001     1052236
005     20260122142713.0
024 7 _ |a 10.1016/j.proci.2025.105885
|2 doi
024 7 _ |a 1540-7489
|2 ISSN
024 7 _ |a 1873-2704
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00855
|2 datacite_doi
037 _ _ |a FZJ-2026-00855
082 _ _ |a 660
100 1 _ |a Nicolai, Hendrik
|0 0000-0002-0355-2252
|b 0
|e Corresponding author
245 _ _ |a Laminar and turbulent hydrogen-enriched methane flames: Interaction of thermodiffusive instabilities and local fuel demixing
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769088217_20074
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Blending hydrogen with methane provides a practical approach for transitioning existing energy infrastructure to hydrogen-based carriers. However, under fuel-lean conditions, increasing the hydrogen content causes flames to transition rapidly from methane-like combustion to hydrogen-dominated flames, primarily driven by thermodiffusive instabilities that significantly enhance turbulent flame speeds. This study systematically examines lean methane/hydrogen/air flames of varying complexity, from three-dimensional laminar unstable cases to turbulent jet flames at two different Reynolds numbers, with an emphasis on the impact of the distinct molecular transport properties of hydrogen and methane. The large-scale simulations reveal that these blends exhibit instabilities even under turbulent conditions, albeit to a lesser degree than pure hydrogen flames. Nonetheless, synergistic interactions between turbulence and thermodiffusive instabilities lead to notable increases in turbulent flame speed and reactivity factors ($I_0$) at higher Reynolds/Karlovitz numbers. Moreover, beyond the effects of overall non-unity Lewis number, the different diffusivity of hydrogen and methane (i.e., non-equal Lewis numbers) significantly influence the formation and intensity of intrinsic flame instabilities. These findings underscore the importance of thermodiffusive instabilities in methane/hydrogen combustion and highlight the need for advanced modeling approaches capable of capturing local demixing effects under turbulent flows conditions.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Inno4Scale - Innovative Algorithms for Applications on European Exascale Supercomputers (101118139)
|0 G:(EU-Grant)101118139
|c 101118139
|f HORIZON-EUROHPC-JU-2022-ALG-02
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Schuh, Vinzenz
|0 0009-0003-8706-1008
|b 1
700 1 _ |a Bähr, Antonia
|0 0009-0003-2602-4107
|b 2
700 1 _ |a Schneider, Max
|0 0000-0001-5166-6273
|b 3
700 1 _ |a Rong, Felix
|0 0000-0002-7837-0939
|b 4
700 1 _ |a Kaddar, Driss
|0 0000-0002-7812-4738
|b 5
700 1 _ |a Bode, Mathis
|0 P:(DE-Juel1)192255
|b 6
|u fzj
700 1 _ |a Hasse, Christian
|0 0000-0001-9333-0911
|b 7
773 _ _ |a 10.1016/j.proci.2025.105885
|g Vol. 41, p. 105885 -
|0 PERI:(DE-600)2197968-6
|p 105885
|t Proceedings of the Combustion Institute
|v 41
|y 2025
|x 1540-7489
856 4 _ |u https://juser.fz-juelich.de/record/1052236/files/1-s2.0-S1540748925000999-main.pdf
|y OpenAccess
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)192255
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P COMBUST INST : 2022
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21