance of the Arbor-TVB co-
simulator. This choice can be adjusted to study more biologically
realistic scenarios which involve the interaction of different neural
populations or transition of network dynamics, which is further
addressed in the Discussion section.

3.2 Seizure induction and propagation
employing point neurons in Arbor-TVB
co-simulator

Next, we embedded a network of detailed neurons as a proxy
node in a simulation of neural mass models in TVB. The general
setup is similar as before, however, the proxy node now consists
of only SLE-type point neurons in a fully connected network.
Figure 7A illustrates the evolution of the membrane potential of
individual neurons within the Arbor network, with all neurons
exhibiting identical dynamical behavior. The pattern of SLE activity
is modulated by neuronal coupling.

We run simulations over 20s, and investigate the effect of SLE
emergence in the network once all brain areas have reached their
steady state. The production of these patterns in the Arbor node
generates changes in the firing rates of local TVB brain areas.
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Even though changes in activity occur in most brain areas, these
fluctuations occur within different ranges.

In Figure 7B, we show the time-series of TVB nodes firing
rate throughout the simulation, here with N = 100 in the Arbor
detailed network. A transient period is necessary before all nodes
reach their steady-state. The emergence of recurrent SLE patterns
in the Arbor node triggers a mixture of periodic and seizure-like
patterns in the dynamics of the TVB nodes. We highlight traces
corresponding to the I CAl region modeled using detailed cells
(orange) and the four regions with the highest activity modeled
by the neural mass model. The inset shows the highlighted traces,
excluding I CA1, during a single period.

In Figure 8, we present the propagation of SLE originating in
1 CALl (star marker), represented as a fully connected network of
N = 10000 SLE point neurons. Colors on the brain template show
the time distance between seizure emergence in the diseased area
and seizure arrival in the different brain regions. The systematic
detection of SLE onset in other regions of the whole-brain network
(if and when present within the simulation period) is performed
as follows. First, the baseline firing activity of each region is
defined (first time window of the simulation). The non-SLE nodes
initially exhibit a relatively stable firing rate, which gradually
becomes influenced by the SLE originating from the Arbor node.
When connected to the Arbor node, spiking-tonic brain areas are
repeatedly recruited into SLE activity patterns, followed by periods
of relaxation. For each region, we define the baseline firing rate
as the minimum firing rate observed during the relaxation phase
immediately preceding any event in the onset region. When a
robust increase in firing rate is detected in a region—indicative of a
seizure-like event—the corresponding onset timestamp is recorded.
The baseline firing rate serves as a reference, and seizure activity is
identified based on a sustained increase in firing rate over a defined
duration. We define the onset of a seizure as the beginning of the
high-amplitude bursting regime, specifically the point at which the
firing rate begins to rise consistently after the first small activity
peak. To ensure that only significant deviations are classified as
seizures, we require the firing rate to exceed the baseline by at least
10% and remain above this threshold for a minimum of 100 ms.
Our seizure onset detection follows a similar (though not identical)
approach to that used in related studies—for example, Melozzi et al.
(2017) and Courson et al. (2024)—where seizure-like or bursting
activity in mouse brain models is identified by monitoring a model
variable and applying a threshold to detect the onset. In Figure 8, we
also depict the activity time-series of four initially non-SLE nodes of
the brain network being recruited in the seizure, namely the ventral
part of left Lateral Septal Nucleus (I LSv), 1 CA3, I ENTCI and
r ENTCL In the main panel (mouse brain template), non-colored
regions correspond to areas where seizures either did not occur or
had relatively weak effects.

The Arbor network was initialized with fixed connection
0.5). To assess robustness, we also tested
05 o =
0.5), truncated to positive values. Neural activity was averaged

weights (w =
weights drawn from a normal distribution (@ =

over 20 independent realizations (see Supplementary Figures S2,
S3). Experiments with inhibitory/excitatory network variants are
also currently in progress. Both baseline and seizure-evoked
activity differ across brain regions. Due to the symmetrical
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FIGURE 6

Network level effects induced by SLE activity. Simulation of a 100-cell network with 80 tonic-spiking (Kpath = 9.5mM) and 20 SLE (Kpath = 17.0mM)
neurons. Membrane potentials are shown for one SLE (top) and four tonic-spiking cells. Each neuron includes a single-compartment soma and a
random dendritic tree. The model was integrated for 5s (shaded region) without internal connections, then switched to a fully connected network,
which settled into a new equilibrium dominated by SLE activity. Inset: Example morphology of the first cell.
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Multiscale seizure propagation. (A) Membrane potential and raster plot for four neurons in the detailed fully-connected Arbor neural network. Note
that the membrane potential time-series are similar across all neurons. (B) Mean firing rate of various TVB local brain areas vs. the Arbor activity. We
track a seizure after a transient period, so that all brain areas have reached their baseline activity. The zoomed-in sections show the propagation of
the seizure. We highlight and show in detail the four time series with the largest deviation in activity.
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inter-hemispheric connections in the Allen Mouse Brain SC,
1ENTCl and r ENTClI share the same baseline firing rate. As the SLE
pattern emerges in the left hippocampus, | ENTCI exhibits higher
spiking rates.

3.3 Computational performance of the
Arbor-TVB co-simulation framework

We next evaluated the performance of the running example
on a single Apple M1 (2021) laptop. Arbor was built with MPI
and SIMD (Arm Neon/SVE) support, with cells organized into
groups of ten to fully exploit SIMD capabilities. The overall runtime
consists of four primary components: (1) Arbor model update, (2)
Conversion from spikes to rates, (3) TVB model update, and (4)
Conversion from rates to spikes.

The Arbor update runs in parallel with the conversions between
rates and spikes, as well as the TVB update. During spike exchange,
both simulations synchronize, meaning the slower part must wait
in the MPI collective, which accounts for the primary time spent
in the collective call. Figure 9 illustrates the total runtime of a 10s
simulation for the entire model described above, along with the
relative contributions, for system sizes ranging from one to 10,000
cells. Notably, at 10,000 cells, nearly all computational time is spent
within the Arbor network model. In future experiments, we plan
to leverage additional hardware, including GPUs, to accelerate the
Arbor side of the simulation. At this scale, TVB and the spike/rate
conversions are potential bottlenecks that will require optimization,
potentially through TVB’s JIT compilation and GPU acceleration.
Additionally, further parallelization and porting of the conversion
steps to a more performant programming environment remain
promising avenues for improvement.

4 Discussion

In this work, we presented a co-simulation framework
that offers a novel approach to bridging the gap between
microscopic (spiking neuron) and macroscopic (mean-field)
models. This framework integrates simulators Arbor and TVB
within a parallelized MPI environment, enabling a detailed yet
computationally feasible representation of neural dynamics across
scales. To model large-scale brain network dynamics, we used
the mean-field reduced Wong-Wang model to reproduce resting-
state dynamics. Simultaneously, a detailed spiking neural network
was simulated with Arbor, employing a physiological model of
seizures at the neuron level (Figure 2). The spiking activity of the
population was then converted into a smooth trace for the proxy
node, which was communicated with TVB (Figure 4B). This co-
simulation approach successfully captured the interplay between
spiking activity and large-scale brain dynamics, where local neuron
dynamics generate global activity wave-fronts. At the microscopic
scale, we demonstrated that the structure of the detailed neural
network influences its activity patterns, thereby affecting the shape
of the activity wavefront (Figure 5).

As a proof of concept, and as a technical showcase, we simulated
the emergence of seizure-like activity patterns (SLE) in the mouse
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hippocampus, using the Allen Mouse Brain Structural Connectivity
data. By tuning the single neural parameter, we modeled the target
brain area with a small, fully-connected network of (point and
detailed-compartmental) neurons SLE, which produces scale-free
activity patterns. This network design can be further adapted to
investigate more bio-inspired scenarios, such as the study of: (i)
ensembles of neurons within a given brain area that belong to
different sub-regions (i.e., are relatively distant from one another),
whose dynamical activity may differ significantly from that of
other sub-groups and (ii) dynamical transition phenomena where
the Kpa, value is set near a critical threshold—e.g., inducing a
transition from regular spiking to bursting activity, see Figures 2A,
B. The latter consideration is more general, in the sense that for
a different dynamical model of neural activity, one can choose a
relevant control parameter that drives transitions in neural activity
patterns—for example, from slow spiking (representing healthy
activity) to fast bursting (associated with pathological activity) in
a given region, when the system operates near a critical transition
point (e.g., from spike trains to bursting). Our approach offers
a well-understood and easily controlled platform by showcasing
its technical usability. By adapting the Arbor nodes with different
cell composition and connectivity, we demonstrated its significant
potential for more complex cell models untapped.

Although wusing seizure propagation as a use case, the
seizure activity patterns established in the present study may not
capture precisely the complex nature of all epileptic seizures.
For example, there are other types of seizures that occur in
different brain disorders, i.e., acute symptomatic seizures, which
are not like those caused in epilepsy. For example, patients
with Alzheimer’s disease may also experience seizures, which are
classified as progressive symptomatic seizures and typically arise
from underlying neurodegenerative processes., see e.g., (Mauritz
et al., 2022) for a recent relevant review.

The implementation in the present study extended the
functionality and application scenarios of Arbor. Arbor has
embarked on many types of computational studies as a new-
generation simulator. It enables seamless conversion and
simulation of single-neuron models from the NEURON simulator
and supports simulations of both individual neurons and large-
scale networks. Arbor accommodates various plasticity models,
including  spike-timing-dependent  plasticity, calcium-based
synaptic tagging and capture, and structural plasticity. It has
been used to study synaptic tagging and capture via the built-in
diffusion functionality (Luboeinski et al., 2024, under review).
Recent developments focus on co-simulation with membrane
dynamics and external kernels, enabling dynamic connectivity
modifications in a distance-dependent manner. With its high
flexibility and scalability, Arbor stands out as a promising platform
developed within the EBRAINS initiative to advance cross-scale
simulations in computational neuroscience. Arbor is available as
part of the EBRAINS software distribution (ESD) on connected
HPC centers and the EBRAINS collab via Jupyter Lab. Providing
a bridge between morphologically detailed neurons and neural
mass models encompassing the full brain spans a gap of scale
from sub-micrometer to decimeter. It allows for placing the
resolution—using Arbor and detailed models—where needed and

using realistic, data driven environments everywhere else via TVB.
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FIGURE 8
Propagation of a seizure originating in left-field | CAl area of the mouse brain model. Time distance between seizure emergence in | CA1 (star
marker) and spiking rate increase in each brain area. We also depict the firing activity time-series of four initially non-SLE nodes of the brain network
being recruited in the seizure, namely the ventral part of left Lateral Septal Nucleus (L LSv), |l CA3, LENTCland r ENTCL The red arrows indicate the
beginning of the bursting activity. Non-colored regions (panel with the mouse brain template) correspond to areas where seizures either did not
occur or had relatively weak effects. See text for more information regarding the onset detection of seizures in other regions. See text for more
details.

Despite its successes, the Arbor-TVB framework has some
limitations. The co-simulation requires careful exploration
and calibration of coupling parameters to ensure meaningful
interactions between Arbor and TVB, which remains a challenge
when generalizing to diverse neural models. The TVB network
we used here is homogeneous, in the sense that all model
parameters are set to be identical. While this is not a highly
realistic assumption—particularly when assigning a dynamical
mean field model to simulate the activity of a brain region—it
is a common choice among researchers when modeling whole-
brain resting-state dynamics, see e.g., Popovych et al. (2021) and
Manos et al. (2023) and references therein. Note that even with
identical initial settings, firing rates vary across regions due to
the influence of long-distance connectivity weight values and the
resulting complex dynamics. Our use-case simulation of seizure
propagation is not yet directly compared to experimental data
from mice or humans. Nevertheless, the current Arbor-TVB
implementation is capable of indirectly capturing biologically
realistic brain dynamics and activity propagation, as reported
for example in Melozzi et al. (2017) and Courson et al. (2024).
The same applies to the choice of calcium kernel parameters.
This kernel is inspired by experimental observations via calcium
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imaging experiments (Grewe et al., 2010) but no exact values are
available. Due care should be taken when matching the magnitudes
of both Arbor output and TVB output. Moreover, within the
Arbor-TVB framework, the chosen dynamical model can be
further tuned to generate neural activity—such as BOLD signals
or firing rates—that more closely aligns with neuroimaging data,
thereby enabling the simulation of more realistic brain dynamics.
Specifically, computational costs for large neural networks may
necessitate further optimization in model parallelization and data
handling. A near-term goal would be to incorporate new features,
such as synaptic plasticity, which could offer valuable insights into
how brain networks adapt and reorganize in response to disrupted
activity.

As stated in the Introduction section, it is natural to compare
the Arbor-TVB co-simulation framework presented in the current
Method paper with the established NEST-TVB co-simulation
(Kusch et al., 2024). Both simulators have their own merits
and application scope. NEST has a longer history (Gewaltig
and Diesmann, 2007) and a rich profile of neural models and
plasticity models. Its performance is excellent in mesoscopic
modeling of spiking neural networks. Arbor is younger but has
made it possible to efficiently simulate networks of the highly
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conversion are the most relevant cost center in the limit of vanishing Arbor network sizes while at large sizes, Arbor compute time dominates.

he full co-simulation over the number of cells in the Arbor network as well
engines and in converting between rates and spikes. TVB and rate to spike

expensive biophysical HH model with multi-compartments (Abi
Akar et al, 2019). It also accommodates a variety of plasticity
rules, including heterosynaptic dendritic plasticity rules inside
the dendritic shaft (Luboeinski et al., 2024). The Arbor-TVB
co-simulation framework has thereby inherited those merits of
Arbor, while the NEST-TVB co-simulation framework opens the
venue for users to freely use NEST functions for co-simulation.
Those two tools are complementary for distinct research purposes.
Moreover, since Arbor is designed to make the best use of
both GPU and CPU, Arbor-TVB can also be easily adapted
to make use of the cutting-edge exascale GPU computing
resources.

From an epilepsy-seizure perspective, while the framework
provides insights into seizure propagation, additional validation
against empirical data would enhance its applicability to
clinical settings. This co-simulation framework could enable
a detailed investigation of the physiological sources of seizures.
Understanding the impact of the structure of the diseased area on
seizure patterns and propagation would be of great interest (see
e.g., Netoff et al,, 2004; Garcia-Ramos et al., 2016). Specifically,
we expect the inhibition and excitation ratios in the detailed
neural network to play a critical role in seizure patterns (see e.g.,
Engel, 1996; Liu et al., 2020). Moreover, the Arbor-TVB user can
implement various neural models and configuration topologies to
simulate different brain regions and to computationally investigate
diverse dynamic activities or the effects of medical interventions—
for example, modeling subthalamic neurons along with synaptic
and structural plasticity under stimulation in Parkinson’s disease
(Manos et al., 2021; Meier et al., 2022; Shaheen et al., 2022),
Alzheimer’s disease (Stefanovski et al., 2019; Manos et al., 2023)
or tinnitus (Manos et al, 2018a,b) etc. Evidently, comparison,
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parameter tuning, and validation are also feasible using empirical
neuroimaging data, however this was not the primary goal of this
work. The simulated neural activity generated in each brain region
of the connectome can be transformed into a BOLD signal-similar
to the built-in functionality of TVB (Sanz Leon et al., 2013;
Melozzi et al., 2017), which computes the hemodynamic response
function (HRF) kernel (i.e., fMRI activity) using the Balloon-
Windkessel model (Friston et al.,, 2000)—and can ultimately be
aligned with neuroimaging time series data. Hence, a framework
like Arbor-TVB can be extended to investigate various brain
conditions.
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