001052236 001__ 1052236
001052236 005__ 20260122142713.0
001052236 0247_ $$2doi$$a10.1016/j.proci.2025.105885
001052236 0247_ $$2ISSN$$a1540-7489
001052236 0247_ $$2ISSN$$a1873-2704
001052236 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00855
001052236 037__ $$aFZJ-2026-00855
001052236 082__ $$a660
001052236 1001_ $$00000-0002-0355-2252$$aNicolai, Hendrik$$b0$$eCorresponding author
001052236 245__ $$aLaminar and turbulent hydrogen-enriched methane flames: Interaction of thermodiffusive instabilities and local fuel demixing
001052236 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001052236 3367_ $$2DRIVER$$aarticle
001052236 3367_ $$2DataCite$$aOutput Types/Journal article
001052236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769088217_20074
001052236 3367_ $$2BibTeX$$aARTICLE
001052236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052236 3367_ $$00$$2EndNote$$aJournal Article
001052236 520__ $$aBlending hydrogen with methane provides a practical approach for transitioning existing energy infrastructure to hydrogen-based carriers. However, under fuel-lean conditions, increasing the hydrogen content causes flames to transition rapidly from methane-like combustion to hydrogen-dominated flames, primarily driven by thermodiffusive instabilities that significantly enhance turbulent flame speeds. This study systematically examines lean methane/hydrogen/air flames of varying complexity, from three-dimensional laminar unstable cases to turbulent jet flames at two different Reynolds numbers, with an emphasis on the impact of the distinct molecular transport properties of hydrogen and methane. The large-scale simulations reveal that these blends exhibit instabilities even under turbulent conditions, albeit to a lesser degree than pure hydrogen flames. Nonetheless, synergistic interactions between turbulence and thermodiffusive instabilities lead to notable increases in turbulent flame speed and reactivity factors ($I_0$) at higher Reynolds/Karlovitz numbers. Moreover, beyond the effects of overall non-unity Lewis number, the different diffusivity of hydrogen and methane (i.e., non-equal Lewis numbers) significantly influence the formation and intensity of intrinsic flame instabilities. These findings underscore the importance of thermodiffusive instabilities in methane/hydrogen combustion and highlight the need for advanced modeling approaches capable of capturing local demixing effects under turbulent flows conditions.
001052236 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052236 536__ $$0G:(EU-Grant)101118139$$aInno4Scale - Innovative Algorithms for Applications on European Exascale Supercomputers (101118139)$$c101118139$$fHORIZON-EUROHPC-JU-2022-ALG-02$$x1
001052236 588__ $$aDataset connected to DataCite
001052236 7001_ $$00009-0003-8706-1008$$aSchuh, Vinzenz$$b1
001052236 7001_ $$00009-0003-2602-4107$$aBähr, Antonia$$b2
001052236 7001_ $$00000-0001-5166-6273$$aSchneider, Max$$b3
001052236 7001_ $$00000-0002-7837-0939$$aRong, Felix$$b4
001052236 7001_ $$00000-0002-7812-4738$$aKaddar, Driss$$b5
001052236 7001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b6$$ufzj
001052236 7001_ $$00000-0001-9333-0911$$aHasse, Christian$$b7
001052236 773__ $$0PERI:(DE-600)2197968-6$$a10.1016/j.proci.2025.105885$$gVol. 41, p. 105885 -$$p105885$$tProceedings of the Combustion Institute$$v41$$x1540-7489$$y2025
001052236 8564_ $$uhttps://juser.fz-juelich.de/record/1052236/files/1-s2.0-S1540748925000999-main.pdf$$yOpenAccess
001052236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b6$$kFZJ
001052236 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001052236 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP COMBUST INST : 2022$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052236 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001052236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001052236 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052236 9801_ $$aFullTexts
001052236 980__ $$ajournal
001052236 980__ $$aVDB
001052236 980__ $$aUNRESTRICTED
001052236 980__ $$aI:(DE-Juel1)JSC-20090406