001052123 001__ 1052123
001052123 005__ 20260127203441.0
001052123 0247_ $$2doi$$a10.21105/joss.09409
001052123 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00771
001052123 037__ $$aFZJ-2026-00771
001052123 082__ $$a004
001052123 1001_ $$0P:(DE-HGF)0$$aBunino, Matteo$$b0$$eCorresponding author
001052123 245__ $$aitwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems
001052123 260__ $$a[Erscheinungsort nicht ermittelbar]$$b[Verlag nicht ermittelbar]$$c2026
001052123 3367_ $$2DRIVER$$aarticle
001052123 3367_ $$2DataCite$$aOutput Types/Journal article
001052123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769505410_7752
001052123 3367_ $$2BibTeX$$aARTICLE
001052123 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052123 3367_ $$00$$2EndNote$$aJournal Article
001052123 520__ $$aThe integration of Artificial Intelligence (AI) into scientific research has expanded significantlyover the past decade, driven by the availability of large-scale datasets and Graphics ProcessingUnits (GPUs), in particular at High Performance Computing (HPC) sites. <br>However, many researchers face significant barriers when deploying AI workflows on HPCsystems, as their heterogeneous nature forces scientists to focus on low-level implementationdetails rather than on their core research. At the same time, the researchers often lackspecialized HPC/AI knowledge to implement their workflows efficiently. <br>To address this, we present itwinai, a Python library that simplifies scalable AI on HPC. Itsmodular architecture and standard interface allow users to scale workloads efficiently fromlaptops to supercomputers, reducing implementation overhead and improving resource usage.
001052123 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052123 536__ $$0G:(EU-Grant)101058386$$ainterTwin - An interdisciplinary Digital Twin Engine for science (101058386)$$c101058386$$fHORIZON-INFRA-2021-TECH-01$$x1
001052123 536__ $$0G:(DE-Juel-1)SDLFSE$$aSDLFSE - SDL Fluids & Solids Engineering (SDLFSE)$$cSDLFSE$$x2
001052123 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001052123 7001_ $$0P:(DE-HGF)0$$aSæther, Jarl Sondre$$b1
001052123 7001_ $$0P:(DE-HGF)0$$aEickhoff, Linus Maximilian$$b2
001052123 7001_ $$0P:(DE-HGF)0$$aLappe, Anna Elisa$$b3
001052123 7001_ $$0P:(DE-HGF)0$$aTsolaki, Kalliopi$$b4
001052123 7001_ $$0P:(DE-HGF)0$$aVerder, Killian$$b5
001052123 7001_ $$0P:(DE-HGF)0$$aMutegeki, Henry$$b6
001052123 7001_ $$0P:(DE-HGF)0$$aMachacek, Roman$$b7
001052123 7001_ $$0P:(DE-HGF)0$$aGirone, Maria$$b8
001052123 7001_ $$0P:(DE-Juel1)207782$$aKrochak, Oleksandr$$b9$$ufzj
001052123 7001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b10
001052123 7001_ $$0P:(DE-Juel1)188513$$aSarma, Rakesh$$b11$$ufzj
001052123 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b12$$ufzj
001052123 773__ $$0PERI:(DE-600)2891760-1$$a10.21105/joss.09409$$gVol. 11, no. 117, p. 9409 -$$n117$$p9409$$tThe journal of open source software$$v11$$x2475-9066$$y2026
001052123 8564_ $$uhttps://juser.fz-juelich.de/record/1052123/files/10.21105.joss.09409.pdf$$yOpenAccess
001052123 909CO $$ooai:juser.fz-juelich.de:1052123$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001052123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207782$$aForschungszentrum Jülich$$b9$$kFZJ
001052123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188513$$aForschungszentrum Jülich$$b11$$kFZJ
001052123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b12$$kFZJ
001052123 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052123 9141_ $$y2026
001052123 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052123 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-10T14:45:56Z
001052123 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-10T14:45:56Z
001052123 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052123 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2024-09-10T14:45:56Z
001052123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001052123 920__ $$lyes
001052123 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052123 980__ $$ajournal
001052123 980__ $$aVDB
001052123 980__ $$aUNRESTRICTED
001052123 980__ $$aI:(DE-Juel1)JSC-20090406
001052123 9801_ $$aFullTexts