| Home > Publications database > Mapping proton and carbon dioxide electrocatalytic reductions at a Rh complex by in situ spectroelectrochemical NMR > print |
| 001 | 1052286 | ||
| 005 | 20260203123506.0 | ||
| 024 | 7 | _ | |a 10.1039/D5SC05744B |2 doi |
| 024 | 7 | _ | |a 2041-6520 |2 ISSN |
| 024 | 7 | _ | |a 2041-6539 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00903 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00903 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Kick, A.-C. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Mapping proton and carbon dioxide electrocatalytic reductions at a Rh complex by in situ spectroelectrochemical NMR |
| 260 | _ | _ | |a Cambridge |c 2026 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769090583_21329 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Detailed molecular level understanding of organometallic electrocatalytic systems is required to fully exploit their technological potential to store, distribute, and utilise renewable energy in chemical form. However, in situ methods providing high resolution information on the structure and reactivity of transient intermediates remain challenging due to incompatible requirements for standard electrochemical and spectroscopic cell designs. Here, we demonstrate the use of spectroelectrochemical nuclear magnetic resonance (SEC-NMR) to enable operando characterisation of molecular species during organometallic electrocatalysis. The electroreduction of a prototypical molecular rhodium(+I) diphosphine complex was studied under aprotic conditions and in the presence of H2O and/or CO2. By combining multinuclear SEC-NMR, chemical reductions, modelling and simulations, we determine the involved species, their relative concentrations and the competing interconversions. The bielectronic reduction leading to the highly reactive low-valent rhodium(−I) intermediate and subsequent protonation of that species into a Rh–hydride complex was followed in a time-resolved manner. Deuterium labelling and ex situ NMR analysis after SEC-NMR electrolysis revealed that under aprotic conditions the proton source substantially arises from Hofmann elimination of the nBu4NPF6 electrolyte in addition to the acetonitrile solvent. The reactivities of the Rh(−I) and the Rh–H complexes were further monitored under turnover conditions, providing direct molecular insights into bifurcating electrocatalytic pathways for hydrogen evolution and CO2 reduction. |
| 536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832) |0 G:(GEPRIS)390919832 |c 390919832 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Schatz, Michael |0 P:(DE-Juel1)165598 |b 1 |
| 700 | 1 | _ | |a Kahl, C. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Hölscher, M. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 4 |u fzj |
| 700 | 1 | _ | |a Granwehr, Josef |0 P:(DE-Juel1)162401 |b 5 |u fzj |
| 700 | 1 | _ | |a Kaeffer, N. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Leitner, W. |0 P:(DE-HGF)0 |b 7 |e Last author |
| 773 | _ | _ | |a 10.1039/D5SC05744B |g Vol. 17, no. 3, p. 1637 - 1646 |0 PERI:(DE-600)2559110-1 |n 3 |p 1637 - 1646 |t Chemical science |v 17 |y 2026 |x 2041-6520 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1052286/files/d5sc05744b.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1052286 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165598 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)162401 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)162401 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
| 914 | 1 | _ | |y 2026 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-23T09:28:57Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-23T09:28:57Z |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-23T09:28:57Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2024-12-13 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2025-11-12 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM SCI : 2022 |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-11-12 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEM SCI : 2022 |d 2025-11-12 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-1-20110218 |k IET-1 |l Grundlagen der Elektrochemie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|