001052261 001__ 1052261
001052261 005__ 20260122220101.0
001052261 0247_ $$2doi$$a10.1007/978-3-031-97570-7_22
001052261 0247_ $$2ISSN$$a0302-9743
001052261 0247_ $$2ISSN$$a1611-3349
001052261 020__ $$a978-3-031-97569-1 (print)
001052261 020__ $$a978-3-031-97570-7 (electronic)
001052261 037__ $$aFZJ-2026-00878
001052261 1001_ $$0P:(DE-Juel1)194959$$aOuardghi, Abdelouahed$$b0$$eCorresponding author
001052261 1112_ $$a25th International Conference on Computational Science$$cSingapore$$d2025-07-07 - 2025-07-09$$gICCS 2025$$wSingapore
001052261 245__ $$aIsogeometric Galerkin-Characteristic Analysis for Miscible Flows in Porous Media
001052261 260__ $$aCham$$bSpringer Nature Switzerland$$c2025
001052261 29510 $$aComputational Science – ICCS 2025 Workshops
001052261 300__ $$a291 - 305
001052261 3367_ $$2ORCID$$aCONFERENCE_PAPER
001052261 3367_ $$033$$2EndNote$$aConference Paper
001052261 3367_ $$2BibTeX$$aINPROCEEDINGS
001052261 3367_ $$2DRIVER$$aconferenceObject
001052261 3367_ $$2DataCite$$aOutput Types/Conference Paper
001052261 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1769089156_20964
001052261 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001052261 4900_ $$aLecture Notes in Computer Science$$v15911
001052261 520__ $$aThis note presents a NURBS-based isogeometric analysis (IgA) combined with an $L^2$-projection characteristic-Galerkin method to deal with incompressible miscible problems. The advection part is treated in a semi-Lagrangian framework, where high-order non uniform rational B-spline (NURBS) functions are used to interpolate the solution. The resulting semi-discrete equation is solved using an efficient backward differentiation time-stepping algorithm, where Darcy velocity and pressure are updated within each timestep. The accuracy of the method is analyzed through a miscible displacement of an incompressible fluid, where the analytical solution is known, and a real problem with a viscous fingering in porous media. The numerical results presented in this study demonstrate the potential of the proposed IgA characteristic-Galerkin method to allow for large time steps in the computations without deteriorating the accuracy of the obtained solution and to accurately maintain the shape of the solution in the presence of complex patterns in the solution.
001052261 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052261 536__ $$0G:(DE-Juel-1)SDLFSE$$aSDL Fluids & Solids Engineering$$cSDLFSE$$x1
001052261 588__ $$aDataset connected to DataCite
001052261 7001_ $$00009-0001-9930-9555$$aAsmouh, Ilham$$b1
001052261 773__ $$a10.1007/978-3-031-97570-7_22
001052261 8564_ $$uhttps://juser.fz-juelich.de/record/1052261/files/978-3-031-97570-7_22.pdf$$yRestricted
001052261 909CO $$ooai:juser.fz-juelich.de:1052261$$pVDB
001052261 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
001052261 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001052261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194959$$aForschungszentrum Jülich$$b0$$kFZJ
001052261 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052261 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052261 980__ $$acontrib
001052261 980__ $$aVDB
001052261 980__ $$acontb
001052261 980__ $$aI:(DE-Juel1)JSC-20090406
001052261 980__ $$aUNRESTRICTED