001     1052213
005     20260122203307.0
024 7 _ |a 10.1145/3773656.3773691
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00840
|2 datacite_doi
037 _ _ |a FZJ-2026-00840
100 1 _ |a Tsai, Yu-Hsiang
|0 0000-0001-5229-3739
|b 0
111 2 _ |a SCA/HPCAsia 2026: Supercomputing Asia and International Conference on High Performance Computing in Asia Pacific Region
|c Osaka
|d 2026-01-26 - 2026-01-29
|w Japan
245 _ _ |a What Will the Grace Hopper-Powered Jupiter Supercomputer Bring for Sparse Linear Algebra?
260 _ _ |a New York, NY, USA
|c 2026
|b ACM New York, NY, USA
300 _ _ |a 228 - 235
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1769078228_17801
|2 PUB:(DE-HGF)
520 _ _ |a The first exascale supercomputer in Europe, JUPITER, is currently being built using the NVIDIA Grace Hopper superchips as main building blocks. JUPITER is designed to provide computing power for both data-driven (AI) workloads and numerics-based simulation workloads. For both workload types, and particularly for PDE-based simulations, high-performance sparse linear algebra operations are crucial. In this paper, we analyze the performance levels that sparse linear algebra operations can achieve on the JUPITER supercomputer and identify algorithmic modifications that can improve performance by acknowledging the Grace Hopper architecture.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Inno4Scale - Innovative Algorithms for Applications on European Exascale Supercomputers (101118139)
|0 G:(EU-Grant)101118139
|c 101118139
|f HORIZON-EUROHPC-JU-2022-ALG-02
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Bode, Mathis
|0 P:(DE-Juel1)192255
|b 1
|u fzj
700 1 _ |a Anzt, Hartwig
|0 0000-0003-2177-952X
|b 2
770 _ _ |z 9798400720673
773 _ _ |a 10.1145/3773656.3773691
856 4 _ |u https://juser.fz-juelich.de/record/1052213/files/scahpcasia2026-35.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052213
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192255
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2026
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21