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Abstract 
Understanding the neurobiological basis of mental health disorders remains a central goal in 
psychiatry. However, identifying robust brain-psychopathology associations with 
neuroimaging has proven difficult, in part due to substantial heterogeneity within and 
comorbidity between diagnostic categories. Transdiagnostic bifactor models aim to 
characterise this structure by separating shared from unique symptom variance, yielding 
more reliable and potentially more accurate latent dimensions of psychopathology. However, 
the extent to which these behavioural models improve brain-psychopathology associations 
remains largely uncharacterised. Using two large developmental cohorts, we compared 11 
previously published bifactor models applied to the Child Behaviour Checklist (CBCL) to 
traditional CBCL summary scores. For both symptom-scoring approaches, we systematically 
evaluated their reliability and multivariate associations with whole-brain structure (MRI) and 
function (resting-state fMRI). We found no consistent evidence that bifactor-derived factor 
scores strengthened reliability or brain-psychopathology associations, relative to summary 
scores. Whole-brain predictive models revealed broadly distributed neural signatures that 
were highly similar between corresponding factor and summary score constructs, with 
general factors and total problems approaching numerical equivalence. Nevertheless, factor 
scores displayed more distinct neural signatures between general, internalising, and 
externalising dimensions than did summary scores. Together, these findings suggest that 
existing CBCL bifactor models of psychopathology do not systematically strengthen the 
predictive utility of psychiatric neuroimaging, possibly reflecting fundamental limits on the 
proportion of CBCL symptom variance captured by brain features. While bifactor models 
may aid in separating neural correlates across constructs, improving phenotypic assessment 
depth, rather than alternative phenotypic modelling, may provide more tangible 
improvements to association strength moving forward. 
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Introduction 
Widespread symptom comorbidity and diagnostic heterogeneity have long been recognised 
as major limitations of traditional, categorical psychiatric diagnoses (L. A. Clark et al., 1995; 
Newman et al., 1998). Comorbidity and heterogeneity also pose challenges for psychiatric 
neuroimaging studies that seek to link brain and psychopathology (Feczko & Fair, 2020). 
These challenges have motivated proposals to better capture psychopathology as latent 
dimensions with a hierarchical structure (Krueger, 1999; Neale & Kendler, 1995). Building on 
this work, comprehensive dimensional models like the Hierarchical Taxonomy of 
Psychopathology (HiTOP; Kotov et al., 2017) formalise psychopathology as a hierarchy of 
empirically derived spectra and include a higher-order general “P” factor representing the 
general manifestation of psychopathology alongside more specific symptom liabilities. 
Bifactor models offer one implementation of this structure, partitioning variance into a 
general factor and orthogonal specific factors that can disentangle transdiagnostic and 
domain-specific processes (Caspi et al., 2014; Lahey et al., 2012). While not without 
criticism (Watts et al., 2020, 2024), bifactor models have been widely used to examine how 
common and unique features across symptoms relate to external outcomes like academic 
performance or cognition (Caspi & Moffitt, 2018; Smith et al., 2020). Importantly, recent 
perspectives (Zald & Lahey, 2017; Tiego et al., 2023) have proposed bifactor and other 
factor analytic models as potential solutions to widespread challenges in identifying robust 
and reproducible brain-behaviour relationships in mental health.  

Factor analytic models, particularly bifactor and hierarchical approaches, offer potential 
advantages for studies linking brain and mental health phenotypes by improving the internal 
consistency, precision, and interpretability of measured constructs. These models extract 
latent dimensions that represent the shared variance across symptoms, while accounting for 
unique variance and measurement error; together, these properties may lead to larger brain-
behaviour associations and enhance statistical power (Tiego et al., 2023). In contrast, 
typical, simple summary scores may inadvertently combine general, domain-level, and 
symptom-specific variance, producing heterogeneous phenotypes that obscure or dilute 
associations (Reise, 2012). This is critical because measurement imprecision and poor 
reliability attenuate brain-behaviour effect sizes and reduce the likelihood of detecting 
meaningful associations (Karvelis et al., 2023; Gell et al., 2024). Conversely, increasing 
reliability, while holding other factors constant, may lead to increased signal-to-noise ratios, 
in turn improving brain-behaviour associations (Milham et al., 2021; Nikolaidis et al., 2022). 
Finally, compared to alternative correlated factor models (Kotov et al., 2017; Sunderland et 
al., 2021), bifactor approaches partition variance explicitly into uncorrelated general and 
specific factors (which may otherwise result in correlated factors). Such orthogonal factors 
can potentially reduce confounding of brain-behaviour associations and help clarify whether 
brain correlates reflect general psychopathology or domain-specific liabilities (Zald & Lahey, 
2017; Lahey et al., 2021). Nevertheless, the extent to which such psychometric advantages 
of bifactor models translate to stronger or more specific brain-psychopathology associations 
remains unexplored.  

Prior studies have reported associations between bifactor-derived psychopathology 
dimensions and neuroimaging measures (Elliott et al., 2018; Kaczkurkin et al., 2018, 2019). 
However, because none have directly compared bifactor scores to alternative scoring 
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approaches (e.g., summary scores), it remains unclear whether the identified brain 
correlates reflect novel insights into the spatial organisation of brain-psychopathology 
associations. Furthermore, due to the large sample sizes required to detect robust and 
reproducible brain-behaviour associations (Marek et al., 2022), comprehensive evaluations 
of the relative utility of factor scores for brain-behaviour modelling were, until recently, not 
possible. Moreover, bifactor models themselves require substantial sample sizes to fit, often 
resulting in factor scores being computed on the same data used to test for associations with 
brain imaging, introducing the risk of embedded circularity (“double dipping”), train-to-test 
leakage, and overfitting.  

Although bifactor models have shown psychometric advantages in behavioural research, it 
remains unknown whether these advantages confer stronger or more distinct brain-
psychopathology associations than typical summary scores. Here, we systematically 
evaluate the reliability and whole-brain multivariate predictive accuracy of factor scores from 
cortical thickness (obtained from structural MRI) and functional connectivity (obtained from 
resting-state fMRI). To evaluate the potential measurement benefits afforded by factor 
analysis, we benchmark prediction accuracy and multivariate feature weights of factor 
scores against standard summary scores that do not require factor analysis (i.e., equally 
weighted sums of items). To ensure generalizability across bifactor model solutions, we 
utilised 11 previously published bifactor models to obtain factor scores from items of the 
Child Behavior Checklist (CBCL) in two large, diverse developmental samples: the 
Adolescent Brain Cognitive Development study (ABCD) (Volkow et al., 2018) and the 
Brazilian High-Risk Cohort (BHRC) (Salum et al., 2015). 

 

Methods 

Adolescent Brain Cognitive Development dataset 

Participants 

To investigate psychometric properties of bifactor models and their association with brain 
imaging, we used baseline and follow-up 1 data from the Adolescent Brain Cognitive 
Development study, a large longitudinal neuroimaging cohort study of 21 sites in the United 
States (Volkow et al., 2018). Only English-speaking participants without severe sensory, 
intellectual, medical, or neurological issues who completed all items of the CBCL at both 
time points (mean interval = 12.1 months) were selected. This resulted in a total of 10,897 
participants (5698 female, ages = 9-11 at baseline) with complete CBCL data for both visits 
that were used to fit all bifactor models. A subset of ABCD participants who completed the 
baseline imaging session, finished all rs-fMRI sessions, and passed the ABCD quality 
control for their T1 and rs-fMRI were used for brain-behaviour analyses. This subset 
comprised 6,572 participants (3,277 female, ages = 9-11).  
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Neuroimaging data, preprocessing and analyses 

The ABCD MRI acquisition protocol (Casey et al., 2018) was harmonised across 21 sites on 
Siemens Prisma, Phillips, and GE 750 3T scanners. It included high-resolution T1w MRI 
images with a 32-channel head coil using a 3D MPRAGE sequence (TR = 2500 ms, 1.0 mm 
isotropic voxels). The rs-fMRI images were acquired using gradient-echo echo planar 
imaging (TR = 800 ms, 2.4 mm isotropic voxels) and included four 5-minute runs totalling 20 
minutes. 

Structural and functional data were pre-processed using the ABCD-BIDS pipeline, available 
through the ABCD-BIDS Community Collection (ABCC; Collection 3165) as detailed in 
(Feczko et al., 2021). The preprocessing steps included distortion correction and alignment 
using Advanced Normalisation Tools (ANTS), FreeSurfer segmentation, and both surface 
and volumetric registration using FSL FLIRT rigid-body transformation. Resting-state fMRI 
data were further processed using the DCAN BOLD Processing (DBP) pipeline, which 
involved detrending, demeaning, and denoising via a general linear model incorporating 
tissue class and motion regressors. Following this, data were bandpass filtered between 
0.008 and 0.09 Hz using a second-order Butterworth filter. Additional processing included 
respiratory motion filtering (targeting breathing rates between 18.58 and 25.73 breaths per 
minute) and censoring of frames exceeding a framewise displacement (FD) threshold of 0.2 
mm or identified as statistical outliers (±3 standard deviations). The denoised time courses 
were parcellated using the HCP multimodal atlas with 360 cortical regions of interest 
(Glasser et al., 2016), together with 19 subcortical regions (Desikan et al., 2006). The signal 
time courses were averaged across all voxels of each parcel, and functional connectivity 
between them was calculated as Pearson correlation and Fisher Z-transformed. Region-wise 
cortical thickness was averaged across all vertices within each parcel of the HCP multimodal 
atlas. 

Brazilian High-Risk Cohort study dataset 

To replicate our reliability analyses of factor and standard CBCL summary scores in a 
dataset with different characteristics, we used CBCL scores from 771 participants (334 
female, ages = 6 - 14) from the Brazilian high-risk cohort study (Salum et al., 2015). All 
participants had completed all items of the Portuguese version of the CBCL at baseline and 
the first follow-up session (mean interval = 17 months). The BHRC is a school-based 
community cohort from the cities of São Paulo and Porto Alegre that is enriched with 
children with current symptoms and/or family history of psychiatric disorders (for details, see 
Salum et al., 2015). 

Common and Specific Variance of Psychopathology 

Child Behavioural Checklist and summary score 

The Child Behavioural Checklist (CBCL) (Achenbach, 1983) was used as the basis for 
calculating summary and bifactor scores reflecting various dimensions of psychopathology. 
The CBCL is a parent-reported assessment of 120 items/symptoms for subjects aged 6 to 
18 using a 3-point scale (0 = not true; 1 = somewhat/sometimes true; 2 = very true/often). 
The CBCL organises scores into eight syndromic summary scores: anxious-depressed, 
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withdrawn-depressed, somatic complaints, rule-breaking behaviour, aggressive behaviour, 
social problems, thought problems, and attention problems. Additionally, the scores can be 
combined into broader indices by summing up item-scores, such as internalising problems 
(comprising anxious-depressed, withdrawn-depressed, and somatic complaints) and 
externalising problems (comprising rule-breaking behaviour and aggressive behaviour) that 
have been informed by factor analysis. Finally, a total problems score comprises the linear, 
equally weighted sum of all items. Here, we utilised the T-score values for all 
aforementioned CBCL summary scores that are typically used in the literature and available 
with many datasets, including the ABCD. 

Bi-factor models 

Recent work has identified 11 different bifactor model solutions for the CBCL (Constantinou 
& Fonagy, 2019; Hoffmann et al., 2022). Therefore, to comprehensively estimate the test-
retest reliability of factor scores, we have investigated all 11 reported models (Achenbach, 
1983; Haltigan et al., 2018; McElroy et al., 2018; Deutz et al., 2020; Moore et al., 2022; D. A. 
Clark et al., 2021). Following previous work (Hoffmann et al., 2022), we first rescored items 
to only indicate the presence or absence of symptoms (i.e., somewhat/sometimes true and 
very true/often were re-coded to both be 1), as the response frequency of “very often” was 
below 5% for 114 of 119 items.  Within each bifactor model, all CBCL items present in the 
model definition (Fig. 1) were configured to load on a general “P-factor”. Additionally, a 
subset of items was set to residually load on “specific factors” that depended on the given 
model (see Supplementary Table 1). Following typical bifactor approaches (Hoffmann et al., 
2022), specific factors were not allowed to correlate with each other, nor with the general 
factor. Confirmatory factor analyses (CFA) were carried out in using Mplus (Muthen & 
Muthen, 1998; Hallquist & Wiley, 2018) using delta parameterisation and weighted least 
squares with a diagonal weight matrix with standard errors and mean- and variance-adjusted 
chi-square test statistics (WLSMV) estimators. For fit indices, see Supplementary Tables 2 
and 3. Factor scores were generated using a regression method, resulting in 11 P-factor 
scores and 38 specific factor scores per subject. 

Reliability 

We evaluated the test-retest reliability of bi-factor scores across all models, as well as 
summed scores between the baseline and the first follow-up session for both the ABCD and 
BHRC samples. To this end, we calculated linear bivariate correlation, corrected for 
participant age, time point, and their interaction. Correlation may be more robust to 
systematic age-related changes in development, as it is not penalised by differences in 
means between baseline and follow-up data and different development rates across 
participants (Anokhin et al., 2022). Additionally, we calculated ICC using a two-way mixed-
effects model for consistency, previously described as [3,1] (Shrout & Fleiss, 1979). In the 
ABCD, reliability was calculated on a subset of individuals who had a maximum of 12 
months retest interval (n = 7250; 3774 female; retest interval mean = 11.3 months). To 
estimate reliability at shorter intervals, only subjects with a maximum of 6 months retest 
interval were selected from the BHRC sample, resulting in 234 subjects (100 female, retest 
interval mean = 3.7 months). To assess the internal consistency of factor scores, we  
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Figure 1. CBCL Items included in each model. Items included in the P-factor are depicted in the top 
panel, while specific factors are depicted in the bottom panel. GP = general psychopathology model; 
DP = dysregulation profile model; CBCL = Child and Behaviour Checklist. 

 

calculated omega (ω), Hierarchical omega, and factor determinacy. For a detailed overview 
of each measure, see Supplementary Methods and Supplementary Table 4. 

 

Brain-behaviour analyses  

To systematically compare bifactor-derived scores to CBCL summary T-scores with respect 
to their neurobiological substrates, we used functional connectivity and cortical thickness 
features in the ABCD sample to predict both types of scores. Predictions we performed 
using linear ridge regression implemented in the scikit-learn library (version 0.24.2), wrapped 
in custom code [https://github.com/MartinGell/Prediction_Psychopathology]. To avoid test-to-
train leakage and improve generalizability, we utilised two matched samples (N = 3242 and 
3330) created by Feczko et al. (2021) (so-called “discovery” and “replication” samples). 
These were matched on acquisition site, age, sex, ethnicity, grade, highest level of parental 
education, handedness, combined family income, and prior exposure to anaesthesia. All 11 
bifactor model solutions were fit separately within each sample to ensure factor score 
estimation remained independent across training and testing folds. Model evaluation was 
performed using a nested 2-fold cross-validation with 2 repeats, where each sample served 
once as training and once as testing data. Within each outer fold, the α regularisation 
parameter was optimised via efficient leave-one-out cross-validation (Rifkin & Lippert, 2007) 
on the training set, and performance was evaluated on the test fold. Sensitivity analyses 
using CBCL summary scores that did not require fitting separately on train and test sets 
showed that our 2-fold cross-validation yielded near-identical results to a more standard 5 
times repeated 10-fold cross-validation (see Supplemental Methods for details). 

Within each fold, neuroimaging features were z-scored across subjects (i.e. standard scaler) 
using training data, and the same transformation was applied to the test set using learned 
parameters from training data. To control for the effect of sex, given its common association 
with psychiatric phenotypes (Eaton et al., 2012), we performed feature-wise confound 
removal using linear regression (More et al., 2021). This was performed within each training 
fold, and the confound models were subsequently applied to test data to prevent data 
leakage. No other covariates were included due to the matched design. Prediction accuracy 
was quantified using Pearson correlation and the coefficient of determination (R²), which 
reflects explained variance and is not equivalent to the squared correlation coefficient 
(Poldrack et al., 2020). Significance of predictions was assessed using 1000 permutations of 
target labels. Feature weights (indicating which edges contributed more to predictions) were 
Haufe transformed (Haufe et al., 2014; J. Chen et al., 2023) to improve interpretability (see 
Supplementary Methods for details). To assess model sensitivity, we repeated all predictions 
using a gradient-boosted decision tree model (XGBoost) (T. Chen & Guestrin, 2016), which 
accommodates non-linearities and zero-inflated outcomes (see Supplemental Methods). 
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To examine the similarity between regression feature weights (i.e. neural correlates) 
between as well as within factor and summary scores, we correlated the upper triangles of 
the Haufe-transformed feature weight matrices. The significance of these similarities was 
evaluated using a cortex-only spin test (Alexander-Bloch et al., 2018; Markello & Misic, 
2021), as the inclusion of subcortical parcels removes the possibility of surface projection. 
For each comparison, we computed the Spearman correlation (ρ) between the vectorised 
upper triangles of the two 360×360 matrices. Parcel centroids were projected to the 
spherical surface (fs_LR), and rigid-body rotations (“spins”) were applied while preserving 
left–right correspondence (Váša et al., 2018). For each spin, the resulting node permutation 
was applied to both rows and columns of one matrix, and ρ was recomputed. We repeated 
this procedure 10,000 times, each time recomputing ρ on the vectorised upper triangle to 
obtain the null distribution. To investigate the spatial embedding of the correlated 
connectomes, we used multidimensional scaling (see Supplementary Methods). 

 

Results 

Summary and bifactor-derived scores show comparable test–
retest reliability 
Reliability and longitudinal stability were assessed using test-retest correlations corrected for 
participant age, time point, and their interaction. We compared the reliability of standard 
CBCL summary T-scores, which do not require factor analysis, to bifactor-derived factor 
scores from CBCL item-level responses according to 11 model published studies (see 
Methods). Reliability in the summary scores was higher in ABCD (mean across all scales: 
rmean = 0.68, range: r = 0.56 - 0.76) than in the BHRC (rmean = 0.53, r = 0.39 - 0.67), with total 
problems, externalising, and attention showing the greatest stability across both datasets. To 
compare corresponding constructs between summary and factor scores, we focus on the 
total summary score, P-factor, externalising, internalising and attention in the following 
sections (Table 1, for reliabilities of all scores see Supplementary Fig. 2 and 3, 
Supplementary Table 4). 

 

Table 1 

Test-retest correlation of corresponding constructs in summary and factor scores 

Construct 
ABCD BHRC 

Summary 
score 

Factor score mean 
(range) 

Summary 
score 

Factor score mean 
(range) 

Total score / P-factors 0.76 0.74 (0.70 - 0.76) 0.60 0.58 (0.55 - 0.62) 

Externalising 0.74 0.58 (0.54 - 0.62) 0.61 0.48 (0.40 - 0.54) 

Internalising 0.68 0.57 (0.52 - 0.59) 0.53 0.37 (0.30 - 0.46) 

Attention 0.74 0.56 (0.52 - 0.57) 0.67 0.45 (0.24 - 0.53) 
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All 11 bifactor model solutions had a generally good fit to the data in both datasets when 
considering multiple fit indices (Supplementary Table 2-3). In the ABCD dataset (n = 7250; 
retest interval mean = 11.3 months), P-factors were the most reliable (rmean = 0.74; 0.70 - 
0.76), exceeding specific psychopathology factors (e.g., internalising, externalising, 
attention, thought disorders) across all solutions (rmean = 0.55; 0.42 - 0.62). In the BHRC 
dataset (n = 234; retest interval mean = 3.7 months and max = 6 months), absolute reliability 
was lower overall, despite a shorter retest interval. As in the ABCD, P-factors (rmean = 0.58, r 
= 0.55 - 0.62) displayed higher reliability than specific factors (rmean = 0.40, r = 0.15 - 0.54); 
however, several specific factors approached P in the BHRC, suggesting specific factors 
may be more stable at shorter time intervals (see supplementary Fig. 3). Internal consistency 
reliability indices (ω, ωH, FD) were high for P and lower-to-acceptable for specific factors in 
both datasets (Supplementary Table 4). ICCs closely tracked test-retest correlations in both 
datasets (ABCD: r = 0.99, p < 0.001; BHRC: r = 0.99, p < 0.001). 
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Figure 2. Prediction accuracy of CBCL summary scores and commonly represented factors. 
The upper panel displays functional connectivity, and the lower panel shows cortical thickness-based 
prediction accuracy. Panels (A) and (C) show boxplots of prediction accuracies for summary scores 
(left) and bifactor-derived factor scores (right). Panels (B) and (D) show the corresponding construct 
summary score and mean factor score prediction accuracy. Error bars indicate standard deviation in 
accuracy across individual bifactor model solutions. Filled points in panels (A) and (C) represent 
permutation-based significant predictions at p < 0.001. 

 

Summary and bifactor-derived scores show comparable 
prediction accuracy 

In the ABCD dataset, we used functional connectivity and cortical thickness features in a 
multivariate linear ridge regression to benchmark the prediction accuracy of bifactor-derived 
scores across all model solutions against standard CBCL summary T-scores. Overall, most 
constructs could be significantly predicted from functional connectivity (Fig. 2A - outline only 
points) and accuracies across all summary scores and factor scores were highly similar and 
generally low (summary scores: rmean = 0.1; r = 0.04 - 0.15; R²mean = 0.01; R² = 0.0 - 0.021; 
factor scores: rmean = 0.1; r = -0.03 - 0.15; R²mean = 0.008; R² = -0.016 - 0.019; for a complete 
table of results see supplementary Table 5). For corresponding constructs (e.g., 
externalising factors vs externalising summary score), prediction accuracy for summary 
scores was highly similar to the mean accuracy achieved for factor scores (Fig. 2B; for the 
coefficient of determination see Supplementary Fig. 4). One exception to this similarity was 
attention, where the summary score prediction outperformed the corresponding attention 
factor mean. 

Prediction accuracy from cortical thickness was not significant for most factors and summary 
scores (Fig. 2C - outline only points) and produced near-chance results when evaluated 
using the coefficient of determination, rather than correlation, as a model performance metric 
(Supplementary Fig. 4). Most of the significant factor score predictions were of P-factors 
(Supplementary Fig. 5; Supplementary Table 5). Owing to the overall poor predictive 
performance of cortical thickness, subsequent analyses focused on functional connectivity. 
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Figure 3. Impact of reliability on the prediction accuracy of factor scores by functional 
connectivity. The relationship between score reliability and prediction accuracy for summary scores 
(A) and factor scores (B). Results for whole-brain prediction of factor scores by linear ridge 
regression. Filled points represent permutation-based significant predictions at p < 0.001. Each point 
refers to one model solution. For the impact of internal consistency reliability on prediction accuracy, 
see (Supplementary Fig. 8). 

 

General p and specific psychopathology factors can be 
predicted with comparable accuracy 
Replicating prior work (Gell et al., 2024), summary scores with higher reliability had higher 
prediction accuracy (Fig. 3A). Similarly, within a given factor (i.e., P, externalising, 
internalising, attention), higher reliability also generally resulted in higher prediction accuracy 
across model solutions (Fig. 3B; each factor group illustrated by colour). However, when 
comparing between factors (e.g., P vs. externalising), higher reliability didn’t translate to 
higher prediction accuracy. These results were consistent across predicted longitudinal 
timepoints in the ABCD and machine learning algorithms (Supplementary Fig. 6). 

For bifactor models, despite having higher reliability and internal consistency than all other 
factors, P-factors could be predicted (rmean = 0.11; R2

mean = 0.012) using functional 
connectivity with comparable accuracy to most specific factors (Fig. 3B; for the coefficient of 
determination see Supplementary Fig. 7). Externalising (rmean = 0.12; R2

mean = 0.013) and 
attentional (rmean = 0.10; R2

mean = 0.009) factors showed the most similar prediction strength 
to P-factors. Internalising displayed a slightly lower, yet still overlapping prediction accuracy 
(rmean = 0.09; R2

mean = 0.002) to P-factors. Similarly to test-retest reliability, neither higher 
internal consistency reliability (ω, ωH, and factor determinacy) nor item variance explained 
by the corresponding factor could consistently index improvement to prediction accuracy for 
general compared to specific factors (Supplementary Fig. 8).  

Collectively, these results underscore a distinction between and within constructs in 
neuroimaging-based prediction of bifactor models. One possibility is that there is a limited 
amount of overall predictable CBCL variance from brain imaging that places a theoretical 
ceiling on prediction accuracy. Importantly, this appears to be the case no matter how 
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different factor model solutions partition this variance into general or specific factors. 
Examination of all 11 bifactor model solutions demonstrates differing proportions of item-
level variance attributed to general and specific factors (Fig. 4A). Nevertheless, the average 
or overall prediction accuracy from functional connectivity (Fig. 4B - grey line) across factors 
within each model solution was nearly identical (r = 0.10 - 0.12; R2 = 0.008 - 0.013).  

 

Figure 4. Explained item variance and prediction accuracy by functional connectivity. Results 
for whole-brain prediction of factor scores by linear ridge regression. Each point represents one factor. 
The Achenbach 8S model was removed as more than half of its specific factors could not be 
significantly predicted. 

 

Diverging and converging neural correlates of psychopathology 
estimated from factor scores and summary scores  
Having shown that factor scores from bifactor models did not enhance predictive 
performance relative to simple summary scores, we next tested whether these approaches 
might nevertheless reveal distinct biological information. To this end, we examined the Haufe 
transformed feature weights (see supplementary methods for details) from our ridge 
regression prediction models in the broader indices of total problems/P-factors, externalising 
and internalising (Fig. 5 - left panel). Connectivity within the default mode (DMN) as well as 
between the DMN and the frontoparietal (FPN) and cingulo-opercular (CO) networks were 
the most informative for predicting the total problems score. The externalising summary 
score prediction was most informed by an overlapping network of DMN and FPN edges with 
additional sensorimotor and attention network components. The prediction of the summary 
score of internalising symptoms was most informed by connectivity between visual, attention 
and FPN networks (Fig. 5A). 
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Figure 5. Haufe transformed feature importance weights of edges between all cortical parcels. 
Corresponding construct (A) summary score and (B) mean factor score Haufe-transformed feature 
weights. In this case, positive or negative feature weight for an edge indicates that higher connectivity 
for that edge was associated with predicting higher or lower behavioural value. On the left side of 
each panel is the full feature weight matrix, ordered using the functional network definition by Ji et al. 
(2019). The right side displays the mean absolute value weight for each cortical region. 

 

Within factors (e.g. externalising), the consistency in feature weights across model solutions 
was generally very high (Supplementary Fig. 9): P-factors (ρmean = 0.94), externalising (ρmean 
= 0.91), internalising (ρmean = 0.94) and was therefore averaged across models, resulting in 
one matrix of weights per construct. First, we compared the most informative features for the 
prediction of corresponding constructs from the summary and factor score (Fig. 6A - 
highlighted diagonal values). This indicated a generally high similarity in feature weights 
between corresponding constructs (e.g., externalising factors vs externalising summary 
score). Functional connectivity features that predicted P-factors were almost perfectly 
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spatially aligned with the total problems score (ρ = 0.98, pspin < 0.001), also indicating DMN, 
FPN and CO network connections (Fig. 5). Feature weights of externalising factors were 
likewise highly correlated with the externalising summary score (ρ = 0.85, pspin < 0.001), 
mainly differing in the involvement of DMN connections in factor score predictions. 
Internalising factor and summary score feature weights showed the lowest, albeit still high 
similarity (ρ = 0.50, pspin < 0.001), mostly differing in the increased importance of DMN and 
cingulo-opercular connectivity in factor score prediction.  

The high similarity between corresponding factors was likely driven by the high associations 
between the factor and summary score phenotypes themselves (Fig. 6A; see 
Supplementary Fig. 10 for correlations between all individual factor scores and 
Supplementary Fig. 11 for average correlations between individual factors and all summary 
scores). The total problems score showed an almost perfect correlation with most P-factors 
(ρmean = 0.94, ρ = 0.88 - 0.97). Externalising and internalising factors showed lower, albeit 
still high, correlations with the externalising (ρmean = 0.62; ρ = 0.49 - 0.69) and internalising 
(ρmean = 0.71; ρ = 0.57 - 0.75) summary scores, respectively. 

 

 

Figure 6. Correlation between informative features of the CBCL summary and factor scores. 
The left panel displays Spearman correlations between Haufe-transformed feature importance 
weights, while the right panel displays correlations between the actual phenotypic summary and factor 
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scores used for prediction. Panel (A) shows the full matrix of between and within correlations. For any 
correlation involving the factor scores, the median across all correlations is displayed. Highlighted 
sections refer to correlations along the “theoretical diagonal”, i.e., between corresponding constructs 
(e.g., total summary and mean of P-factor weights). Significance p-values obtained using spin 
permutations. Panel (B) visualises the pattern of similarity (also shown as correlations in A) between 
general, externalising, and internalising constructs for summary (top) and factor (bottom) scores using 
a 2-D embedding computed from a distance matrix of correlations. Line thickness refers to correlation 
strength. Abbreviations: Extern: externalising; Intern: internalising; Prob: problems 

 

Finally, we investigate the similarity within factor score and within summary score predictions 
to directly assess the across construct overlap (Fig. 6A). Standard CBCL summary scores 
were highly intercorrelated on the phenotypic or behavioural level (ρ = 0.83 - 0.53) as well as 
on feature weight level, outside of internalising and externalising summary scores which 
showed a weak relationship (ρ = 0.28). In contrast, factor scores generally showed low 
correlations (ρ = -0.30 - 0.44), likely due to the orthogonalization of specific, externalising 
and internalising symptom factors. Conversely, the most predictive features of factor scores 
showed negative correlations between the maps of their predictive weights, indicating high 
dissimilarity. To examine the pattern of similarity among factor and summary scores, we 
calculated a two-dimensional embedding of their similarity (Fig. 6B). These plots recapitulate 
our results, indicating that summary score feature weights have higher similarity than factor 
score feature weights. Overall, these results suggest that orthogonalization of specific 
psychopathology dimensions may offer novel insights into neural correlates.  

 

Discussion 
In this study, we investigated whether latent variable approaches to modelling 
psychopathology, specifically bifactor-derived factor scores for CBCL, confer measurable 
advantages for brain-psychopathology association studies. Guided by the premise that 
bifactor models may strengthen or clarify brain-psychopathology associations by improving 
reliability and measurement precision, we compared bifactor-derived factor scores to simple 
CBCL summary scores. We found no consistent advantage of factor scores for the 
magnitude of brain-behaviour prediction. On average, both test-retest reliability and 
prediction accuracy were comparable between factor and summary scores from 
corresponding constructs (e.g., externalising factors vs. externalising summary score) and 
generally low. Feature weights from whole-brain predictive models of transdiagnostic 
psychopathology were broadly distributed across the connectome and consistent with prior 
theories emphasising higher-order networks (default mode, frontoparietal, and cingulo-
opercular networks). However, these were likewise highly similar between factor scores and 
summary scores from corresponding constructs, with P-factors and total problems summary 
scores approaching numerical identity on both the feature and phenotypic level. One 
potential advantage of bifactor models over summary scores was that the pattern of neural 
correlates across constructs (e.g., p-factor vs. externalising vs. internalising) was more 
separable (i.e., less correlated), likely due to orthogonalization of general and specific 
factors. This suggests factor scores may provide novel insights (analogous to improved 
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discriminant validity) into neural correlates, without substantial loss to prediction, though 
further work is necessary to adjudicate whether these insights are valid.  

The overarching results from this study challenge the assumption that factor analytic scores 
will inherently yield superior neurobiological insights, relative to simple summary scores. 
Prior work has proposed that hierarchical latent variable approaches like bifactor modelling 
can enhance reliability, interpretability and the robustness of brain-behaviour associations by 
reducing measurement error and emphasising shared variance across symptoms, 
respectively (Tiego et al., 2023; Zald & Lahey, 2017). While the theory behind this is clear 
and may show practical gains in other contexts, the empirical pattern observed here 
suggests that bifactor models do not lead to systematically stronger predictions relative to 
simple summary scores. Rather, the small proportion of behavioural variance that can be 
explained by neuroimaging-derived brain features shown here and in the literature (J. Chen 
et al., 2022; Marek et al., 2022; Ooi et al., 2022; Heckner et al., 2023) may impose a ceiling 
on predictive accuracy irrespective of the scoring approach. In other words, psychometric 
refinements alone may not be sufficient to overcome fundamental constraints of effect size in 
large-scale brain-behaviour studies. Instead, a richer assessment of symptoms, 
environmental exposures, and developmental context (analogous to improving construct 
validity) may be necessary before reparametrizing existing symptom inventories. 

Our results indicate that greater reliability (test-retest, internal consistency and factor 
determinacy) for P-factors did not improve the strength of brain–behaviour associations 
compared to specific factors (e.g., externalising, internalising) with lower reliability. While 
these results suggest that general psychopathology symptoms are only weakly associated 
with brain structure and function, they also illustrate a fundamental distinction between 
reliability and construct validity: reliability is necessary but not sufficient for strong 
associations with external variables (Cronbach & Meehl, 1955). Psychopathology measures 
must index variance that is relevant to brain imaging (the external criterion), and increasing 
reliability does not necessarily increase this relevant variance. A similar principle can be 
illustrated for internal consistency reliability (for example, factor determinacy, FD), which 
quantifies how precisely latent factors are measured by their indicators relative to error 
(Grice, 2001). While general factors consistently demonstrated higher FD than specific 
factors, precision in estimating a latent construct did not guarantee better alignment with 
biologically meaningful variance. Nevertheless, reliability remains an important consideration 
for brain imaging of psychopathology – even if not sufficient, it is still necessary. For 
example, model solutions with higher reliability have better predictive performance than 
those with lower reliability for a given construct (e.g., across all P-factors), even if that does 
not generalise across constructs (i.e. P-factors vs. externalising factors). 
 
The comparison of neural correlates of transdiagnostic psychopathology between summary 
and factor scores resulted in both overlapping and distinct network features underlying 
predictions. Most corresponding factor and summary scores shared largely overlapping 
neural correlates, which aligns with prior evidence for broad transdiagnostic connectivity 
patterns across youth psychopathology (Menon, 2011). Connectivity within and between the 
DMN, FPN and CO networks observed here has been consistently linked to mental health 
problems across samples (Lee et al., 2018; Xia et al., 2018; Sripada et al., 2021; Dhamala et 
al., 2023). Mirroring our findings, Qu et al. (2023) demonstrated that both internalising and 
externalising behaviours were predicted by DMN-FPN coupling, with externalising also 
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supported by sensorimotor and FPN connectivity. Interestingly, the DMN-FPN interaction 
was informative for the prediction of the externalising and internalising summary scores, but 
not the factor scores. This divergence from the summary score findings is not surprising 
given the orthogonalization of shared symptom variance from specific factors on the 
phenotypic level in the bifactor models. Indeed, the importance of the pattern of DMN-FPN 
connectivity for prediction survived in all three summary score predictions. However, across 
factor score predictions, it was only observed for P-factors that also showed nearly identical 
feature weights and phenotypic scores (see Fried et al., (2021) for analogous findings about 
score similarity) with the total problems summary score. Instead, internalising factors were 
more reliant on DMN-CO connectivity, echoing work showing the importance of the salience 
network and limbic regions in internalising symptoms (Menon, 2011; Cash et al., 2021; 
Pawlak et al., 2022). Furthermore, these results underlie the potential benefits resulting from 
higher separability in feature weights and behavioural data observed for factor scores 
compared to summary scores. However, it is also important to stress that while general and 
unique neural correlates may be informative, there is currently no ground truth to which they 
can be compared. Together, these findings suggest that while many constructs derived from 
the CBCL map onto a general, transdiagnostic network architecture, examining latent factors 
of specific symptom domains may reveal meaningful deviations in network topology. 
 
Several limitations should be considered when interpreting these findings. First, all 
psychopathology measures were derived from parent-reported CBCL data, which may 
differentially capture externalising versus internalising behaviours. Externalising symptoms 
such as aggression or impulsivity are more readily observable, potentially inflating their 
predictive associations with neural features compared with less overt internalising symptoms 
(De Los Reyes & Kazdin, 2005; Rescorla et al., 2013). Second, our focus was on comparing 
factor and summary scores in their psychometric utility and association with brain imaging. 
Therefore, our findings of limited practical gains from bifactor models are specific to brain-
behaviour associations. It remains possible that bifactor-derived factor scores could offer 
advantages over summary scores in other studies of criterion validity, such as predicting 
clinical outcomes or cognitive performance. Alternatively, the lack of differential effects 
observed here may be driven by characteristics of the adolescent sample with relatively low 
base rates and limited severity of psychiatric symptoms. Such restricted individual variability 
may attenuate the ability to detect differences in brain-psychopathology associations 
between scoring approaches (Pavlovich et al., 2025). By extension, it remains plausible that 
stronger associations and more distinct patterns in neural correlates could emerge in 
contexts where psychopathology is more severe or prevalent, such as later developmental 
periods or in symptom-enriched cohorts (Kang et al., 2024; Gell et al., 2025). 
 
Together, these findings suggest that bifactor models of psychopathology offer limited added 
utility for explaining individual differences in brain structure and function beyond simple 
symptom summary scores. While latent modelling may improve psychometric precision and 
provide novel insights into neural correlates, its benefits for neuroimaging applications 
appear constrained by inherently small effect sizes and are unlikely, on their own, to 
substantially improve neuroimaging-based prediction of mental health. Improving phenotypic 
assessment depth, before exploring alternative phenotypic modelling, may provide more 
tangible improvements moving forward.  
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