TY - JOUR
AU - Bunino, Matteo
AU - Sæther, Jarl Sondre
AU - Eickhoff, Linus Maximilian
AU - Lappe, Anna Elisa
AU - Tsolaki, Kalliopi
AU - Verder, Killian
AU - Mutegeki, Henry
AU - Machacek, Roman
AU - Girone, Maria
AU - Krochak, Oleksandr
AU - Rüttgers, Mario
AU - Sarma, Rakesh
AU - Lintermann, Andreas
TI - itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems
JO - The journal of open source software
VL - 11
IS - 117
SN - 2475-9066
CY - [Erscheinungsort nicht ermittelbar]
PB - [Verlag nicht ermittelbar]
M1 - FZJ-2026-00771
SP - 9409
PY - 2026
AB - The integration of Artificial Intelligence (AI) into scientific research has expanded significantlyover the past decade, driven by the availability of large-scale datasets and Graphics ProcessingUnits (GPUs), in particular at High Performance Computing (HPC) sites. <br>However, many researchers face significant barriers when deploying AI workflows on HPCsystems, as their heterogeneous nature forces scientists to focus on low-level implementationdetails rather than on their core research. At the same time, the researchers often lackspecialized HPC/AI knowledge to implement their workflows efficiently. <br>To address this, we present itwinai, a Python library that simplifies scalable AI on HPC. Itsmodular architecture and standard interface allow users to scale workloads efficiently fromlaptops to supercomputers, reducing implementation overhead and improving resource usage.
LB - PUB:(DE-HGF)16
DO - DOI:10.21105/joss.09409
UR - https://juser.fz-juelich.de/record/1052123
ER -