| Hauptseite > Publikationsdatenbank > itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems > print |
| 001 | 1052123 | ||
| 005 | 20260127203441.0 | ||
| 024 | 7 | _ | |a 10.21105/joss.09409 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00771 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00771 |
| 082 | _ | _ | |a 004 |
| 100 | 1 | _ | |a Bunino, Matteo |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems |
| 260 | _ | _ | |a [Erscheinungsort nicht ermittelbar] |c 2026 |b [Verlag nicht ermittelbar] |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769505410_7752 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The integration of Artificial Intelligence (AI) into scientific research has expanded significantlyover the past decade, driven by the availability of large-scale datasets and Graphics ProcessingUnits (GPUs), in particular at High Performance Computing (HPC) sites. However, many researchers face significant barriers when deploying AI workflows on HPCsystems, as their heterogeneous nature forces scientists to focus on low-level implementationdetails rather than on their core research. At the same time, the researchers often lackspecialized HPC/AI knowledge to implement their workflows efficiently. To address this, we present itwinai, a Python library that simplifies scalable AI on HPC. Itsmodular architecture and standard interface allow users to scale workloads efficiently fromlaptops to supercomputers, reducing implementation overhead and improving resource usage. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a interTwin - An interdisciplinary Digital Twin Engine for science (101058386) |0 G:(EU-Grant)101058386 |c 101058386 |f HORIZON-INFRA-2021-TECH-01 |x 1 |
| 536 | _ | _ | |a SDLFSE - SDL Fluids & Solids Engineering (SDLFSE) |0 G:(DE-Juel-1)SDLFSE |c SDLFSE |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Sæther, Jarl Sondre |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Eickhoff, Linus Maximilian |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Lappe, Anna Elisa |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Tsolaki, Kalliopi |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Verder, Killian |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Mutegeki, Henry |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Machacek, Roman |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Girone, Maria |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Krochak, Oleksandr |0 P:(DE-Juel1)207782 |b 9 |u fzj |
| 700 | 1 | _ | |a Rüttgers, Mario |0 P:(DE-Juel1)177985 |b 10 |
| 700 | 1 | _ | |a Sarma, Rakesh |0 P:(DE-Juel1)188513 |b 11 |u fzj |
| 700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 12 |u fzj |
| 773 | _ | _ | |a 10.21105/joss.09409 |g Vol. 11, no. 117, p. 9409 - |0 PERI:(DE-600)2891760-1 |n 117 |p 9409 |t The journal of open source software |v 11 |y 2026 |x 2475-9066 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1052123/files/10.21105.joss.09409.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1052123 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)207782 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)188513 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)165948 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2026 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-09-10T14:45:56Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-09-10T14:45:56Z |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2024-09-10T14:45:56Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|