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Abstract

The first exascale supercomputer in Europe, JUPITER, is currently
being built using the NVIDIA Grace Hopper superchips as main
building blocks. JUPITER is designed to provide computing power
for both data-driven (AI) workloads and numerics-based simulation
workloads. For both workload types, and particularly for PDE-based
simulations, high-performance sparse linear algebra operations
are crucial. In this paper, we analyze the performance levels that
sparse linear algebra operations can achieve on the JUPITER super-
computer and identify algorithmic modifications that can improve
performance by acknowledging the Grace Hopper architecture.
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1 Introduction

Deep learning and computational fluid dynamics (CFD) simulations
require large and high-performance supercomputers. As part of
the US Exascale Computing Project [15], the US has already com-
missioned three supercomputers exceeding the Exascale threshold
in the High Performance Linpack (HPL [9]) benchmark. Europe is
about to exceed the Exascale threshold with the JUPITER supercom-
puter that is currently being deployed at the Juelich Supercomput-
ing Centre in Germany, and will feature roughly 6,000 nodes each
containing 4 NVIDIA Grace Hopper superchips (GH200)[5]. Already
with only a portion of the supercomputer assembled, JUPITER se-
cured the 4th place in the November 2025 TOP500 list[8]. While
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Al workloads have been at the center of the NVIDIA Grace Hop-
per superchip design, the GH200-based JUPITER supercomputer
will also be used for traditional simulation workflows based on
the discretization of (partial) differential equations. Particularly for
those simulation workflows, scalable sparse linear algebra function-
ality is a key component, often determining the performance of the
scientific applications.

It is well-known that supercomputers are toothless tigers without
algorithms and software stacks that are capable of translating the
computing power of the hardware into application performance.
For this reason, it is important that even before commissioning
supercomputers for full access, central building blocks that are
the backbone of many applications are optimized, and the system-
specific optimization tricks are documented for other users.

In this paper, we investigate the performance of key sparse linear
algebra functionalities of the Ginkgo [6] open-source library for the
JUPITER supercomputer and suggest optimization steps to boost
the performance for many-GPU execution.

The rest of the paper is structured as follows: We initially in-
troduce in Section 2 the JUPITER supercomputer, motivate the
choice of the Ginkgo software stack, and list the hardware and
software environment of the JUPITER supercomputer in Section 3.
In Section 4 and its subsections, we discuss the performance levels
we achieve for Ginkgo’s single-GPU sparse matrix vector prod-
uct (SpMV) kernel and suggest optimizations to match the per-
formance of NVIDIA’s implementation in the cuSPARSE library.
Building upon the single-node SpMV kernel, we propose a method
to hide the communication in the distributed SpMV algorithm. We
interleave the algorithm discussions with weak and strong scaling
experiments to allow the reader to quickly connect the algorith-
mic changes with the performance implications. Applying these
optimizations to Ginkgo’s functionality allows us to also analyze
its impact on real-world applications in strong scaling of a full-
fledged Conjugate Gradient (CG) and generalized minimal residual
(GMRES). We summarize our observations in Section 5.

2 Background

2.1 JUPITER

JUPITER, the "Joint Undertaking Pioneer for Innovative and Trans-
formative Exascale Research’, is deployed in the Juelich Supercom-
puting Centre in Germany. It will aggregate about 6,000 nodes, each
hosting four Grace Hopper superchips (GH200) as visualized in Fig-
ure 1. Each GPU has 96 GB 4TB/s HBM3 memory. The GPUs can
communicate at a rate of 150 GB/s per direction. Each CPU contains
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72 cores and has 120 GB 500GB/s LPDDR5X memory. The Grace
CPU can communicate with the Hopper GPU at a bandwidth of 450
GB/s per direction. The CPUs can communicate among themselves
at a rate of 100 GB/s per direction. The distinct nodes of JUPITER
are connected with InfiniBand NDR (200 Gb/s or 25 GB/s per direc-
tion per chip). The network topology is based on 25 DragonFly+
groups.

2.2 Ginkgo

Ginkgo is a GPU-centric math library [6]. While other high-performance

numerical linear algebra libraries exist, with PETSc [3], Trilinos [17],
and SuperLU [13, 14] being among the most popular examples, we
selected Ginkgo due to its GPU-centric modern C++ design, and
the fact that Ginkgo is being used by application codes running on
JUPITER. In some detail, Ginkgo supports a wide range of hard-
ware architectures using a backend model that allows for kernel
performance engineering in the vendor-native language. This is
an advantage when optimizing for a specific GPU architecture and
leveraging the latest GPU features [6, 7, 18].

3 Hardware and Software Environment

At the time of writing, the JUPITER supercomputer is in its pre-
production phase, during which hardware and software have not
yet converged to the final setting. Against this background, the
experimentation and performance results presented in this paper
contribute to both software and performance optimization on the
one hand and system engineering on the other, aiming to converge
on a performance-stable hardware-software ecosystem. At the same
time, it is important to consider the hardware and software con-
figuration when reproducing the results at a later point in time.
The software stack we use in the experimentation is based on the
Stage/2025 modules available on the JUPITER supercomputer. We
use GCC 13.3.0, CUDA 12.6.2, and OpenMPI 5.0.5. At the time of
writing, the UCX protocol configuration is not yet completed, and
we are excluding gdr_copy from all experiments.

For the performance evaluation, we use scalable test cases aris-
ing from a finite difference discretization of a Laplace operator.
Particularly, we use the following test problems:

(1) five-point (5pt) stencil: 2D discretization of the Laplace op-
erator, connection with itself and its four direct neighbors.

(2) seven-point (7pt) stencil: 3D discretization of the Laplace
operator, connection with itself and its six direct neighbors.

(3) nine-point (9pt) stencil: 2D discretization of the Laplace op-
erator, connection with itself and its eight neighbors.

(4) twenty-seven-point (27pt) stencil: 3D discretization of the
Laplace operator, connection with itself and its twenty-six
neighbors.

For any of the k-point stencils, all off-diagonal entries are set to
-1.0 and the diagonal is set to k - 1.0. The stencil geometry is a
square for the 2D cases and a cube for the 3D cases, respectively.

Given that stencil discretizations result in a balanced nonzero
distribution across the rows, we focus on using Ginkgo'’s classical
Compressed Sparse Row (CSR) format for the local contributions
and Ginkgo’s Coordinate format (COO) for the non-local contribu-
tions. All numerical computations use IEEE754 double precision
(64-bit arithmetic).
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JUPITER’s GH200 architecture superchips feature tightly con-
nected CPU DDR and GPU HBM3 memories serving the Grace
ARM cores and the Hopper CUDA cores, respectively. The tight
coupling, however, allows the CUDA cores to also access data in the
DDR (and vice versa). While a comprehensive evaluation of the per-
formance characteristics of different memory accesses is available
in [10], we focus here on the cost of streaming data for memory-
bound kernels. This scenario characterizes sparse linear algebra
functionality with coalesced memory access, e.g., solving a large
structured FEM/FD problem like the Finite Difference stencil dis-
cretizations we use as test problems. Figure 2, following the roofline
concept[19], presents the experimentally-evaluated performance
roofs of the Hopper GPU in the GH200 superchip accessing data
either in HBM3 memory or the DDR memory (labeled fp64/fp32
gh200_host).

The roofline plot relating the performance of a kernel to its
arithmetic intensity (ratio between floating point operations and
memory accesses) reveals that kernels with an arithmetic inten-
sity smaller than 56 operations-per-value are memory-bound when
accessing data in HBM3 memory. When accessing data in DDR
memory, operations are memory-bound until the arithmetic inten-
sity exceeds 1,000 operations per value. We note that expressing
the arithmetic intensity in the operations-per-value metric (not
relating to bytes) makes these turnaround points independent of
the floating point format used. Evaluating the rooflines against the
sparse linear algebra characteristics, we conclude that 1.) all sparse
linear algebra functionality we address (SpMYV, iterative solvers)
are memory bound on the GH200 architecture; and 2.) accessing
data in DDR vs HBM3 is an order of magnitude slower, and hence,
all data should be kept in HBM3 memory.

GHZ200’s feature of accessing data in DDR from the Hopper GPU
eases programmability, but the performance penalty can be signif-
icant. We note that NVIDIA implements a memory management
model that, in most scenarios, succeeds in automatically managing
the data locality without performance losses. However, there is no
fine control, so we cannot always force the memory location and
memory access path when we measure the average performance.
After a few accesses, it might decide to copy the data from CPU to
GPU implicitly such that the GPU kernel does not need to grab the
data through CPU. This behavior makes sense in practice. However,
analyzing performance becomes more complex because different
runs may use different memory locations or access data via different
paths. We refer [10] for more detailed analysis. In this paper, we
store all testing data in GPU memory to ensure that no additional
effects are introduced by this memory behavior.

4 Performance Assessment and Optimization

We perform the following experiments only on GPU memory. The
GPU memory is large enough to contain all problem data.

4.1 Single-GPU SpMV Performance

In the past, Ginkgo’s SpMV kernels have been optimized for NVIDIA’s
V100 and A100 architectures; both the CSR and COO SpMV ker-
nels have been competitive with the SpMV kernels shipped with
NVIDIA’s cuSPARSE library. However, running the same kernels on
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Figure 1: The design of a Grace Hopper node in JUPITER[1].
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Figure 2: Roofline of the Hopper GPU in an NVIDIA GH200 superchip accessing data either in HBM3 or DDR memory.

the GH200 GPU, they perform inferior to their counterparts avail-
able in NVIDIA’s cuSPARSE library. For a detailed performance
analysis, we pick the 27pt stencil test case of size 107 and investigate
the execution with the Nsight Compute profiler. The analysis re-
veals that Ginkgo’s generalized kernel is harming the performance
of the kernels on the GH200 chip. Ginkgo’s SpMV kernels are gener-
alized in two aspects: 1) Ginkgo’s SpMV kernel is mixed-precision
by design, which means the input objects can be in different pre-
cision formats, and the kernel automatically converts to the high-
est precision and performs the computations. 2) Ginkgo’s SpMV
kernels are generalized in terms of the vector, i.e., a multi-vector
(tall-and-skinny dense matrix) is also accepted by the SpMV ker-
nel (becoming SpMM, then). The Nsight profiler analysis reveals
that the arithmetic operations needed for 1) and 2) are the reason
for Ginkgo SpMV kernels being inferior to the cuSPARSE SpMV
kernels. The operations necessary for 1) and 2) are arithmetic oper-
ations ensuring the read and write bounds in Ginkgo’s multi-vector

SpMV kernel and selecting the matching floating point, respectively,
and did not degrade performance on NVIDIA’s previous architec-
ture generations. This is the first time we have observed that the
memory-bound SpMV kernel is impacted by index computations,
even though the arithmetic units are not saturated. A possible ex-
planation is that the cycles from these operations are very long,
such that the kernel is not always reading data from the GPU global
memory.

To improve the performance of Ginkgo’s SpMV kernels for the
GH200 architecture, we need to create a new kernel overload that
only accepts a single vector as input and adjusts the thread oversub-
scription factor in the kernel launch. Thanks to Ginkgo’s flexible
portability design, specializing the kernel just in one specific ker-
nel does not hurt the portability of Ginkgo. We easily improve
the performance on our side without hurting the other backend
performance.
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Figure 3: Distributed matrix data layout. We uniformly dis-
tribute the 9 X 9 matrix to three ranks. On the left side, the
solid-colored background indicates the storage location -
blue, green, and orange colors corresponding to ranks 0, 1,
and 2, respectively. The zigzag line indicates the column dis-
tribution for the different ranks. When the color of the zigzag
line differs from the solid background color, it represents the
non-local matrix of the rank. The right part provides more
details on how Ginkgo stores the matrix: Ginkgo stores the
local and non-local matrix separately. Ginkgo re-indexes the
columns such that only the necessary right-hand side values
are retrieved. The number in the block indicates the column
index. 3, 5, and 6 of rank 0’s part become 0, 1, and 2 when we
assemble the non-local matrix of rank 0.

Applying these changes to Ginkgo’s CSR and COO SpMV kernels,
accelerates the kernels by 1.13X and 1.3X%, respectively. In compari-
son to NVIDIA’s cuSPARSE library, our classical CSR SpMV kernel
is now around 4% faster than cuSPARSE, our COO SpMV kernel
is about 1.5% slower than cuSPARSE. We acknowledge that this
performance engineering effort focused on the finite difference
stencil matrices. However, as the optimization steps only reduce
the number of arithmetic operations, we do not expect performance
drawbacks for other matrices.

4.2 Overlapping Communication and
Computation

Ginkgo’s distributed matrix is a 1-D row distribution. We use the
same distribution for columns which separates the matrix into a
local part (local matrix) and a non-local part (non-local matrix). We
visualize this concept in Figure 3 for the toy case of a 9 X 9 matrix
and three ranks.

The distributed vectors follow the same distribution. Using this
distribution, the distributed SpMV kernel becomes

Ar. X x = (Ar(local) + A o (non-local))x
= AI,I X Xy +AI,O X X0

where I is the set of indices that belong to one rank and O is the
set of indices not in I. Ar; X x; does not require any communi-
cation as all matrix and vector values are local, but xp requires
communication before performing the SpMV kernel. In Figure 3,
our non-local matrix is re-indexed such that not all values of xp are
communicated. In some detail, only the subset of xp necessary for
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the non-local matrix is communicated. We visualize this concept in
Figure 4. Before initializing the communication, the data from each
rank needs to be prepared in the sense of gathering the entries re-
quired from x( into a single array. After preparation, the necessary
data is communicated using i_all_to_all_v to exchange the data.
During the communication of the xp values, the local computations
Ap1 X x can be executed to overlap and hide the communication.
For easier reference, we will call the operations Ay X xp the local
SpMV and the operations Ay o X xo the non-local SpMV.

Unfortunately, OpenMPI[11] supports GPU-aware MPI but does
not support stream-aware MPI, so we need to synchronize before
calling the asynchronous MPI routine (i_all_to_all_v). We need
touse i_all_to_all_v because the size of each rank is not equal
like Figure 4.

The original Ginkgo’s workflow was:

(1) prepare data for xp

(2) synchronize the stream

(3) call the asynchronous MPI routine

(4) submit the kernel for local Sp)MV A1 X x1

(5) wait for the MPI routine

(6) submit the kernel for non-local SpMV Aj o X xo

However, using NVIDIA’s Nsight profiler, we identified a gap in
GPU activity. In the original workflow listed above, the local SpMV
kernel Ay X xy is submitted after synchronization, so the GPU
inactivity stems from the kernel submission, synchronization, and
MPI message submission overhead. We visualize the original work-
flow along with time measurements in workflow in Figure 5. This
experiment again uses the 27pt stencil test case of size 107 and a
setup of 8 GH200 GPUs to include both node-local and inter-node
communication. Note that the length of the bars does not scale to
the timings; the bars are adjusted to visualize the workflow. In this
setting, the gap between GPU activities averages 54 us, which is
about 24% of the 224 ys SpMV execution time. Because communi-
cation can overlap with computation, we can shorten the overall
execution time by narrowing the gap.

To reduce the GPU inactivity, we change how we synchronize in
the kernel execution. In the new workflow, after launching the ker-
nel that prepares the data for xp, we record an event into the CUDA
stream and immediately submit the local SpMV kernel, even before
calling the MPI communication, but call the MPI communication
only after event synchronization. The SpMV workflow becomes:

(1) prepare data for xp

(2) record event into the stream

(3) submit the kernel for local Sp)MV A1 X xg

(4) wait for the event

(5) call the asynchronous MPI routine

(6) wait for the MPI routine

(7) submit the kernel for non-local SpMV A o X xo

By doing so, the local SpMV kernel computing Ajr X xy is not
affected by synchronization from preparing data. While changing
the order will make MPI call face additional overhead from event
recording and SpMV kernel submission, the Sp)MV Aj X x7 is likely
able to fully hide the communication. If the communication can
not be hidden by the local SpMV, the communication is dominating
the kernel execution. Figure 6 visualizes the new workflow. The
measurements confirm that the new strategy narrows the GPU
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Figure 4: Distributed SpMV. The left-hand side visualizes the original SpMV. The middle and upper parts sketch the work of
each rank. The right-hand side visualizes the local SpMV and non-local SpMV using the matrix structure introduced in Figure 3.
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Figure 5: Original workflow: synchronization before MPI and local SpMV. Note that the bar lengths do not scale to the execution
time. The runtimes are measured with the Nsight system profiler on 8 Grace Hopper superchips.

inactivity gap, and the overall SpMV execution is accelerated by
1.2%.

To accelerate the communication, we investigate the use of
NCCL, NVIDIA’s stream-aware MPI collective. We utilize NCCL
as the communication library in a full-fledged Conjugate Gradient
(CG) solver that relies on Ginkgo’s distributed SpMV kernel. We
choose a full-fledged CG in this analysis, as replacing OpenMPI
all_reduce with NCCL in the Ginkgo library when compiling with
NCCL support for the distributed SpMV. The results visualized in
Figure 7 are not conclusive whether NCCL should be preferred over
OpenMPI. As NCCL does not provide i_all_to_all_v function-
ality and limits the portability of the Ginkgo software stack, we
decide to continue relying on OpenMPI for the time being.

4.3 SpMYV Weak Scaling Analysis

We next aim to quantify the performance boost achieved by reduc-
ing the arithmetic operations in the local SpMV kernel (Section 4.1)
and optimizing the communication in the distributed SpMV (Sec-
tion 4.2). Figure 8 visualizes the results of a weak scaling experiment
in which we compare against Ginkgo’s original distributed SpMV
kernel. The results indicate that the architecture-specific optimiza-
tions result in a 1.06X ~ 1.44X speedup.

To assess the parallel efficiency, we collect the distributed SpMV
performance on different stencil configurations (2D 5pt/9pt and
3D 7pt/27pt) with different local sizes from 100 to 107 on up to
2048 nodes (8192 Grace Hopper superchips). Figure 9 visualizes
the parallel efficiency with respect to one node (4 Grace Hopper
superchips). For large local problem sizes, the parallel efficiency
remains high due to the significant local workload. For very sparse
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Figure 7: OpenMPI all_reduce Speedup over NCCL on 1 up to
256 nodes (4 to 1024 Grace Hopper superchips). It is based on
distributed Conjugate Gradient solving 3D Laplace problem
discretized with a 27pt finite difference stencil (163M size,
27pt stencil).

problems (7pt stencil), the parallel efficiency is low because of a
high communication-to-computation ratio. For the 27pt stencil
test case with a local size of 107, the parallel efficiency remains at
around 80% on up to 2048 GPUs. Using the same local problem size,
other discretizations (resulting in fewer computations) maintain
80% parallel efficiency for up to 256 or 512 GPUs. The efficiency
then drops to 60% parallel efficiency for higher GPU counts.
Figure 10 visualizes the execution rates achieved in the weak

scaling experiments using the metric FLOP/s = 2 X nnz/runtime.

For the local size 107, Ginkgo’s distributed SpMV achieves for the
27pt, 5pt, 7pt, and 9pt stencil discretizations up to 1.9, 1.2, 1.0, and
1.4 PFLops, respectively.
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Figure 8: Speedup of new distributed SpMV over the original
code on up to 2048 nodes (8192 Grace Hopper superchips). It
is based on weak scaling experiments on the 27pt stencil test
case with a local problem size of 107.

4.4 Performance Development over NVIDIA
GPU Generations

In preparation for JUPITER, the Juelich Supercomputing Centre
deployed the significantly smaller JURECA[2] system which, as a
prototype, shares design characteristics with JUPITER. The system
is modular in the sense that it features CPU-only nodes and GPU-
accelerated nodes to reflect the application requirements. The GPU-
accelerated compute nodes are equipped with 4 NVIDIA A100
GPU[4]. Each GPU has 40GB 1,555 GB/s HBM2 memory. The nodes
of JURECA are connected with InfiniBand HDR (100 Gb/s or 12.5
GB/s per direction per chip).

In Figure 11, we compare the performance numbers achieved
on JUPITER with those obtained on the JURECA supercomputer,
which features 4 NVIDIA A100 GPUs. We use the same libraries
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27pt with csrc-coo 5pt with csrc-coo

10° 10°
102 10?
10!
10!
10°

K L
g g
= local_size E 10 local_size
10-1 ¥ e 100 ~—e— 100
¥- 1000 102 ¥- 1000
102 —4— 10000 > + 10000
—<= 100000 10-3 ol —< 100000
1073 ~»— 1000000 + 1000000
—=- 10000000 104 —=- 10000000
ot 10! 1o 10° 104

7pt W|th csrc C00 9pt W|th csrc Ccoo

10° 10?
102 102
10! 10!
100 //(’-‘MA N

local_size

TFLOP/s
TFLOP/s

local_size

_y—¥ —— 100 ¥ - 100
¥ 1000 ¥ 1000
-2 -2
0 —&— 10000 10 —— 10000
103 —<¢ 100000 10 —< 100000
~»— 1000000 ~»— 1000000
—#- 10000000 —=— 10000000
1074 1074
102 04 10? 0t
Num GPUs Num GPUs

Figure 10: Distributed SpMV weak scaling on up to 2048 nodes
(8192 Grace Hopper superchips).

and compilers in JURECA as JUPITER, as Section 3 mentioned. We
limit the analysis to the 27pt stencil test case with a local size of 10°
to reflect the smaller memory capacity of the A100 GPU. Figure 11
reveals that the hardware improvement provides a 1.2X ~ 1.45X%
speedup when moving from the A100 GPU system to the GH200
GPU system. When combining the hardware advancement with
algorithmic changes as detailed in Section 4.1 and Section 4.2, the
speedup grows to 2.4X ~ 2.7X.
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Figure 11: Speedup coming from hardware advances (GH200
vs A100) and additional algorithmic optimization. Weak scal-
ing test case: 27pt stencil with local size 10°.

4.5 Strong Scaling - Solver

Subsequently to the SpMV optimization and performance assess-
ment, we next investigate a full-fledged Conjugate Gradient[12]
(CG) algorithm and a generalized minimal residual method[16]
(GMRES) solver, both using the optimized distributed SpMV as a
central building block. For the CG solver, the SpMV is the runtime-
dominating component. The GMRES solver, other than the CG,
which does not rely on short recurrences, has a communication-
intensive orthogonalization step that orthogonalizes the new Krylov
basis vector against all previous Krylov basis vectors, and a local
least-square problem to find the solution approximation in the
Krylov subspace. Depending on the restart parameter, the SpMV
kernel or the orthogonalization step dominates the cost of the
GMRES solver. For the strong scaling analysis, we maximize the
problem size of the distinct tests to fit into the memory of the GPUs
of the base case configuration. In some detail, we consider three
27pt stencil discretization test cases with size 163M unknowns (fits
into the memory of 4 GH200 GPUs), 327M unknowns (fits into the
memory of 8 GH200 GPUs), and 1655M unknowns (fits into the
memory of 16 GH200 GPUs). In Figure 12, we visualize the strong
scaling experiments. For the CG solver (left-hand-side), linear scal-
ability is preserved for 3 resource-doubling steps, and runtime still
decreases for a fourth resource-doubling step (total of 16X resource
increase). After that, the runtime no longer decreases, but even in-
creases due to the communication overhead. For the GMRES solver,
scalability is worse due to the increased communication and the
least-square problem solver. Overall, the GMRES solver runtime
decreases only for up to 8X resource increase.

5 Conclusion

We have evaluated sparse linear algebra functionality and its scal-
ability on the JUPITER supercomputer that is being deployed as
Europe’s first Exascale system at the Juelich Supercomputing Cen-
tre. We have demonstrated that executing kernels and algorithms
initially optimized for NVIDIA’s V100 and A100 architectures can
result in sub-optimal performance on JUPITER’s GH200 GPUs. We
have furthermore detailed which algorithmic changes help to boost
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Figure 12: CG and GMRES strong scaling result on 27pt stencil.
The legend is matrix size. The base case of green/orange/blue
runs on 4/8/16 GPUs, respectively.

the performance on the GH200 GPUs. Aside from the single-GPU
case, we also assessed the performance of the distributed execution
of sparse linear algebra functionality on the GH200-powered super-
computer and propose design changes to Ginkgo’s distributed SpMV
workflow to boost performance. We demonstrated that when com-
paring with supercomputers based on the preceding A100 GPUs,
the GH200-based JUPITER supercomputer in combination with the
architecture-specific kernel optimizations can deliver up to 2.7X
speedups for sparse linear algebra functionality.
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