The Journal of Open Source Software

DOI: 10.21105/joss.09409

Software
= Review 0
= Repository &0
= Archive &0

Editor: Sébastien Boisgérault
Reviewers:

= @yewentao256

= @xiazeyu

Submitted: 02 September 2025
Published: 20 January 2026

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

itwinai: A Python Toolkit for Scalable Scientific
Machine Learning on HPC Systems

! Linus Maximilian Eickhoff® !,
!, Killian Verder ®!, Henry

!, Oleksandr
2 and Andreas

1, Jarl Sondre Sather
Anna Elisa Lappe ©®!, Kalliopi Tsolaki
Mutegeki @', Roman Machacek @', Maria Girone
Krochak @2, Mario Riittgers © 23, Rakesh Sarma
Lintermann ©?2

Matteo Bunino

1 European Organization for Nuclear Research (CERN), Espl. des Particules 1, 1217 Genéve,
Switzerland 2 Forschungszentrum Jiilich, Jillich Supercomputing Center, Germany 3 Data-Driven Fluid
Engineering (DDFE) Laboratory, Inha University, Incheon, Republic of Korea

Summary

The integration of Artificial Intelligence (Al) into scientific research has expanded significantly
over the past decade, driven by the availability of large-scale datasets and Graphics Processing
Units (GPUs), in particular at High Performance Computing (HPC) sites.

However, many researchers face significant barriers when deploying Al workflows on HPC
systems, as their heterogeneous nature forces scientists to focus on low-level implementation
details rather than on their core research. At the same time, the researchers often lack
specialized HPC/AIl knowledge to implement their workflows efficiently.

To address this, we present itwinati, a Python library that simplifies scalable Al on HPC. Its
modular architecture and standard interface allow users to scale workloads efficiently from
laptops to supercomputers, reducing implementation overhead and improving resource usage.

Statement of need

Integrating machine learning into scientific workflows on HPC systems remains complex.
Researchers must often invest substantial effort to configure distributed training, manage
hyperparameter optimization, and analyze performance, while adapting to varied system
architectures.

itwinati is a Python library that streamlines this process by providing a unified framework
for scalable Al workflows. It offers consistent interfaces for distributed training, supports
large-scale hyperparameter optimization, and includes tools for profiling and code scalability
analysis.

Developed within the interTwin project (Manzi et al., 2025) to support Digital Twin applications
in physics and environmental sciences, itwinat is designed to be extensible and reusable. By
consolidating core functionality into a single framework, it lowers the technical barrier to HPC
adoption and enables researchers to focus on scientific objectives.

State of the field

Scalable Al workflows on HPC systems are typically assembled from multiple specialized
tools. PyTorch-DDP (Li et al., 2020), DeepSpeed (Rasley et al., 2020), Horovod (Sergeev

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 1
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://orcid.org/0009-0008-5100-9300
https://orcid.org/0009-0002-7971-2213
https://orcid.org/0009-0006-6691-2821
https://orcid.org/0009-0009-4804-4188
https://orcid.org/0000-0002-3192-4260
https://orcid.org/0009-0006-4819-3229
https://orcid.org/0009-0001-9940-1167
https://orcid.org/0009-0007-9976-4420
https://orcid.org/0000-0003-0261-8392
https://orcid.org/0009-0007-2245-9452
https://orcid.org/0000-0003-3917-8407
https://orcid.org/0000-0002-7069-4082
https://orcid.org/0000-0003-3321-6599
https://doi.org/10.21105/joss.09409
https://github.com/openjournals/joss-reviews/issues/9409
https://github.com/interTwin-eu/itwinai
https://doi.org/10.5281/zenodo.18243083
https://github.com/boisgera
https://orcid.org/0000-0003-4685-8099
https://github.com/yewentao256
https://github.com/xiazeyu
https://creativecommons.org/licenses/by/4.0/
https://www.intertwin.eu/
https://doi.org/10.21105/joss.09409

@SS

The Journal of Open Source Software

& Del Balso, 2018), and Ray (Moritz et al., 2018) provide distributed training backends;
Ray Tune (Liaw et al., 2018) and Optuna (Akiba et al., 2019) offer HPO frameworks; and
TensorBoard (TensorBoard Contributors, 2025), MLflow (Zaharia et al., 2018), and Weights
& Biases (wandb Contributors, 2025) support experiment tracking and visualization. HeAT
(H. Developers, 2025), AI4HPC (A. Developers, 2025), and perun (Team, 2025) address,
respectively, distributed tensor operations on HPC systems, Computational Fluid Dynamics
(CFD)-oriented Al and HPO workflows on HPC systems, and performance or energy profiling,
while interLink (Ciangottini et al., 2025) enables cloud to HPC offloading of containerized
workloads.

itwinail combines these capabilities into a single, configurable library: it offers a plugin
system for domain use cases, uniform configuration and logging interfaces, support for multiple
distributed training and HPO backends, built-in profiling and scalability reporting, and portable
deployment across laptops, cloud clusters, and SLURM-based HPC systems via cloud to HPC
offloading. This makes it particularly suitable when users need to prototype and deploy Al
workflows that should run with minimal changes on heterogeneous HPC infrastructures.

Package features

The main features offered by the itwinat library are:

Configuration for reproducible Al workloads: a declarative, hierarchical, composable, and
CLl-overrideable YAML-based configuration system that separates experimental parameters
from implementation code.

Distributed training and inference: PyTorch-DDP (Li et al., 2020), DeepSpeed (Rasley et al.,
2020), Horovod (Sergeev & Del Balso, 2018), and Ray (Moritz et al., 2018) distributed ML
training frameworks are supported.

Hyperparameter optimization (HPQ): model performance can be improved by automatically
traversing the hyperparameter space.

Ray integration provides two HPO strategies: (i) assigning multiple workers to a single trial or
(i) running many trials concurrently (Figure 1).

Training Configuration | (=== === =<
Trial
Trial

Trial
Trial

Trial
Trial
Trial
Trial

batch_size: [32, 64,128]
learning_rate: 10°-107°
epochs: 100

Training Loop (Epochs) Training Loop (Epochs)

Optimization

(
|
|
|
: |
|
|| 8l
L itwinai Trainer |
|
|
|
|
|
|
|

Optimization

Report
Loss/
Metric

Loss/
Metric

_ZTC_n'e_at_e_R;y_T;ai_n;r_ \I

l\ and Tuner 1

Continue running
this configuration?

Continue running
this configuration?

I: 3.Fit Ray Tuner)

--------------- NODE 1
& I A I 7

Figure 1: Conceptual representation of an HPO workflow in itwinai.

-

)
|
|
|
|
|
|

| |

Report |
|

|

|

|

|

|

-

Profilers: itwinati integrates with multiple profilers, such as the py-spy profiler (Frederickson,
2018) and the PyTorch Profiler, and also logs metrics about training time, GPU utilization,
and GPU power consumption.

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 2
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://doi.org/10.21105/joss.09409

JEISS

The Journal of Open Source Software

ML logs tracking: itwinal integrates with existing ML logging frameworks, such as
TensorBoard (TensorBoard Contributors, 2025), MLflow (Zaharia et al., 2018), Weights &
Biases (wandb Contributors, 2025), and yProvML (Padovani & Fiore, 2025) logger, and
provides a unified interface across all of them through a thin abstraction layer.

Offloading to HPC systems and cloud: to benefit from both cloud and HPC, interLink
(Ciangottini et al., 2025) is used, which is a lightweight component to enable seamless
offloading of compute-intensive jobs from cloud to HPC, performing an automatic translation
from Kubernetes pods to SLURM jobs.

Continuous integration and deployment: itwinati includes extensive tests (library and use
cases). A Dagger pipeline builds containers on release, runs smoke tests on GitHub Actions
(Azure runners: 4 CPUs, 16 GB)l, offloads distributed tests to HPC systems via interLink,
and publishes on success.

Use-case integrations

There is a wide range of scientific use cases currently integrated with itwinat via its plug-in
architecture. Earth-observation plugins cover hydrological forecasting, drought prediction, and
climate/remote-sensing pipelines; physics plugins include high-energy physics, radio astronomy,
lattice quantum chromodynamics (QCD), and gravitational-wave/glitch analysis. Packaging
these as itwinati plugins enables reproducible, shareable workflows that run consistently on
hardware ranging from personal computers to HPC systems. The full list of itwinati plugins
can be found at this link.

Reproducibility

The scalability results in this paper were obtained on the JUWELS Booster GPU partition
at the Jilich Supercomputing Centre (Krause, 2019), a SLURM-managed system. For the
Virgo scalability study (Figure 2, Figure 3), itwinai was driven by YAML configurations that
specify dataset, model, optimizer, batch size, and number of epochs. The exact configuration
files, SLURM scripts, and commands used to generate these figures are stored in the itwinat
repository inside joss/reproducibility. The scalability-report and profiling workflow used to
produce the plots is described in the documentation (itwinai Developers, 2025b, 2025a).

The same scalability-report machinery applies to single- and multi-node training: on SLURM
clusters, the configurations are launched via SLURM, while on a single node (CPU or GPU)
they can be run with a local backend and reduced problem size. This allows readers with
access to a comparable SLURM cluster to reproduce the multi-node results and readers without
SLURM to run a smaller, single-node variant that produces reports and plots with the same
structure as those shown in this paper.

Performance

itwinatl provides tools to assess scalability and diagnose bottlenecks, enabling efficient and
accountable use of HPC resources. Two complementary components are provided: scalability
report generation and profiling.

Scalability report

For data-parallel training, adding more workers improves throughput, but as all-reduce
communication costs grow, communication overhead eventually dominates, causing scaling

1GitHub hosted runners define the type of machine that will process a job in your workflow. Find more here
(Accessed on 2025-08-14).

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 3
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://dagger.io/
https://itwinai.readthedocs.io/latest/getting-started/plugins-list.html
https://github.com/interTwin-eu/itwinai/tree/joss/joss/reproducibility
https://docs-internal.github.com/en/actions/how-tos/write-workflows/choose-where-workflows-run/choose-the-runner-for-a-job?utm_source=chatgpt.com
https://doi.org/10.21105/joss.09409

The Journal of Open Source Software

to level-off or even decline. The report characterizes this trade-off across GPUs/nodes and
backends, reporting wall-clock epoch time, relative speedup (Figure 2), GPU utilization
(0-100%), energy (Wh), and compute-versus-other time, including collective communication
and memory operations (Figure 3). Considered jointly, these metrics identify the most efficient
configuration and distribution strategy, rather than relying on a single indicator. Figure 2 and
Figure 3 show the scalability of the physics use case from INFN? targeting gravitational-wave
analysis at the Virgo® interferometer (Szether et al., 2025; Tsolaki et al., 2025).

8.00 ™ deepspeed -
*— horovod L
~4— torch-ddp e
----- ideal linear speedup o

4.00

Speedup

2.00

1.00

4 8 16 32
Number of workers

Figure 2: Relative speedup of average epoch time vs. number of workers for the Virgo use case.

I deepspeed

B horovod
1.0 | | B torch-ddp
[Z2 Other
0.8 |
N /' \

c N
S / N y N
=1 "/ /S N
S AN | / \\‘
£ o6 \
5 54.0% /. 54.0% . 53.9% | 53.7% | |
B 49.4% 1 48.2% 9 ‘
5 AJ3% 45.4% |
2 J
£
S

0.4 35.0%

32.5%
29.4%
0.2
0.0

4 8 16 32 4 8 16 32
Number of workers

Figure 3: Proportion of time spent on computation versus other operations, such as collective
communication, in the Virgo use case, broken down by number of workers and distributed framework.

2|stituto Nazionale di Fisica Nucleare infn.it (Accessed on 2025-08-14).
3Virgo Collaboration www.virgo-gw.eu (Accessed on 2025-08-14).

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 4
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://www.infn.it/en/
https://www.virgo-gw.eu/
https://doi.org/10.21105/joss.09409

The Journal of Open Source Software

Addressing bottlenecks via profiling

To explain why performance degrades, itwinati integrates low-overhead, sample-based profiling
(e.g., py-spy (Frederickson, 2018)) and summarizes flame-graph data into actionable hotspots
(e.g., data loading and 1/0O, kernel execution, host—device transfer, communication). These
summaries guide targeted remedies such as adjusting batch size, data-loader parallelism,
gradient accumulation, or backend/collective settings.

Outlook and future developments

itwinat provides ready-to-use ML tools that are applicable across a wide range of scientific
applications. The development of the library is continued through projects ODISSEE* and
RI-SCALE®. The future developments include the integration of new scientific use cases,
exploring additional parallelism approaches, integrating advanced user interfaces, and adding
other EuroHPC systems and performance optimization features.

Acknowledgements

This work has been funded by the European Commission in the context of the interTwin
project, with Grant Agreement Number 101058386. In interTwin, itwinai has been actively
developed on the HPC systems at JSC, such as on the HDF-ML and JUWELS Booster systems,
and using EuroHPC resources, such as on the Vega HPC system. itwinati is an open-source
Python library primarily developed by CERN, in collaboration with Forschungszentrum Jiilich
(FZ)).

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623-2631.
https://doi.org/10.1145/3292500.3330701

Ciangottini, D., Bianchini, G., & Spiga, D. (2025). interLink. In GitHub repository. GitHub.
https://github.com/interLink-hq/interLink

Developers, A. (2025). AI4HPC. In GitLab repository. GitLab. https://gitlab.jsc.fz-juelich.de/
CoE-RAISE/FZJ/aidhpc/ai4hpc

Developers, H. (2025). HeAT. In GitHub repository. GitHub. https://github.com/helmholtz-
analytics/heat

Developers, itwinai. (2025a). Profiling overview. In itwinai documentation. Read the Docs.
https://itwinai.readthedocs.io/v0.3.4 /tutorials/profiling/profiling-overview.html

Developers, itwinai. (2025b). Scalability report. In itwinai documentation. Read the
Docs. https://itwinai.readthedocs.io/v0.3.4/how-it-works /scalability-report /scalability__
report.html

Frederickson, B. (2018). py-spy: Sampling profiler for Python programs. In GitHub repository.
GitHub. https://github.com/benfred/py-spy

Krause, D. (2019). JUWELS: Modular tier-0/1 supercomputer at the Jilich Supercomputing
Centre. J. Of Large-Scale Research Facilities, 5(A135). https://doi.org/10.17815/]lsrf-5-
171

4Online Data Intensive Solutions for Science in the Exabytes Era (ODISSEE): odissee-project.eu (Accessed
on 2025-08-14).
SRI-SCALE project: riscale.eu (Accessed on 2025-08-14).

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 5
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://doi.org/10.1145/3292500.3330701
https://github.com/interLink-hq/interLink
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc
https://github.com/helmholtz-analytics/heat
https://github.com/helmholtz-analytics/heat
https://itwinai.readthedocs.io/v0.3.4/tutorials/profiling/profiling-overview.html
https://itwinai.readthedocs.io/v0.3.4/how-it-works/scalability-report/scalability_report.html
https://itwinai.readthedocs.io/v0.3.4/how-it-works/scalability-report/scalability_report.html
https://github.com/benfred/py-spy
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.17815/jlsrf-5-171
https://www.odissee-project.eu/
https://www.riscale.eu/
https://doi.org/10.21105/joss.09409

SS

The Journal of Open Source Software

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith, J., Vaughan,
B., Damania, P., & others. (2020). Pytorch Distributed: Experiences on accelerating data
parallel training. arXiv:2006.15704. https://doi.org/10.48550/arXiv.2006.15704

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018). Tune: A
research platform for distributed model selection and training. arXiv. https://arxiv.org/
abs/1807.05118

Manzi, A., Bardaji, R., Rodero, I., Molté, G., Fiore, S., Campos, |., Elia, D., Sarandrea, F.,
Millar, A. P., Spiga, D., Bunino, M., Accarino, G., Asprea, L., Bernardo, S., Caballer,
M., Chatzikyriakou, C., Ciangottini, D., Claus, M., Cristofori, A., .. Zvolensky, J. (2025).
interTwin: Advancing Scientific Digital Twins through Al, Federated Computing and Data.
Future Generation Computer Systems, 108312. https://doi.org/10.1016/]j.future.2025.
108312

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z.,
Paul, W., Jordan, M. I., & Stoica, |. (2018). Ray: A distributed framework for emerging
Al applications. https://arxiv.org/abs/1712.05889

Padovani, G., & Fiore, S. (2025). yProvML. In GitHub repository. GitHub. https://github.
com/HPCl-Lab/yProvML

Rasley, J., Rajbhandari, S., Ruwase, O., & He, Y. (2020). Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. Proc. 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 3505-3506.
https://doi.org/10.1145/3394486.3406703

Sather, J. S., Bunino, M., & Eickhoff, L. M. (2025). Scalability analysis of GlitchFlow with
itwinai. Zenodo. https://doi.org/10.5281/zenodo.16882390

Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv:1802.05799. https://doi.org/10.48550/arXiv.1802.05799

Team, H. A. E. (2025). Perun. In GitHub repository. GitHub. https://github.com/Helmholtz-
Al-Energy/perun

TensorBoard Contributors. (2025). TensorBoard. In GitHub repository. GitHub. https:
//github.com /tensorflow/tensorboard

Tsolaki, K., Vallecorsa, S., Vallero, S., Asprea, L., Sarandrea, F., Komijani, J., Ray, G. S.,
Pidopryhora, Y., & Campos, |. (2025). interTwin D4.6 final architecture design of the DTs
capabilities for high energy physics, radio astronomy and gravitational-wave astrophysics
(1 Under EC Review). Zenodo. https://doi.org/10.5281/zenodo.15120028

wandb Contributors. (2025). Weights & Biases. In GitHub repository. GitHub. https:
//github.com /wandb/wandb

Zaharia, M. A., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching,
S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., & Zumar, C. (2018). Accelerating
the Machine Learning Lifecycle with MLflow. [EEE Data Eng. Bull., 41, 39-45. http:
//sites.computer.org/debull /A18dec/p39.pdf

Bunino et al. (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 6
11(117), 9409. https://doi.org/10.21105/joss.09409.

https://doi.org/10.48550/arXiv.2006.15704
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/1807.05118
https://doi.org/10.1016/j.future.2025.108312
https://doi.org/10.1016/j.future.2025.108312
https://arxiv.org/abs/1712.05889
https://github.com/HPCI-Lab/yProvML
https://github.com/HPCI-Lab/yProvML
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.5281/zenodo.16882390
https://doi.org/10.48550/arXiv.1802.05799
https://github.com/Helmholtz-AI-Energy/perun
https://github.com/Helmholtz-AI-Energy/perun
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://doi.org/10.5281/zenodo.15120028
https://github.com/wandb/wandb
https://github.com/wandb/wandb
http://sites.computer.org/debull/A18dec/p39.pdf
http://sites.computer.org/debull/A18dec/p39.pdf
https://doi.org/10.21105/joss.09409

	Summary
	Statement of need
	State of the field
	Package features
	Use-case integrations
	Reproducibility
	Performance
	Scalability report
	Addressing bottlenecks via profiling

	Outlook and future developments
	Acknowledgements
	References

