001052194 001__ 1052194
001052194 005__ 20260122203306.0
001052194 0247_ $$2doi$$a10.48550/ARXIV.2506.10052
001052194 037__ $$aFZJ-2026-00831
001052194 1001_ $$0P:(DE-HGF)0$$aBacher, Utz$$b0
001052194 245__ $$aQuantum resources in resource management systems
001052194 260__ $$barXiv$$c2025
001052194 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1769065587_21492
001052194 3367_ $$2ORCID$$aWORKING_PAPER
001052194 3367_ $$028$$2EndNote$$aElectronic Article
001052194 3367_ $$2DRIVER$$apreprint
001052194 3367_ $$2BibTeX$$aARTICLE
001052194 3367_ $$2DataCite$$aOutput Types/Working Paper
001052194 520__ $$aQuantum computing resources are increasingly being incorporated into high-performance computing (HPC) environments as co-processors for hybrid workloads. To support this paradigm, quantum devices must be treated as schedulable first-class resources within existing HPC infrastructure. This enables consistent workload management, unified resource visibility, and support for hybrid quantum-classical job execution models. This paper presents a reference architecture and implementation for the integration of quantum computing resources, both on-premises and cloud-hosted into HPC centers via standard workload managers. We introduce a Slurm plugin designed to abstract and control quantum backends, enabling seamless resource scheduling, minimizing queue duplication, and supporting job co-scheduling with classical compute nodes. The architecture supports heterogeneous quantum resources and can be extended to any workload (and container) management systems.
001052194 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052194 588__ $$aDataset connected to DataCite
001052194 650_7 $$2Other$$aQuantum Physics (quant-ph)
001052194 650_7 $$2Other$$aDistributed, Parallel, and Cluster Computing (cs.DC)
001052194 650_7 $$2Other$$aEmerging Technologies (cs.ET)
001052194 650_7 $$2Other$$aSoftware Engineering (cs.SE)
001052194 650_7 $$2Other$$aFOS: Physical sciences
001052194 650_7 $$2Other$$aFOS: Computer and information sciences
001052194 7001_ $$0P:(DE-HGF)0$$aBirmingham, Mark$$b1
001052194 7001_ $$0P:(DE-HGF)0$$aCarothers, Christopher D.$$b2
001052194 7001_ $$0P:(DE-HGF)0$$aDamin, Andrew$$b3
001052194 7001_ $$0P:(DE-Juel1)171436$$aGonzalez Calaza, Carlos Daniel$$b4$$ufzj
001052194 7001_ $$0P:(DE-Juel1)199834$$aKarnad, Ashwin Kumar$$b5$$ufzj
001052194 7001_ $$0P:(DE-HGF)0$$aMensa, Stefano$$b6
001052194 7001_ $$0P:(DE-HGF)0$$aMoreau, Matthieu$$b7
001052194 7001_ $$0P:(DE-HGF)0$$aNober, Aurelien$$b8
001052194 7001_ $$0P:(DE-HGF)0$$aOhtani, Munetaka$$b9
001052194 7001_ $$0P:(DE-HGF)0$$aRossmannek, Max$$b10
001052194 7001_ $$0P:(DE-HGF)0$$aRubin, Philippa$$b11
001052194 7001_ $$0P:(DE-HGF)0$$aSahin, M. Emre$$b12
001052194 7001_ $$0P:(DE-HGF)0$$aWallis, Oscar$$b13
001052194 7001_ $$0P:(DE-HGF)0$$aShehata, Amir$$b14
001052194 7001_ $$0P:(DE-HGF)0$$aSitdikov, Iskandar$$b15
001052194 7001_ $$0P:(DE-HGF)0$$aWennersteen, Aleksander$$b16
001052194 773__ $$a10.48550/ARXIV.2506.10052
001052194 8564_ $$uhttps://juser.fz-juelich.de/record/1052194/files/2506.10052v2.pdf$$yRestricted
001052194 909CO $$ooai:juser.fz-juelich.de:1052194$$pextern4vita
001052194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171436$$aForschungszentrum Jülich$$b4$$kFZJ
001052194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199834$$aForschungszentrum Jülich$$b5$$kFZJ
001052194 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052194 920__ $$lyes
001052194 9801_ $$aEXTERN4VITA
001052194 980__ $$apreprint
001052194 980__ $$aEDITORS
001052194 980__ $$aI:(DE-Juel1)JSC-20090406