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Abstract

Lead (Pb) in soil poses serious environmental and health risks, and its removal requires
complex and costly treatment methods to meet strict regulatory standards. To effectively ad-
dress this challenge, innovative and efficient techniques are essential. Sepiolite-supported
MnFe;O4 (MnFep;O4/SEP) composites were synthesized via a chemical co-precipitation
method. The effects of MnFe;O4/SEP on soil pH, cation exchange capacity (CEC), available
Pb content, Pb%* uptake, and the activities of antioxidant enzymes in Brassica chinensis
(Pak Choi) were examined. MnFe,Oy/SEP showed superior Pb?* adsorption compared
to SEP alone, fitting Langmuir models, Dubinin-Radushkevich (D-R) models, Temkin
models and pseudo-second-order kinetics. The maximum adsorption capacities at 298,
308, and 318 K were 459, 500 and 549 mg-g~!, respectively. XPS analysis indicated that
chemisorption achieved through ion exchange between Pb>* and H* was the main mech-
anism. MnFe;O4/SEP increased the soil pH by 0.2-1.5 units and CEC by 18-47%, while
reducing available Pb by 12-83%. After treatment with MnFe;O,4/SEP, acid-extractable
and reducible Pb in the soil decreased by 14% and 39%, while oxidizable and residual Pb
increased by 26% and 21%, respectively. In Brassica chinensis, MnFe;O, /SEP reduced Pb**
uptake by 76%, increased chlorophyll content by 36%, and decreased malondialdehyde
(MDA) levels by 36%. The activities of antioxidant enzymes—superoxide dismutase (SOD),
peroxidase (POD), and catalase (CAT)—were decreased by 29%, 38% and 17%, respectively.
These findings demonstrate that MnFe,O,4/SEP is an efficient Pb%* adsorbent that immobi-
lizes Pb in soil mainly through ion exchange, thereby providing a highly effective strategy
for remediating Pb-contaminated soils and improving plant health.

Keywords: manganese ferrite nanoparticles (MnFe,O4 NPs); adsorption; soil remediation;
Pak Choi; nano-composite; lead toxicity
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1. Introduction

In recent decades, rapid economic development has accelerated the release of heavy
metals, particularly lead (Pb), into the environment. It is estimated that approximately
783,000 tons of Pb have been discharged globally, with soils acting as the ultimate sink and
consequently experiencing significant contamination [1]. A national survey of soil pollution
in China conducted from 2005 to 2013 showed that inorganic pollution accounted for the
largest proportion (16.1%) of environmental contamination among all types. Furthermore,
according to the latest survey by the Ministry of Ecology and Environment (2023-2024),
7.2% of China’s farmland soil exceeds the Pb?* limits set by national standards. Vegetables
play an important role in the Chinese diet, and Pak Choi (Brassica chinensis), a common
leafy green, is widely consumed. However, Pb?* is readily absorbed by Brassica chinensis
from contaminated soil and transferred to humans through the food chain, posing serious
health risks [2,3]. Notably, Pb?>" exposure can severely impair the nervous system and vital
organs, with children being particularly vulnerable to its detrimental effects on growth
and development [4]. Therefore, developing a simple and low-cost method to remove Pb?*
from soil has become a critical issue. Chemical precipitation, electrochemical methods,
ion exchange and adsorption methods are the popular technologies for remediation of Pb-
contaminated farmland [5]. Among these methods, adsorption is the preferred approach for
remediating Pb-contaminated farmland due to its high efficiency and low cost [6]. Hence,
the development of highly effective adsorbents for heavy metal removal is a significant
trend in current environmental research, with a variety of materials such as carbon-based
compounds, nanoparticles, and clay minerals being investigated for their ability to remove
heavy metals from wastewater and soil [7-9].

Manganese ferrite nanoparticles (MnFe,O4 NPs) have gained prominence due to their
remarkable physicochemical, optical, and magnetic features, including low magnetic loss,
high permeability, and robust chemical stability. Un-agglomerated MnFe;O4 has a large
specific surface area due to its nanoscale, and a large number of hydroxyl groups on the
surface make it a potential substrate for Pb%* adsorption [10]. However, the magnetic nature
of MnFe,O4 NPs often leads to their agglomeration, which makes the actual surface area for
adsorption, and the absorption efficiency much lower than the theoretical value [11]. This
issue is typically addressed by using carbon-based or silica-based materials as stabilizing
supports for MnFe,O,4 NPs to reduce their agglomeration potential [12]. Loading magnetic
MnFe;O4 onto a sludge biochar composite has been demonstrated to effectively prevent
the agglomeration of MnFe,O, and improve the adsorption efficiency of Pb?* [13].

Natural clay minerals are aluminosilicates with a layered structure. Common clay
minerals include zeolite, sepiolite (SEP) and montmorillonite, which are natural materials
with adsorption properties for Pb?* [14]. SEP, in particular, stands out as a fibrous sheet-
structured silicate clay mineral, rich in silicon and magnesium. The lamellar fiber structure
of SEP has a large specific surface area, which is not only an excellent natural material for
adsorption of Pb?*, but also an ideal carrier for nanomaterials. Fu et al. (2015) successfully
prepared SEP-supported nano-zero-valent iron for efficient removal of Cr®* and Pb?* from
groundwater [15]. The results showed that the agglomeration phenomenon of nano-zero-
valent iron after loading was reduced, and the removal rate of Cr®* and Pb%* in water was
increased. Therefore, SEP is a potential support for MnFe,O4 NPs. The synergy between
MnFe;0y4 and SEP in a composite form is anticipated to not only preserve but also amplify
the inherent adsorption qualities of each individual component, harnessing the best of both
worlds for improved efficacy in heavy metal removal.

In this study, a sepiolite-supported manganese ferrite nanoparticles (MnFe,O,/SEP)
composite magnetic material was prepared and characterized by scanning electron micro-
scope with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier
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Transform infrared (FI-IR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The
adsorption behavior and properties of Pb?* in water were studied under the conditions of
different material dosage, pH, adsorption temperature and adsorption time. In addition,
through adsorption kinetics, adsorption thermodynamics calculations, and isothermal
adsorption fitting, combined with XPS characterization, the adsorption mechanism for
Pb?* was explored. Finally, the remediation effects of MnFe,Oy4/SEP in soil were evaluated
by measuring the Pb availability, Pb?>* content, enzyme activities and the antioxidative
responses in the plant Brassica chinensis grown in the Pb-contaminated soil.

2. Results and Discussion
2.1. Adsorbent Characterization

The morphologies and elemental compositions of raw SEP and MnFe,O,/SEP are
shown in Figure S1. SEP exhibited a typical fibrous lamellar structure with a smooth
surface (Figure Sla) and was mainly composed of Ca, Mg, O, and Si (Figure Slc). After
modification, the surface became rough with granular deposits, while MnFe,O,4 aggregation
was effectively prevented (Figure S1b). Energy spectrum analysis confirmed the presence
of Mn and Fe in the composite (Figure S1d and Table S2). The content ratio of the two
elements was 1:2, and compared with SEP, their contents increased by 11% and 22%
respectively, indicating successful MnFe,;Oy4 loading. The specific surface area increased
from 34.04 to 112.61 m?-g~! (Table S1), providing 3.3 times more binding sites for heavy
metals. These improvements suggest that MnFe,O4 /SEP has strong potential as an efficient
Pb2* adsorbent. XRD analysis confirmed the crystal structures of SEP, MnFe;Oy, and
MnFe;O4/SEP (Figure Sle). Reflections at 7.25°, 27.91°, 39.86°, and 43.64° corresponded to
SEP (JCPDS 26-1226), while additional peaks at 34.88°, 36.47°, 52.59°, and 61.51° (JCPDS
38-0430) verified the presence of MnFe;Oy4. FI-IR spectra (Figure S1f) further confirmed
MnFe;Oy4 loading, with Mn-O (680 cm~ 1) and Fe-O (484 cm™!) vibrations observed. The
decreased ~OH signal at 3673 cm~! and the broadened band at 3000-3450 cm ™! suggested
loss of bonded water and formation of new functional groups [16], which are expected to
enhance the cation exchange capacity and Pb?* adsorption [17].

2.2. Adsorption Properties of MnFe;O4/SEP

The adsorption behavior of Pb?* by SEP and MnFe,O,/SEP was strongly influenced
by pH (Figure 1a). With increasing pH, both adsorption capacity and removal efficiency
increased due to the reduced competition between H* and Pb?* for active sites [18]. Maxi-
mum adsorption was achieved at pH 6, where MnFe; O, /SEP reached nearly 100% removal,
significantly outperforming SEP, indicating more available binding sites in the composite.
Adsorbent dosage also affected Pb%* removal (Figure 1b). At lower dosages, adsorption
approached maximum capacity, whereas higher dosages mainly improved removal effi-
ciency [19]. An optimal dosage of 0.6 g~L’1 MnFe, 0,4 /SEP achieved 92.68% Pb%* removal,
outperforming bare SEP. Isothermal adsorption results further demonstrated that Pb?*
uptake by MnFe,O, /SEP increased with initial concentration and temperature, reaching
equilibrium above 500 mg-L~! (Figure 1c). Langmuir isotherm fitting provided the best
description of the process, with theoretical maximum adsorption capacities of 458, 500, and
549 mg-g’l at 298, 308, and 318 K, respectively (Table 1), confirming monolayer chemisorp-
tion as the dominant mechanism. D-R model fitting yielded characteristic adsorption
energies (E) of 0.37, 0.43 and 0.49 kJ-mol~! at 298, 308, and 318 K (Table 1). Since all values
were below 8 kJ-mol~!, the adsorption process can be attributed to physical adsorption [20].
In contrast, the Temkin model fitting produced adsorption heat constants (b) of 28.01, 30.06,
and 31.80 kJ-mol ! at 298, 308, and 318 K, respectively. These values fall within the range
of 20-40 kJ-mol !, suggesting the involvement of chemical adsorption [21]. Taken together,
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these findings indicate that the adsorption of Pb?>* by MnFe,O,/SEP is governed by the
combined contributions of both physical and chemical adsorption.
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Figure 1. Effect of pH (a), dosage (b), initial concentration and temperature (c) and time (d) on the
Pb%* adsorption quantity (q) and removal rate (r) by SEP and MnFe,O,/SEP. Data are presented
as mean =+ SE (n = 3). Different lowercase letters indicate significant difference between different
treatments (p < 0.05).
Table 1. Langmuir, Dubinin-Radushkevich and Temkin parameters for Pb%+ adsorption onto
MnFe204 /SEP
Langmuir D-R Temkin
TX) qmax KL R2 qmax E R2 A b R2
(mg-g~1) (L'mg1) (mg-g~1) (kJ-mol—1) (L'mg—1) (kJ-mol—1)
298 458.72 0.09 0.99 368.5 0.37 0.88 2.26 28.01 091
308 500.00 0.08 0.99 380.0 0.43 0.86 1.94 30.06 0.95
318 549.45 0.07 0.99 413.5 0.49 0.87 1.83 31.80 0.97

2.3. Adsorption Kinetics

The kinetic effect of Pb?* adsorption by the adsorbent was investigated through stud-
ies on the adsorption process at different time intervals. As shown in Figure 1d, the Pb?*
adsorption capacity of MnFe;O4/SEP increased rapidly within 1 h, slowed between 1-3 h,
and reached equilibrium after 3 h. Initially, favorable conditions—including abundant
adsorption sites on MnFe,;O4/SEP and high Pb?* concentration—caused rapid adsorption
within the first hour. With time extension (2-3 h), reduced surface sites decreased pore dif-
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fusion rates, but electrostatic repulsion existed between the unadsorbed Pb2* in the solution
and the Pb%* already bound to the surface of MnFe;O4/SEP [22,23] until equilibrium was
achieved with complete site occupation. Kinetic fitting results (Figure S2, Table 53) showed
the pseudo-second-order model best described the adsorption process. This model, which
encompasses both internal diffusion and surface adsorption of the composite, indicates
that the Pb%* adsorption mechanism of MnFe,O,/SEP results from multiple combined
effects [24].

2.4. Thermodynamic Study

By analyzing the adsorption process of Pb?* by MnFe, O, /SEP at 298, 308 and 318 K,
the thermodynamic behavior of adsorption was further determined. The thermodynamic
fitting results are shown in Figure 2. The results showed that the process for MnFe,O,/SEP
adsorption of Pb?* was endothermic (AH was 11.91 kJ-mol ') and that increasing the tem-
perature increased the disorder of the adsorption system and thus increased the amount of
Pb?* adsorbed by MnFe,Oy/SEP. The adsorption process was spontaneous, as indicated
by the negative AG values at all three temperatures (—25.38, —26.63, and —27.88 k]-mol~!,
respectively). Moreover, the AG values were all below 50 kJ-mol~!, suggesting that the
removal of Pb>* by MnFe,O,/SEP was primarily controlled by chemical interactions [25].
Previously, Langmuir fitting indicated that adsorption mainly occurs on the material surface.
The characteristic adsorption energy E from D-R fitting (E < 8 kJ-mol~!) confirms physical
interactions, while the adsorption heat constant b from Temkin fitting (20-40 kJ-mol~1)
suggests chemical interactions—together proving a physico-chemical synergistic adsorp-
tion process. Pseudo-first-order kinetics shows that Pb>* physically diffuses to the material
surface in the initial adsorption stage, and pseudo-second-order kinetics indicates chem-
ical adsorption dominates the process. Based on the above comprehensive analysis, the
adsorption mechanism of MnFe;O4/SEP can be summarized as a spontaneous process
dominated by chemical adsorption with physical adsorption as a supplement, under the
mode of monolayer surface adsorption.
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Figure 2. Van't Hoff plot for the adsorption of Pb2* onto MnFe,O,/SEP as a function of temperature.

2.5. Reusability Assessment

The regeneration ability of MnFe;O4/SEP was evaluated by repeating the adsorption-
desorption cycle five times. As shown in Figure 3, the Pb** removal rate and the
MnFe;O4/SEP recovery rate gradually decreased with an increasing number of adsorption—
desorption cycles. There are two possible reasons for this; one is the loss of adsorbent in
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the process of the adsorption and desorption cycle, and the other is that a small number
of adsorption sites may be lost in the process of desorption, resulting in the reduction of
removal rate over time. During the five cycles, the gap between the removal rate of Pb?*
and the recovery rate of the material became larger and larger, and the main reason for
the decrease of Pb?* removal rate was the inactivation of adsorption sites on the surface of
MnFe,O4/SEP. However, after the fifth cycle, the removal rate still reached 85.4%. There-
fore, MnFe;O,4/SEP has a certain inherent stability and is expected to become a new kind
of soil treatment material which is easy to prepare and economical.
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Figure 3. Removal rate of Pb2* and recovery rate of MnFe, O, /SEP after five adsorption—desorption
cycles using MnFe, O, /SEP. Data are presented as mean + SD with n = 3 independent replicates.

2.6. Adsorption Mechanism

The XPS full spectrum scanning results are shown in Figure 4a. In addition to Mg,
Ca, Fe, Mn, O, Si, and other elements contained in the material itself, the adsorbed mate-
rial showed the characteristic absorption peaks of Pb 4d and Pb 4f, indicating that Pb?*
has been successfully bound to the surface of MnFe;O,4/SEP. Figure 4b shows the high-
resolution energy spectrum of Pb 4f, revealing that the shift of characteristic peaks relative
to the standard binding energy is consistent with the characteristic adsorption energy E
(average value of 0.4 k]-mol 1) calculated by the D-R isotherm model and the adsorption
heat constant b (average value of 30 k]-mol ') from the Temkin model. This consistency
confirms that both physical and chemical interactions coexist in the adsorption process.
The characteristic spectra of the O 1s orbitals of MnFe,O,/SEP and Pb-MnFe;O4/SEP
are shown in Figure 4c,d. The characteristic peaks of O 1s can be fitted to five forms of
O [26]. The peak area of metal hydroxide decreased significantly after adsorption, and the
peak area of metal oxide increased significantly which may be caused by Pb?* replacing
H* at the adsorption site. Before and after adsorption, the binding energy of Si-O bonds
shifted. This shift may be attributed to the replacement of H in Si-OH groups by part
of Pb, which forms Si-O-Pb bonds. The formation of Si-O-Pb bonds causes the binding
energy of Si-O bonds to shift, thereby enabling Pb to be complexed on the surface and
within the pores of the composite material. This is consistent with the indication of the
pseudo-second-order kinetic model that chemical adsorption is the rate-limiting step, and
it is consistent with the characteristics of monolayer adsorption on uniform active sites
revealed by the Langmuir model, suggesting that the chemical complexation between Pb?*
and active sites constitutes the core mechanism of the adsorption process. In addition, the
pseudo-first-order kinetic model reveals the existence of a physical diffusion process in
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the initial stage of adsorption, which is corroborated by the physical interaction reflected
by the D-R model. This indicates that Pb?* first diffuses to the material surface through
physical attraction, laying the foundation for subsequent chemical adsorption.
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Figure 4. Characterization of the binding mechanisms, (a) XPS survey spectra of MnFe;O4/SEP
before and after Pd?* adsorption, (b) high-resolution XPS spectra of Pb4f, (c,d) fitting results of Ols
before and after Pb?* adsorption.

In summary, the adsorption mechanism of Pb?* from aqueous solutions by the
MnFe,O4/SEP composite mainly involves physical adsorption and chemical adsorption,
with chemical adsorption being dominant. Ion exchange is primarily manifested in the
complexation of Pb?* on the composite surface by the M-OH and Si-OH groups on the
composite surface.

Si-OH + Pb** = [(Si-O)Pb]* + H* (1)
2Si-OH + Pb?* = (Si-O),Pb + 2H* )
M-OH + Pb** = [(M-O)Pb]* + H* (3)
2M-OH + Pb?* = (M-O),Pb + 2H" (4)

2.7. Application of MnFe;O4/SEP in Pb-Contaminated Soil
2.7.1. Effects of MnFe;O4/SEP on Soil pH, CEC, and Available Pb Content

As shown in Figure 5, MnFe,O, /SEP increased soil pH and cation exchange capacity
(CEC) in a dose-dependent manner. Compared with the control (CK), soil pH rose by
0.2-1.5 units with increasing MnFe,Oy /SEP, reaching 7.4 at 40 g-kg~! (p < 0.05). This was
because SEP is weakly alkaline, and as the amount of SEP added increased, it resulted in a
significant increase in soil pH [27]. Soil CEC also increased by 18-47%, likely due to the
material’s high surface area [28]. Correspondingly, the content of available Pb decreased
by 12-83% with increasing MnFe,O,4 /SEP. This reduction can be attributed to adsorption
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and ion exchange on MnFe,O4/SEP. Sequential extraction showed that MnFe;O4/SEP
decreased acid-extractable and reducible Pb fractions while increasing oxidizable and
residual fractions, indicating a transformation of Pb?* into more stable, less bioavailable
forms and thus reducing its uptake by plants [9].
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Figure 5. Effects of addition of different amounts of MnFe;O4/SEP on (a) soil pH, (b) soil CEC,
(c) available Pb content, and (d) soil Pb fraction. Data are presented as mean =+ SE (n = 3). Different
lowercase letters indicate significant difference between different treatments (p < 0.05).

2.7.2. Effect of MnFe,Oy4/SEP on Pb?* Uptake, Chlorophyll Content and Yield in
Brassica chinensis

As shown in Figure 6a, exogenous Pb addition (300, 600, and 900 mg'kgfl) signifi-
cantly increased Pb uptake by Brassica chinensis compared with the control (CK), with
Pb contents rising by 0.2, 0.4, and 0.6 mg-kg~!, respectively (p < 0.05). In contrast,
MnFe;O,4/SEP application reduced Pb uptake by 61%, 72%, and 76% under the corre-
sponding Pb levels (p < 0.05). Pb stress also decreased chlorophyll content by 21%, 29%,
and 36% (Figure 6b), while MnFe,O4/SEP increased it by 14%, 36%, and 36%, respectively,
compared with treatments without the amendment. Compared with CK, Pb addition
in soil significantly reduced the fresh weight of Brassica chinensis (p < 0.05). However,
MnFe;O4/SEP treatment led to a significant increase of 15-54% in fresh weight com-
pared with the non-MnFe,O,4/SEP group (p < 0.05) (Figure 6¢). These results indicate that
MnFe;O,4/SEP effectively lowers bioavailable Pb in soil, mitigates Pb-induced cellular
damage, and enhances chlorophyll levels in Brassica chinensis [29].
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Figure 6. Effect of MnFe;O,/SEP on (a) Pb%+ uptake, (b) chlorophyll content in Brassica chinensis and
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letters indicate significant difference between different treatments (p < 0.05). The treatments applied
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Pb?*, and T6—900 mg-kg~! Pb?* plus 20 g-kg~! MnFe,Oy/SEP.

2.7.3. Effect of MnFe;O4/SEP on MDA and Antioxidant Enzymes System in
Brassica chinensis

As shown in Figure 7, Pb stress significantly increased MDA content in Brassica
chinensis by 46-71% compared with the control (CK), indicating elevated lipid peroxidation.
Application of MnFe,O,/SEP reduced MDA levels by 29-36%, approaching CK levels.
Similarly, Pb exposure elevated the activities of antioxidant enzymes SOD, POD, and CAT,
while MnFe,O,/SEP treatment effectively decreased these activities toward control levels
(SOD: 24-29%; POD: 19-38%; CAT: 3-17%).
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Figure 7. Effect of MnFe,O4/SEP on the activity of antioxidant enzymes induced in response to
Pb?* taken up from soil. (a) MDA content of Brassica chinensis, (b) SOD activity of Brassica chinensis,
(c) POD activity of Brassica chinensis, (d) CAT activity of Brassica chinensis. Data are presented as
mean + SE (n = 3). Different lowercase letters indicate statistically significant differences between
different treatments (p < 0.05). The treatments applied include: CK- control, T1—300 mg-kg~! Pb?*,
T2—300 mg-kg ! Pb?* plus 20 g-kg ! MnFe,Oy/SEP, T3—600 mg-kg~! Pb?*, T4—600 mg-kg~! Pb2*
plus 20 g-kg~! MnFe,0,/SEP, T5—900 mg-kg~! Pb?*, and T6—900 mg-kg ! Pb>* plus 20 g-kg~!
MnFe204 /SEP.
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Under Pb stress, plants are compelled to generate reactive oxygen species (ROS) such
as O?~, OH—, NO—, which disrupt the antioxidant defense system. Plants can activate
their intrinsic defense mechanisms to scavenge these products and mitigate oxidative
damage by enhancing the activities of key antioxidant enzymes, including SOD, CAT, and
POD [30,31]. When plants are under environmental stress, MDA is produced through lipid
peroxidation in cell membranes and cytoplasm. Higher MDA content indicates more severe
stress damage in plants. In this study, MnFe,;O4/SEP application reduced the Pb content
in Brassica chinensis, alleviated the toxic effects of free radicals and ROS to plant cells and
tissues, and enhanced SOD, CAT, and POD activities, thereby mitigating Pb stress-induced
damage [32].

3. Materials and Methods
3.1. Sample Preparation and Characterization

Brown soil (0-20 cm depth) was collected from Dalian Village, Sujiatun District,
Shenyang, Liaoning Province. Samples were air-dried, ground, sieved through a 20-mesh
sieve, and analyzed for physicochemical properties. Soil pH was measured according to
ISO 10390 [33] using a glass electrode in a 1:2.5 soil-water suspension, and organic matter
by the K,Cr,O7 external heating method [34]. Pb, Fe, and Mn contents were determined by
acid digestion method [35]. Results showed pH 5.8 + 0.1, organic matter 34.4 + 1.5 g-kg !,
Pb34.7 + 2.1 mg-kg !, Fe4.1 + 0.3 g'kg ™!, and Mn 1.0 £ 0.1 g-kg~!. SEP was purchased
from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Brassica chinensis seeds were
purchased from Xinhai Agricultural Development Co., Ltd., Harbin, China.

3.2. Synthesis of MnFe,O4/SEP and Characterization

MnFe;O4/SEP was synthesized by co-precipitation [36]. Briefly, 0.1 mol-L~!
MnSO,4-H,0 and 0.2 mol-L~! FeCl3-6H,O were mixed at a molar ratio of 1:2 and stirred
at 25 °C and 200 rpm for 30 min. The pH was adjusted to 10, followed by aging at 60 °C
for 4 h. The resulting suspension was filtered through a 0.45 um membrane, washed with
distilled water, and dried to obtain magnetic MnFe,O4 nanoparticles. For MnFe,O, /SEP
synthesis, SEP was incorporated into the precursor solution, and the same procedure was
repeated. Preliminary adsorption tests with SEP: MnFe, Oy ratios of 1:2, 1:1, and 2:1 showed
that the 1:1 ratio exhibited the highest performance (248 mg-g~! adsorption capacity; 99%
Pb2* removal) and was therefore selected for subsequent experiments.

The morphologies and elemental compositions of SEP and MnFe;O,4/SEP were ex-
amined by SEM equipped with EDS (ZEISS GeminiSEM 300 Carl Zeiss AG, Oberkochen,
Germany). Surface area and pore size distribution were determined with a Micrometeritics
ASAP 2460 (Micromeritics Instrument Corporation, Norcross, GA, USA). Mineral phases
of SEP, MnFe,O4 and MnFe,;O,4/SEP were analyzed by XRD (Rigaku Ultima IV Rigaku
Corporation, Tokyo, Japan) with a scanning range of 20 = 5°~90° and a rate of 5 °-min~!.
Surface functional groups of SEP and MnFe,;O,4/SEP were characterized by FI-IR (Thermo
Scientific Nicolet iS50 Thermo Fisher Scientific Inc., Waltham, MA, USA) in the range of
400-4000 cm 1. The chemical composition of MnFe,Oy4/SEP before and after Pb adsorption
were further investigated by XPS (Thermo Scientific K-Alpha Thermo Fisher Scientific Inc.,
Waltham, MA, USA).

3.3. Adsorption Experiments: SEP and MnFe,O4/SEP Efficiency in Removal of Pb**

Batch experiments were performed to investigate Pb?* removal by SEP and MnFe,O, /SEP.
The effects of pH (2-6), adsorbent dosage (0.2-1.0 g-L.~!), temperature (298-318 K), and
initial Pb%* concentration (100-1000 mg-L’l) were studied in 150 mL conical flasks at
180 rpm. Simulated Pb?* solutions were prepared from analytical-grade Pb (NO3), in
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deionized water. For adsorption kinetics, 0.04 g of absorbent was added to 100 mL Pb?*
solutions of 500 mg-L~!, and samples were collected at various time points within 24 h.
After filtration through 0.45 um syringe filters, Pb?* concentrations were determined by
atomic absorption spectrophotometry (Agilent240FS Agilent Technologies, Inc., Santa Clara,
CA, USA). All experiments were performed in triplicate. Adsorption capacity calculations
are detailed in the Supplemental Information (Text S1).

3.4. Regeneration and Reuse Efficiency of MnFe,O4/SEP

Regeneration and reuse were evaluated through repeated adsorption—desorption
cycles. For adsorption, 0.5 g of MnFe,O,/SEP was dispersed in 100 mL Pb?* solution
(500 mg-L’l) and stirred for 24 h. The mixture was filtered through a 0.45 um syringe
filter, and the adsorbent was dried at 105 °C for 24 h. Pb?* concentrations before and after
adsorption were measured by flame atomic absorption spectrometry (Agilent 240FS) to
calculate removal rate efficiency. For desorption, the dried adsorbent was treated to 100 mL
of 0.2 mol-L~! EDTA-2Na solution for 24 h, filtered, and dried again. Pb%* concentration in
the desorption solution was measured, and the recovery rate was calculated as the ratio of
desorbed Pb?* to previously adsorbed Pb?*. The adsorption-desorption cycle was repeated
five times. Calculation details are provided in the Supplemental Information (Text S1).

3.5. Soil Incubation Experiment

Pb-contaminated soil was prepared by spiking with a Pb (NO3), to achieve 600 mg-kg~*,
simulating moderately contaminated farmland soil according to the Soil Environmental
Quality Risk Control Standard for Agricultural Land (GB 15618-2018) [37], intervention
range 400-1000 mg-kg~!). The spiked soil was air-dried for 15 days and passed through a
20-mesh sieve. For incubation, 100 g of soil was thoroughly mixed with MnFe,O,/SEP at 0,
2.5,5,10, 20, and 40 g~kg’1and transferred into 300 mL plastic bottles, with three replicates
per treatment. Soil moisture was maintained at 60% of water holding capacity by periodic
addition of deionized water over 30 days.

After incubation, the soil pH, CEC, available Pb, Pb fractionation, and total Pb were
determined. CEC was measured by the BaCly-H;SO4 compulsive exchange method (ISO
11260, 2017) [9]. Available Pb was extracted using DTPA according to the Chinese National
Standard GB/T 23739-2009 [38], Pb fractionation was determined via the European Com-
munity Bureau of Reference (BCR) sequential extraction procedure [39], and total Pb was
measured by strong acid digestion (GB/T 17141-1997) [35].

3.6. Pot Experiments for Remediation Assessment

Simulated Pb-contaminated soils were prepared by spiking with Pb(NO3), to final
concentrations of 300, 600, and 900 mg-kgfl. Treatments included soils with or with-
out 20 g-kg~! MnFe;O,/SEP, with three replicates per treatment. The experimental
design consisted of the following treatment: 300 mg-kg~! Pb without MnFe,O,/SEP
(T1), 300 mg-kg! Pb with 20 g-kg~! MnFe,O4/SEP (T2), 600 mg-kg ! Pb without
MnFe;O4 /SEP (T3), 600 mg-kg ! Pb with 20 g-kg~! MnFe,O4/SEP (T4), 900 mg-kg !
Pb without MnFe;O,/SEP (T5), and 900 mg-kg ! Pb with 20 g-kg~! MnFe,Oy/SEP (T6).
A control (CK) without Pb?* or MnFe, 0, /SEP was also included. Brassica chinensis was
selected as the test plant. A uniform amount of compound fertilizer was applied to each pot.
After thorough mixing, the soils were equilibrated for one week before sowing. Ten seeds
were sown per pot, and seedlings were thinned to five uniform plants after emergence. Soil
moisture was maintained at 60% of the water holding capacity by watering every two days.
After 60 days of growth, the entire plants were harvested, and fresh weights were measured
using an electronic balance. Samples that were not analyzed immediately were temporarily
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stored at 4 °C for subsequent determination of Pb accumulation, chlorophyll content, MDA
concentration, and antioxidant enzyme activities.

For Pb determination, the leaves were oven-dried at 105 °C for 30 min, followed by
drying at 65 °C to a constant weight before further processing. The dried samples were
then ground into a fine powder and digested with 2 mL of HCIO,4 and 8 mL of HNOj for
12 h. Solutions were filtered through a 0.45 pm syringe filter prior to Pb determination by
ICP-MS (Agilent 7500 Agilent Technologies, Inc., Santa Clara, CA, USA) [40]. Chlorophyll
content was measured using the spectrophotometric method [9]. The contents of MDA,
SOD, POD, and CAT activities were determined using the trichloroacetic acid-thiobarbituric
acid (TCA-TBA), nitroblue tetrazolium (NBT) photoreduction, guaiacol, and hydrogen
peroxide methods, respectively [9].

3.7. Statistics and Analysis

Isothermal adsorption data were fitted using the Langmuir, D-R model, and Temkin
model and adsorption kinetics were analyzed using pseudo-first-order and pseudo-second-
order models. Thermodynamic parameters were calculated using the Van't Hoff equation.
Detailed equations and models are provided in Supplemental Information (Text S2). Data
processing was performed with Microsoft Excel 2019 and SPSS 26. One-way ANOVA
followed by Duncan’s multiple range test (p = 0.05) was applied to assess significant
differences between treatments. Figures were compiled using Origin 2022.

4. Conclusions

These results demonstrated that a SEP-supported MnFe,O, composite was effectively
synthesized by chemical co-precipitation using SEP as the raw material, as confirmed by
SEM-EDS, XRD, FT-IR and XPS analyses. The MnFe,O,/SEP composite showed enhanced
Pb?* adsorption performance compared with pure SEP under various experimental con-
ditions. Thermodynamic analysis indicated that the adsorption process was spontaneous
and primarily governed by chemisorption through ion exchange between Pb?* and H*,
with physisorption playing a secondary role. Moreover, the composite demonstrated
excellent reusability, maintaining a high Pb?* removal efficiency (85.4%) after five consec-
utive adsorption—desorption cycles. In Pb-contaminated soils, application of 20 g-kg~!
MnFe;O,4/SEP effectively improved soil pH and CEC, reduced Pb bioavailability, and
alleviated Pb-induced oxidative stress in Brassica chinensis.

Furthermore, due to its high surface area, abundant functional groups, and strong
cation-exchange capacity, MnFe;O,4 /SEP has the potential to immobilize other heavy metals,
such as Cd?* and Cu?", although further studies are required to confirm its effectiveness and
selectivity. Future research should focus on large-scale field trials, long-term stability under
variable environmental conditions, and the assessment of potential ecological impacts.
Limitations of this study include the controlled laboratory conditions, short-term exposure,
and evaluation of only one crop species, which may not fully reflect complex field scenarios.
Addressing these aspects will be crucial for practical application in contaminated soils.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/plants14193077/s1, Calculation of the adsorption capacity of
the adsorbents, the Pb%* removal rate, and the Pb2* recovery rate is provided in Text S1. Kinetics
and thermodynamics analysis models and function equations is provided in Text S2. The structural
characteristics of the SEP and MnFe,O,4/SEP materials are provided in Table S1. The content of
each element in SEP and MnFe,O, /SEP is provided in Table S2. Pseudo-first-order dynamics and
pseudo-second-order kinetics parameters for Pb?* adsorption on MnFe;O,/SEP is provided in
Table S3. Comparison of the physico-chemcial characteristics of SEP and MnFe;O,/SEP. (a, b) SEM
images of SEP and MnFe,O4/SEP; (c, d) EDS images of SEP and MnFe,O,4/SEP; (e) XRD patterns of
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SEP, MnFe;04, and MnFe;O, /SEP, and (f) FT-IR spectra of SEP and MnFe;Oy/SEP is provided in
Figure S1. Linear fitting of the adsorption process to (a) pseudo-first-order and (b) pseudo-second-
order kinetic models is provided in Figure S2.
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