001     1052286
005     20260203123506.0
024 7 _ |a 10.1039/D5SC05744B
|2 doi
024 7 _ |a 2041-6520
|2 ISSN
024 7 _ |a 2041-6539
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00903
|2 datacite_doi
037 _ _ |a FZJ-2026-00903
082 _ _ |a 540
100 1 _ |a Kick, A.-C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Mapping proton and carbon dioxide electrocatalytic reductions at a Rh complex by in situ spectroelectrochemical NMR
260 _ _ |a Cambridge
|c 2026
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769090583_21329
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Detailed molecular level understanding of organometallic electrocatalytic systems is required to fully exploit their technological potential to store, distribute, and utilise renewable energy in chemical form. However, in situ methods providing high resolution information on the structure and reactivity of transient intermediates remain challenging due to incompatible requirements for standard electrochemical and spectroscopic cell designs. Here, we demonstrate the use of spectroelectrochemical nuclear magnetic resonance (SEC-NMR) to enable operando characterisation of molecular species during organometallic electrocatalysis. The electroreduction of a prototypical molecular rhodium(+I) diphosphine complex was studied under aprotic conditions and in the presence of H2O and/or CO2. By combining multinuclear SEC-NMR, chemical reductions, modelling and simulations, we determine the involved species, their relative concentrations and the competing interconversions. The bielectronic reduction leading to the highly reactive low-valent rhodium(−I) intermediate and subsequent protonation of that species into a Rh–hydride complex was followed in a time-resolved manner. Deuterium labelling and ex situ NMR analysis after SEC-NMR electrolysis revealed that under aprotic conditions the proton source substantially arises from Hofmann elimination of the nBu4NPF6 electrolyte in addition to the acetonitrile solvent. The reactivities of the Rh(−I) and the Rh–H complexes were further monitored under turnover conditions, providing direct molecular insights into bifurcating electrocatalytic pathways for hydrogen evolution and CO2 reduction.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)
|0 G:(GEPRIS)390919832
|c 390919832
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schatz, Michael
|0 P:(DE-Juel1)165598
|b 1
700 1 _ |a Kahl, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hölscher, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
700 1 _ |a Kaeffer, N.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Leitner, W.
|0 P:(DE-HGF)0
|b 7
|e Last author
773 _ _ |a 10.1039/D5SC05744B
|g Vol. 17, no. 3, p. 1637 - 1646
|0 PERI:(DE-600)2559110-1
|n 3
|p 1637 - 1646
|t Chemical science
|v 17
|y 2026
|x 2041-6520
856 4 _ |u https://juser.fz-juelich.de/record/1052286/files/d5sc05744b.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052286
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165598
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2026
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-23T09:28:57Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-23T09:28:57Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-23T09:28:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM SCI : 2022
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM SCI : 2022
|d 2025-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21