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A B S T R A C T

Dentate nucleus (DN) degeneration is a key neuropathological feature in Friedreich’s ataxia (FRDA), and its 
accurate quantification is critical for understanding disease progression. However, its visualization and volu
metry require iron-sensitive imaging techniques and time-consuming segmentation procedures, posing chal
lenges for conventional ML approaches due to small datasets typical of rare diseases. We present a transfer 
learning–based machine learning pipeline for automated DN segmentation that directly uses standard T2*- 
weighted Magnetic Resonance Imaging (MRI), which highlights the DN without additional processing, and is 
designed to perform robustly with limited annotated data. Using 38 manually labeled subjects (18 FRDA, 20 
controls), the model was validated via five-fold cross-validation and an independent hold-out test set, achieving 
Dice scores of 0.81–0.87 and outperforming classical atlas-based methods. Pretraining improved performance by 
~10% in patients and >5% in controls. Applied to 181 longitudinal scans from 33 FRDA patients and 33 controls, 
the model revealed significantly reduced DN volumes in FRDA, with reductions correlating with disease duration 
and clinical severity over time. Our approach provides a scalable and reproducible segmentation framework, 
requiring minimal annotated data and no preprocessing, while demonstrating robust performance across cross- 
validation and independent testing. Additionally, it enables the first longitudinal volumetric analysis of DN in 
FRDA using standard T2*-weighted MRI, demonstrating its practical utility for monitoring neurodegenerative 
changes. Overall, this work illustrates how transfer learning can overcome data scarcity in rare diseases and 
provides a robust methodology for automated MRI segmentation in both research and clinical applications.

1. Introduction

Friedreich’s ataxia (FRDA) is a rare neurodegenerative disorder 
caused by mutations in the FXN gene that lead to reduced levels of the 
mitochondrial protein frataxin (Campuzano et al. 1996). This deficiency 
results in progressive loss of coordination, muscle weakness, and other 
non-neurological complications, including cardiomyopathy. As the 

disease progresses, it causes substantial disability, often necessitating 
mobility aids in young adulthood. Degeneration of the dentate nuclei 
(DN) plays a key role in the development of the primary clinical 
symptom ataxia in patients with FRDA, alongside degeneration of the 
spinal cord, peripheral nerves, and other specific brain regions (Dogan 
et al., 2019; Koeppen et al., 2007).

The DN, located within the cerebellum, are iron-rich regions and 
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particularly susceptible to FRDA (Koeppen et al., 2007). Histopatho
logical studies have demonstrated significant atrophy of large gluta
matergic neurons, gliosis, and iron redistribution within the DN 
(Koeppen & Mazurkiewicz, 2013). Consequently, volumetric analysis of 
DN is crucial to understand the progression of FRDA. In vivo imaging of 
DN, however, is not common in routine magnetic resonance imaging 
(MRI) and requires sequences that are sensitive to tissue magnetic sus
ceptibility due to its high iron content. T2*-weighted imaging exploits 
iron-induced local field inhomogeneities and provides a better contrast 
for delineating the DN, allowing visualization of its boundaries and 
microstructural changes that are obscured on T1- or T2-weighted MRI 
(Fig. 1). Beyond conventional T2*-weighted imaging, other advanced 
iron sensitive techniques, such as susceptibility-weighted imaging (SWI) 
and quantitative susceptibility mapping (QSM), can further enhance DN 
assessment and have been used in different neurodegenerative diseases, 
including FRDA (Deistung et al., 2016; Ravanfar et al., 2021). SWI 
provides valuable information on the iron distribution within tissues by 
combining magnitude and phase information of T2*-weighted images 
(Haacke et al., 2004). QSM additionally allows improved anatomical 
delineation and in vivo quantification of iron concentration. Despite its 
advantages, QSM requires extensive post-processing steps to obtain the 
final susceptibility maps, which can be used to perform segmentations 
(Liu et al., 2015). T2*-weighted imaging, on the other hand, is an easily 
accessible technique and widely implemented in clinical and research 
protocols. It enables sufficient and effective detection of pathological 
changes in iron-rich regions without requiring advanced processing 
steps as involved in SWI and QSM. Importantly, T2*-weighted imaging is 
a well-validated and widely used technique in clinical practice that can 
be fairly easily optimized for acquisition-related variations and mag
netic field inhomogeneities (Chavhan et al., 2009).

Manual segmentation of DN remains the gold standard for accurate 
delineation. However, this approach is highly time-intensive and sus
ceptible to inter-observer variability and biases, limiting its scalability 
and reproducibility. Atlas-based methods have been widely used as an 
efficient alternative (Diedrichsen et al., 2009, 2011; He et al., 2017). 
However, single-atlas approaches are unable to capture the considerable 
inter-subject variability in brain anatomy, often leading to reduced ac
curacy (Doan et al., 2010).

In recent years, machine learning (ML)–based methods have been 
increasingly applied to medical image segmentation, providing auto
mated alternatives to labor-intensive manual procedures and often 
outperforming traditional atlas-based approaches (Gibbons et al., 2023). 
Foundational ML models for medical image segmentation have been 
developed to handle a wide range of modalities and tasks (B. Azad et al., 
2023; Ma et al., 2024), with convolutional neural networks demon
strating particular promise due to their ability to capture complex 
spatial patterns. In this context, the U-Net architecture has emerged as a 
highly effective solution for medical image segmentation (Ronneberger 
et al., 2015). Given the inherently three-dimensional nature of brain 
MRI data, leveraging a 3D U-Net (Çiçek et al., 2016) enhances seg
mentation accuracy by capturing spatial relationships across volumetric 

datasets, improving both efficiency and reliability for DN segmentation. 
Nevertheless, ML-based segmentation methods face challenges (Bottou, 
2014; Burkart & Huber, 2021; Kotsiantis et al., 2006), among which the 
most significant ones are the scarcity of ground-truth values and insuf
ficient training data (Brodley et al., 2012). This challenge is especially 
critical in rare diseases such as FRDA, where manual annotation is 
prohibitively time-consuming and data availability is low. Transfer 
learning has been proposed as a powerful strategy to mitigate data 
scarcity by pretraining models on large datasets from related domains 
and fine-tuning them on smaller, disease-specific datasets. This tech
nique has demonstrated significant potential in different scientific and 
engineering applications including medical imaging (Kim et al., 2022; 
Shafighfard et al., 2025). For example, Alshardan et al. successfully 
applied transfer learning for semantic segmentation of brain tumor tis
sues using MRI, demonstrating its effectiveness in studies with limited 
sample sizes (Alshardan et al., 2024).

Despite these advances, the application of ML techniques to the DN 
remains limited, and studies in the context of FRDA are particularly 
scarce. Recent approaches include Beliveau et al. (Beliveau et al., 2021), 
who utilized SWI, while Chai et al. (Chai et al., 2022) and Shiraishi et al. 
(Shiraishi et al., 2025) implemented QSM to segment iron-rich DN 
automatically. Bermudez Noguera et al. (Bermudez Noguera et al., 
2019) further explored ML-based DN segmentation across multiple MRI 
modalities, including T1-, T2-, and diffusion-weighted imaging, high
lighting the potential of multimodal approaches. However, most existing 
studies rely on specialized imaging or large datasets, limiting their 
applicability to rare diseases with scarce annotated data.

In this study, we make two key contributions. First, we present a 
transfer learning–based segmentation framework that enables accurate 
DN delineation using a small number of commonly acquired T2*- 
weighted MRI scans, a clinically accessible modality that provides 
inherent DN contrast without requiring additional preprocessing. This 
strategy mitigates the need for large annotated datasets while main
taining robust segmentation performance. Second, we apply this 
framework to a clinical cohort of FRDA patients and controls, providing 
both cross-sectional and longitudinal analyses of DN volumes over up to 
four years of follow-up. To our knowledge, this is the first study to 
demonstrate longitudinal DN volumetry in FRDA using T2*-weighted 
MRI, thereby providing a robust and scalable method for automated 
DN analysis in rare neurodegenerative disorders.

2. Methods

2.1. MRI data acquisition

33 individuals with genetically confirmed FRDA and 33 age- and sex- 
matched healthy controls were included in this study. Patients were 
enrolled as part of their annual visits for the European Friedreich’s 
Ataxia Consortium for Translational Studies (EFACTS) (Dogan et al., 
2019; Reetz et al., 2015, 2016, 2021) at the University Hospital RWTH 
Aachen. They were asked to participate in an MRI sub-study, which was 

Fig. 1. Processed MR image slices of a Friedreich’s ataxia patient in different modalities: (A) Raw T2*-weighted MRI slice, (B) processed T1-weighted MRI slice, and 
(C) processed T2*-weighted MRI slice. These images highlight the structural differences captured by each modality, which are relevant for dentate nuclei 
segmentation.
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approved by the local ethics committee (EK057/10, EK083/15). Lon
gitudinal data were available for 25 patients and 19 controls, each with 
at least one follow-up visit, yielding a total of 181 MRI datasets over four 
years (Table 1).

MRI data were acquired using a 3T PRISMA whole-body MR scanner 
(Siemens Healthineers, Erlangen, Germany) with a 64-channel head–
neck receiver coil. T2*-weighted images were obtained using a 3D multi- 
echo FLASH sequence with the following parameters: TR = 30 ms, 11 
echoes ranging from TE = 2.16 to TE = 23.7 ms, resolution 1 × 1 × 2 
mm3. Only images from the last echo were employed for manual seg
mentations to enhance the detection of the dentate nuclei. High- 
resolution T1-weighted MR images were acquired using a 
magnetization-prepared rapid gradient echo sequence with the 
following parameters: TR = 2400 ms, TE = 2.36 ms, TI = 1000 ms, flip 
angle 8 degrees, 208 sagittal slices, resolution 0.8 × 0.8 × 0.8 mm3.

2.2. Data preprocessing and manual annotation

Due to the different voxel resolutions of T2*-weighted and T1- 
weighted images, we first resampled and registered both image mo
dalities to achieve the same isotropic resolution of 0.8 mm in all di
rections. Fig. 1 shows one slice from the original T2*-weighted image 
and the processed T1-weighted and T2*-weighted images.

T1-weighted images were utilized for two main objectives: isolating 
the cerebellum region to obtain a final volume of interest and imple
menting a pretraining task. To obtain the volume of interest, i.e., the 
cerebellum, we performed whole-brain segmentation for all 181 MRI 
datasets using the fully automated Fastsurfer (v 2.3.3) (Henschel et al., 
2020) deep learning-based neuroimaging pipeline, which utilizes only 
T1-weighted images. Once the binarized cerebellum volume masks were 
extracted, we cropped smaller volumes of size 192 × 192 × 192 voxels 
from the original MRI T2*-weighted image data. Supplementary 
Figure S1 illustrates the full workflow of the data preprocessing step. 
These cropped T2*-weighted volumes were used throughout the study to 
train the ML models. For pretraining, we selected cerebellum 
white-matter (WM) classes (class labels 7 and 46 for left and right 
cerebellar WM, respectively) from the whole-brain segmentation. 
Additionally, the estimated total intracranial volume (eTIV) was derived 
from Fastsurfer to account for individual variability in brain size in 
subsequent statistical analyses.

After these preprocessing steps, we normalized T2*-weighted images 

to T1-weighted images and manually annotated the DN using T2*- 
weighted images acquired at the longest echo time. The extended echo 
time in T2*-weighted images significantly enhanced image contrast in 
the DN region due to their elevated iron concentration. The labeling 
procedure was performed blinded to participant group and carried out 
using ITK-SNAP (v 3.6.0) in all three planes (axial, sagittal, coronal) by 
careful tracing and scrutiny of the signal intensity in and along the DN 
surface region. This rigorous classification procedure ultimately ensured 
estimation of DN volumes in each hemisphere as precisely as possible 
and as a complete macroscopic structure visible on MRI, i.e., the cortical 
gray matter ribbon together with the enclosed white matter. Due to the 
limited resolution of MRI, it is not possible to reliably isolate the thin 
gray matter ribbon of the DN that is typically defined in microscopic 
histological descriptions. Supplementary Figure S2 illustrates the 
manual annotation of DN volumes on T2*-weighted data.

2.3. Semantic segmentation

2.3.1. Machine learning architecture
Given that MRI data are volumetric, leveraging spatial information is 

important. Therefore, we employed a 3D convolutional neural network 
for our study. Specifically, we implemented a 3D U-Net (Çiçek et al., 
2016) and modified it with various kernel sizes, residual connections 
(Lee et al., 2014), and different numbers of encoding blocks as hyper
parameters. Additionally, we incorporated three significant modifica
tions to enhance the network’s performance: 

1. A self-attention module (Oktay et al., 2018) was added between the 
encoder and decoder layers to help the network focus on important 
regions, such as DN.

2. A bi-directional ConvLSTM (R. Azad et al., 2019) layer was included 
in the skip connections to capture more discriminatory information, 
thereby improving segmentation precision.

3. A deep supervision strategy (Lee et al., 2014) was implemented to 
optimize learning at multiple scales.

Supplementary Figure S3-A illustrates the modified U-Net architec
ture used in this study. To assess the impact of each architectural 
modification, we conducted an ablation study comparing the baseline 
network (without modifications) against variants incorporating indi
vidual modifications, combinations of these modifications, and the full 
proposed architecture integrating all modifications.

2.3.2. Pretraining procedure
To address the challenge of limited annotated brain volumes, we 

pretrained our ML model using paired data prepared with Fastsurfer. 
The training data consisted of all 181 cropped T2*-weighted images, 
with automatic segmentation calculated using Fastsurfer serving as the 
"ground truth". This model was optimized to segment WM class labels 
from the cerebellum (Figure S3-B – Step 1). Theoretically, the model can 
be optimized for any task before being used for the final downstream 
task. We chose cerebellar WM as the pretraining label because the DN, 
although a gray matter structure, is embedded within this region and is 
captured by the FastSurfer segmentation output. Pretraining on WM 
allows the network to learn contextual features surrounding the DN, 
improving subsequent DN segmentation. Once our models performed 
optimally for the WM segmentation task, we used these model weights 
with the same architecture to train the model for segmenting DN in the 
second step (Figure S3, (B) – Step 2).

2.3.3. Training procedure
All ML models were implemented using PyTorch (v 2.3.0) framework 

and trained on one H100 GPU. To achieve the final segmentation, we 
trained three separate models for sagittal, axial, and coronal views. 
Unlike simple augmentation (e.g., flipping), each orientation empha
sizes distinct structural relationships and provides unique receptive field 

Table 1 
Characteristics of the study groups at baseline and data availability.

FRDA patients (n =
33)

Controls (n =
33)

p

Sex (female/male) 17/16 21/12 0.319
Age (years) 34.2 ± 11.8 32.2 ± 11.8 0.488
Age of onset (years) 16.3 ± 7.0 - ​
Disease duration (years) 18.3 ± 9.0 - ​
GAA repeats* allele 

1
520.3 ± 192.8 - ​

allele 
2

842.1 ± 171.5 - ​

SARA total score 19.2 ± 8.7 - ​
ADL total score 13.3 ± 6.5 - ​

​ ​ ​
Follow-up 

scans,
1 year 23; 1.02 ± 0.14 17; 1.08 ± 0.15 0.176

time (years) 2 years 20; 1.96 ± 0.18 12; 2.23 ± 0.23 <0.001
3 years 14; 3.05 ± 0.15 11; 3.08 ± 0.22 0.658
4 years 11; 4.02 ± 0.12 7; 4.41 ± 0.14 <0.001

total number 101; 1.48 ± 1.37 80; 1.37 ± 1.47 ​

Data are presented as mean ± standard deviation; n, number of participants; p, 
p-value (statistical significance was set at p < 0.05); FRDA, Friedreich’s ataxia; 
SARA, Scale for the Assessment and Rating of Ataxia; ADL, Activities of Daily 
Living. *GAA repeat length missing in one patient, point mutation in another 
patient.
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alignment. By combining their predictions through weighted averaging, 
we reduced orientation-specific biases and achieved more robust seg
mentations. To optimize each model, images were cropped into smaller 
patches (128 × 128 × 128) with a 64-pixel stride using a sliding window 
technique. Training was conducted on these 3D image patch volumes. 
Inspired by Milletari et al. (Milletari et al., 2016), we used a squared 
Dice loss layer with a smoothness value to avoid division by zero in all 
three ML models.

Hyperparameters, including the initial learning rate, size, optimizer 
configuration, and loss function, were guided by prior work on U-Net 
architectures in medical image segmentation (Çiçek et al., 2016; Mil
letari et al., 2016) and initially tuned on a small pilot subset of the data 
to identify stable ranges and ensure convergence. The batch size was 
chosen based on computational capacity. The final settings (see 
Table S2) were then fixed and applied consistently across all models and 
folds to prevent overfitting to the main dataset. The learning rate was 
reduced by a factor of 10 if no improvement in loss was observed for ten 
consecutive epochs. Once each model was optimized for its respective 
view, the predictions from each model were combined using a weighted 
average. We assigned weights of 0.2, 0.6, and 0.2 to the sagittal, coronal, 
and axial views, respectively. These weights were determined by testing 
various combinations for maximum performance. Supplementary 
Table S2 summarizes the detailed training parameters for all models.

2.3.4. Validation strategy
From a total of 181 MRI datasets, for the selected 38 datasets (18 

FRDA, 20 controls) acquired with the longest echo time, we adopted a 
two-tier validation approach to ensure both internal robustness and 
external generalizability. First, we set aside an independent hold-out test 
set consisting of 4 (2 FRDA, 2 controls) manually annotated MRI scans 
(≈10 % of the data), which was reserved exclusively for final perfor
mance assessment and was not used at any stage of model development, 
training, or tuning. The remaining 34 scans (16 FRDA, 18 controls) were 
used for training and internal validation. To evaluate model stability 
within this cohort, we performed five-fold cross-validation. In each fold, 
approximately 80 % of the scans were used for training and 20 % for 
validation, with subjects partitioned to ensure non-overlapping data 
across folds. This procedure ensured that every subject contributed to 
validation exactly once, reducing bias from data reuse.

Performance metrics were averaged across folds and reported as 
mean ± standard deviation in supplementary materials (see Table S3), 
providing an estimate of model stability and variance across subsets. The 
independent test set was used exclusively for final performance assess
ment. This design ensured that the reported test results reflected true 
generalization to unseen data, while the cross-validation analysis pro
vided additional evidence of robustness and stability despite the small 
sample size.

2.3.5. Atlas-based segmentation
To compare our ML-based segmentation results with the commonly 

used method, we implemented an atlas-based DN segmentation 
approach using the probabilistic cerebellar atlas of Diedrichsen et al. 
(Diedrichsen et al., 2009). The atlas, defined in MNI space with 1 × 1 × 1 
mm³ voxel resolution, was first conformed to ensure consistency in di
mensions and resolution. Non-linear registration to each subject’s 
T2*-weighted MRI data was performed using the symmetric normali
zation algorithm implemented in Advanced Normalization toolbox 
(antspyx v0.4.2), after which the DN labels were propagated to the in
dividual subject space. While the atlas-based segmentation method may 
not be the most accurate, it provides a conventional anatomical refer
ence against which the performance of the machine learning models can 
be compared.

2.4. Metrics

In this study, ground truth data (manually annotated) were available 

for 38 brain volumes, allowing us to calculate absolute error metrics to 
evaluate the performance of our segmentation models. We used the Dice 
score (DS) (Milletari et al., 2016), which measures the similarity be
tween two sets of (pixel or voxel) data, in this case, the segmented DN 
and ground truth DN datasets. Its value ranges from 0 to 1, with 1 
indicating perfect overlap between the two datasets. The Dice score 
accounts for imbalanced datasets, as in our case, where the number of 
dentate nuclei region voxels is much less than the other class, which is 
the background. We calculated the Dice score by 

DS =
2 TP

2 TP + FN + FP
.

where TP is the number of true positive voxels, FN is the number of false 
negative voxels, TN is the number of true negatives, and FP is the 
number of false positive voxels.

2.5. Statistical group analysis

The ML-based segmentation method was applied to all 181 available 
datasets to derive volumes of segmented DN at baseline and follow-up 
visits over four years. Cross-sectional group differences were assessed 
using two-sample t-tests and Cohen’s d as an effect size measure 
(Montgomery et al., 2021). Associations of DN volumes with disease 
duration, age of onset, GAA repeat length, and clinical severity at 
baseline were tested with Spearman’s rho. The Scale for the Assessment 
and Rating of Ataxia (Schmitz-Hübsch et al., 2006) (SARA; 40-point 
scale) was used to measure ataxia severity, and Activities of Daily 
Living (Subramony et al., 2005) (ADL; 36-point scale) for functional 
impairment, with higher scores indicating greater clinical impairment. 
Longitudinal changes in DN volumes were analyzed using linear mixed 
effect modelling (restricted-maximum-likelihood estimation method) 
with random effects on slope (i.e., time in years) by including baseline 
DN volumes and time as fixed main effects, and interaction terms be
tween group and time. Associations over time between clinical impair
ment and DN volumes were tested in separate models using clinical 
measures as predictors. DN volumes were corrected for eTIV in all an
alyses (expressed as percentage of the estimated total intracranial vol
ume, %eTIV). Statistical analyses were performed in SPSS (v29.0.1.1), 
and the threshold for significance was set at p ≤ 0.05 (two-sided).

3. Results

3.1. Automatic segmentation using ML

To evaluate the impact of our transfer learning approach, two seg
mentation pipelines were trained on manually annotated data: one with 
pretraining and one without. Without pretraining, the average Dice 
score for whole DN segmentation was 0.76 ± 0.01 in FRDA patients and 
0.81 ± 0.02 in controls. The pretrained model was then used to segment 
DN volumes across the full dataset, yielding consistently high Dice 
scores and demonstrating strong agreement between predicted and 
manual segmentations. Pretraining improved performance, increasing 
Dice scores to 0.83 ± 0.02 in FRDA patients (10 % increase) and to 0.85 
± 0.01 in controls (5 % increase; Table 2). Slightly higher Dice scores 
were observed for the left DN compared to the right DN in both FRDA 
patients and controls. However, these differences were not statistically 
significant (p = 0.56 for patients; p = 0.13 for controls) and are more 
likely attributable to minor annotation or image variability than to a 
true lateralization effect. Additionally, we calculated segmentations of 
the test dataset using the base ML-based method without any architec
tural modifications and atlas-based (Diedrichsen et al., 2009) method 
and compared the Dice scores to our ML-based segmentation method 
with proposed modifications in Table 2. Overall, our ML-based method 
consistently outperformed the base ML-based model and the classical 
atlas-based segmentation approach. Specifically, architectural 
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modifications improved performance, increasing Dice scores by 6.4 % in 
FRDA patients and 2.4 % in controls (Table 2). A detailed ablation 
analysis, including results for the baseline model, individual and com
bined modifications, as well as the fully modified architecture, is pro
vided in Supplementary Table S1. Additionally, ML-based segmentation 
achieved Dice scores that were 2–3 times higher than those of the 
atlas-based method, which ranged from 0.20 to 0.38 (Table 2). Repre
sentative segmentation results are shown in Fig. 2, highlighting the ac
curate delineation of the dentate nuclei from T2*-weighted MR images 
by the ML-based segmentation model.

3.2. Group analysis and clinical correlations

To determine volumetric differences in the DN between FRDA pa
tients and controls, DN volumes were segmented from 181 brain MRI 
datasets using the above-described ML method. Cross-sectionally, DN 
volumes were significantly smaller in FRDA patients compared to con
trols at baseline (mean ± SD: 1062 ± 290 mm³ vs. 1261 ± 275 mm³ 
adjusted for eTIV, p = 0.006) and each follow-up visit, with medium to 
large effect sizes observed at each time point (Cohen’s d = 0.704 to 1.39, 
Fig. 3A). Longitudinal analysis based on linear mixed effect modelling 
did not show significant changes in DN volumes over time or group-by- 
time interactions.

At baseline, we did not find significant associations between DN 
volumes and measures of disease severity in FRDA patients; however, 
baseline DN volumes were correlated with changes in ADL scores after 
four years (r = 0.668, p = 0.025). Longitudinally, decreases in right DN 

volume were significantly associated with longer disease duration (es
timate [SE]: − 1.57 [0.76] mm3, p = 0.041), indicating an average vol
ume loss of about 1.5 mm3 per year of disease duration (Fig. 3B). 
Similarly, worsening in SARA scores (–1.97 [0.80] mm3, p = 0.016) and 
ADL scores (–2.86 [1.07] mm3, p = 0.009) were related to a decrease of 
approx. 2 to 3 mm3 in right DN volumes, respectively (Fig. 3B).

4. Discussion

In this study, we developed an ML-based method for segmenting the 
DN using a very small T2*-weighted MR images dataset and presented 
the first longitudinal volumetric analysis of up to four years of DN 
changes in FRDA. Augmented with transfer learning, our approach 
achieved high segmentation accuracy for DN volumes in patients with 
FRDA and control participants. It produced state-of-the-art results 
competitive with advanced ML-based methods, while requiring signifi
cantly fewer annotated datasets and utilizing widely available T2*- 
weighted images. The substantial improvement over the atlas-based 
baseline segmentation method underscores the clinical and research 
utility of the proposed ML-based segmentation approach. Furthermore, 
volumetric analysis of DN revealed significantly reduced DN volumes in 
FRDA patients compared to controls, with reductions correlating with 
disease duration and progression of clinical severity over time.

To assess model stability, we performed five-fold cross-validation on 
the training/validation cohort. Cross-validation results closely matched 
independent test set performance, demonstrating strong generalization 
and robustness even with limited data. The ablation study confirmed 
that the proposed architectural modifications contributed to an average 
Dice score improvement of ~5 %. Each individual modification 
enhanced segmentation performance compared to the base model, with 
the full proposed architecture achieving the highest Dice scores. These 
results confirm that each component meaningfully contributes to the 
overall accuracy and robustness of the model. Overall, the model ach
ieved Dice scores of 0.83 in FRDA patients and 0.85 in controls, which 
are comparable to or exceed those reported in prior work. For example, 
Chai et al. (Chai et al., 2022) reported a Dice score of 0.795 for whole DN 
segmentation using 88 subjects, while Shiraishi et al. (Shiraishi et al., 
2025) achieved 0.897 (FRDA) and 0.891 (controls) with 355 subjects 
and QSM data. Beliveau et al. (Beliveau et al., 2021), using SWI and a 
similarly small dataset (50 controls), reported lower Dice scores of 0.77 
and 0.78 for the left and right DN, respectively.

Our results align closely with those of Shiraishi et al. (Shiraishi et al., 
2025), who used QSM but with nearly ten times more datasets. While 
QSM imaging provides higher visibility of DN regions, it requires addi
tional post-processing steps. In contrast, T2*-weighted imaging offers 
broader clinical feasibility and more straightforward implementation, 
making it a practical choice for routine clinical use. In our segmentation 

Table 2 
Dice scores of DN segmentation using our ML-based method, ML-based method 
without architectural modifications, and atlas-based method for comparison.

Whole 
DN

Left DN Right 
DN

ML-based method (with 
proposed modifications)

FRDA 0.83 ±
0.02

0.84 ±
0.03

0.81 ±
0.01

Controls 0.85 ±
0.01

0.87 ±
0.01

0.83 ±
0.02

ML-based method (no 
modifications)

FRDA 0.78 ±
0.03

0.77 ±
0.03

0.78 ±
0.04

​ Controls 0.83 ±
0.02

0.84 ±
0.01

0.82 ±
0.02

Atlas-based method FRDA 0.22 ±
0.12

0.23 ±
0.10

0.21 ±
0.15

Controls 0.35 ±
0.05

0.38 ±
0.07

0.33 ±
0.08

Dice scores for the DN segmentation reflect the model’s accuracy in segmenting 
each region from T2*-weighted MRI data for both healthy controls and FRDA 
patients. Higher Dice score is better. ML, Machine learning; FRDA, Friedreich’s 
ataxia; DN, Dentate nucleus.

Fig. 2. (A) Original T2*-weighted MRI slice. (B) Segmentation of the dentate nuclei using manual annotation (blue), an atlas-based method (yellow) and our 
machine learning-based method (orange), illustrating the improved accuracy and delineation achieved by the proposed model.
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results, controls exhibited slightly higher Dice scores compared to FRDA 
patients for both left and right DN regions, reflecting the expected 
challenge of segmenting atrophic and structurally altered DN in FRDA. 
The ability to achieve state-of-the-art results with a small dataset, while 
maintaining high accuracy despite the structural abnormalities 
commonly associated with disease pathology, underscores the effec
tiveness of transfer learning in addressing data scarcity, a critical chal
lenge in rare diseases like FRDA. Unlike prior studies that relied on 
high-work-intensive manual segmentation or atlas-based methods 
(Harding et al., 2021), our approach offers a more accessible, faster and 
automated method using clinical-standard available T2*-weighted im
aging. Significantly improved results for our ML-based method 
compared to the classical atlas-based method underscore the advantage 
of data-driven segmentation in capturing subject-specific variability 
often missed by traditional atlas-based approaches.

Cross-sectional group comparisons revealed significant reductions in 
DN volumes in FRDA patients compared to controls, with medium to 
large effect sizes across baseline and follow-up visits. These findings are 
consistent with prior studies using QSM (Georgiou-Karistianis et al., 
2025; Harding et al., 2016, 2024; Ward et al., 2019). Importantly, to our 
knowledge, this is the first study to report longitudinal data of DN vol
ume changes over a follow-up time of four years. Although we did not 
find significant progression rates of DN atrophy with time, DN volumes 
declined with longer disease duration, ataxia severity measured by 

SARA, and functional impairment in ADL, which aligns with the slowly 
progressive nature of FRDA. A QSM study by Ward et al. (Ward et al., 
2019) investigated iron concentration and volume changes in the DN 
after two years and reported no significant longitudinal atrophy rates 
compared to controls. Longitudinal change, however, was related to 
disease duration and ataxia severity (Ward et al., 2019). These findings 
in adult individuals with FRDA, comparable to our cohort, are in good 
agreement with our ML-based results and suggest that DN atrophy, 
which is already evident at early disease stages, may eventually reach a 
plateau over time. This notion is supported by recently published 
cross-sectional data from the first global, prospective imaging study in 
FRDA (TRACK-FA), which reported relatively constant DN atrophy over 
disease stages and absence of clinical correlations (Georgiou-Karistianis 
et al., 2025). Ongoing longitudinal analysis of the younger, particularly 
pediatric, TRACK-FA cohort may help to identify critical stages of DN 
vulnerability during disease progression. In addition, it is important to 
note that recent shape analysis of the DN in FRDA indicated that 
structural changes are not spatially uniform, hence, regional measures of 
DN substructures may be more sensitive measures of disease progression 
(Harding et al., 2016). Interestingly, in our study, correlations with 
clinical measures over time were observed for right DN volumes, with 
the majority of patients (88 %) being right-handed. While this may 
indicate an increased vulnerability of the preferentially used (ipsilateral) 
motor hemisphere of the cerebellum, and possibly of right-lateralized 

Fig. 3. (A) Box plots showing the distribution of dentate nuclei (DN) volumes expressed as percentage of the estimated total intracranial volume ( %eTIV) for healthy 
controls and FRDA patients at baseline and follow-up visits over four years. P-values indicate statistical significance of between-group differences with Cohen’s d as 
an effect size estimate. (B) Scatter plots of left and right DN volumes expressed as %eTIV, plotted against disease duration in years, SARA, and ADL scores. Solid 
regression lines indicate significant associations over time for the right DN at p < 0.05 based on linear mixed-effect modelling.
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language functions, Ward et al. (Ward et al., 2019) reported an opposite 
pattern with more left-lateralized correlations. Further research is 
required to elucidate potential lateralization effects of DN structures in 
tracking disease progression in FRDA.

Despite its promising results, our study has several limitations. The 
sample size used for optimizing and validating the ML models was 
relatively small, and further validation with a larger dataset is needed to 
confirm generalizability. While T2*-weighted imaging is widely acces
sible, direct comparisons with SWI and QSM-based methods could 
enhance our approach and its applicability. Specifically, QSM provides a 
superior contrast of cerebellar nuclei, including the prominent dentate 
gyrification, and additionally enables quantification of iron levels. 
Although the latter is not possible with T2*-weighted imaging alone, 
histopathological studies reported normal total iron levels in the DN 
(Koeppen et al., 2007), questioning the relevance of DN iron concen
tration as a biomarker in FRDA. In vivo MRI studies using magnetic 
resonance relaxometry as a measure of iron content in DN have yielded 
conflicting results (Boddaert et al., 2007; Bonilha da Silva et al., 2014; 
Solbach et al., 2014; Waldvogel et al., 1999). In contrast, quantitative 
assessments using QSM indicate elevated DN iron level 
(Georgiou-Karistianis et al., 2025; Harding et al., 2016; Ward et al., 
2019), but recent evidence from voxel-level QSM studies suggests 
spatially variable or circumscribed susceptibility increases that are more 
in accordance with post-mortem findings (Deistung et al., 2022; Harding 
et al., 2024). Another disadvantage of T2*-weighted images and SWI is 
that iron-rich regions appear enlarged, known as the blooming effect 
(Haacke et al., 1995). While this effect can modestly inflate absolute DN 
volumes, its impact on relative group differences and correlations with 
clinical measures is mitigated through moderately long echo times, 
carefully annotated training data, and standardized intensity normali
zation in our ML-based segmentation. We did not implement a specific 
correction for blooming, and its magnitude remains sequence- and 
context-dependent. Therefore, absolute volumes may be slightly over
estimated, but the relative trends and associations reported here are 
unlikely to be substantially affected. Although the volumes measured in 
this study may be slightly overestimated, although they are in a similar 
range to those reported in other QSM studies (Deistung et al., 2022; 
Harding et al., 2024). Nevertheless, they will inherently vary from his
tological measures and should be seen as an estimation relative to 
control data. Finally, our longitudinal dataset contained missing data, as 
not all participants attended all five visits. To address this, we utilized 
linear mixed-effects modeling with restricted maximum likelihood 
estimation, allowing for inference even with incomplete datasets. 
Moreover, the interpretability of the deep learning models is limited, as 
we did not perform saliency or feature attribution analyses, which 
remain an important direction for future work.

Overall, this study demonstrates the feasibility and clinical relevance 
of an ML-based approach for segmenting the DN using commonly ac
quired T2*-weighted MRI, even with limited data availability. To 
address the challenge of data scarcity inherent to rare diseases such as 
Friedrich’s ataxia, we adopted a transfer learning strategy involving 
pretraining, which avoids the need for large, manually annotated 
datasets. The pretrained model successfully generalized to the task of DN 
segmentation and enabled volumetric analysis across a larger cohort. 
Our findings revealed significant DN volume reductions in FRDA pa
tients compared to healthy controls, with medium to large effect sizes. 
These volumetric changes were associated with longer disease duration 
and worsening clinical scores (SARA and ADL), highlighting the po
tential utility of DN volume as a neuroimaging marker for disease pro
gression. By leveraging clinically accessible imaging modalities and 
robust ML techniques, this approach offers a scalable and reproducible 
framework for segmentation of the DN. Further evaluation on larger and 
independent datasets is required to assess its potential for providing 
insights into neurodegenerative changes associated with FRDA.
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Synofzik, M., Giordano, I. A., Klockgether, T., Schulz, J. B., & Reetz, K. (2019). 
Structural characteristics of the central nervous system in Friedreich ataxia: An in 
vivo spinal cord and brain MRI study. Journal of Neurology, Neurosurgery & 
Psychiatry, 90(5), 615–617. https://doi.org/10.1136/jnnp-2018-318422

Georgiou-Karistianis, N., Corben, L. A., Lock, E. F., Bujalka, H., Adanyeguh, I., Corti, M., 
Deelchand, D. K., Delatycki, M. B., Dogan, I., Farmer, J., França, M. C., Jr., 
Gabay, A. S., Gaetz, W., Harding, I. H., Joers, J., Lax, M. A., Li, J., Lynch, D. R., 

Mareci, T. H., … Henry, P.-G. (2025). Neuroimaging biomarkers for Friedreich 
Ataxia: A cross-sectional analysis of the TRACK-FA study. Annals of Neurology, 98(2), 
386–397. https://doi.org/10.1002/ana.27237

Gibbons, E., Hoffmann, M., Westhuyzen, J., Hodgson, A., Chick, B., & Last, A. (2023). 
Clinical evaluation of deep learning and atlas-based auto-segmentation for critical 
organs at risk in radiation therapy. Journal of Medical Radiation Sciences, 70(S2), 
15–25. https://doi.org/10.1002/jmrs.618

Haacke, E. M., Lai, S., Yablonskiy, D. A., & Lin, W. (1995). In vivo validation of the bold 
mechanism: A review of signal changes in gradient echo functional MRI in the 
presence of flow. International Journal of Imaging Systems and Technology, 6(2–3), 
153–163. https://doi.org/10.1002/ima.1850060204

Haacke, E. M., Xu, Y., Cheng, Y.-C. N., & Reichenbach, J. R. (2004). Susceptibility 
weighted imaging (SWI). Magnetic Resonance in Medicine, 52(3), 612–618. https:// 
doi.org/10.1002/mrm.20198

Harding, I. H., Chopra, S., Arrigoni, F., Boesch, S., Brunetti, A., Cocozza, S., Corben, L. A., 
Deistung, A., Delatycki, M., Diciotti, S., Dogan, I., Evangelisti, S., França, M. C., 
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Monti, S., Saccà, F., Georgiou-Karistianis, N., Cocozza, S., & Egan, G. F (2024). 
Localized changes in dentate nucleus shape and magnetic susceptibility in Friedreich 
Ataxia. Movement Disorders, 39(7), 1109–1118. https://doi.org/10.1002/mds.29816

Harding, I. H., Raniga, P., Delatycki, M. B., Stagnitti, M. R., Corben, L. A., Storey, E., 
Georgiou-Karistianis, N., & Egan, G. F. (2016). Tissue atrophy and elevated iron 
concentration in the extrapyramidal motor system in Friedreich ataxia: The IMAGE- 
FRDA study. Journal of Neurology, Neurosurgery & Psychiatry, 87(11), 1261–1263. 
https://doi.org/10.1136/jnnp-2015-312665

He, N., Langley, J., Huddleston, D. E., Ling, H., Xu, H., Liu, C., Yan, F., & Hu, X. P. 
(2017). Improved Neuroimaging Atlas of the Dentate Nucleus. Cerebellum, 16(5–6), 
951–956. https://doi.org/10.1007/s12311-017-0872-7

Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., & Reuter, M. (2020). 
FastSurfer—A fast and accurate deep learning based neuroimaging pipeline. 
NeuroImage, 219, Article 117012. https://doi.org/10.1016/j. 
neuroimage.2020.117012

Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., & Ganslandt, T. 
(2022). Transfer learning for medical image classification: A literature review. BMC 
Medical Imaging, 22(1), 69. https://doi.org/10.1186/s12880-022-00793-7

Koeppen, A. H., & Mazurkiewicz, J. E. (2013). Friedreich ataxia: Neuropathology revised. 
Journal of Neuropathology and Experimental Neurology, 72(2), 78–90. https://doi.org/ 
10.1097/NEN.0b013e31827e5762

Koeppen, A. H., Michael, S. C., Knutson, M. D., Haile, D. J., Qian, J., Levi, S., 
Santambrogio, P., Garrick, M. D., & Lamarche, J. B. (2007). The dentate nucleus in 
Friedreich’s ataxia: The role of iron-responsive proteins. Acta Neuropathologica, 114 
(2), 163–173. https://doi.org/10.1007/s00401-007-0220-y

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of 
classification and combining techniques. Artificial Intelligence Review, 26(3), 
159–190. https://doi.org/10.1007/s10462-007-9052-3

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2014). Deeply-Supervised Nets (No. 
arXiv:1409.5185). arXiv. https://doi.org/10.48550/arXiv.1409.5185.

Liu, C., Li, W., Tong, K. A., Yeom, K. W., & Kuzminski, S. (2015). Susceptibility-weighted 
imaging and quantitative susceptibility mapping in the brain. Journal of Magnetic 
Resonance Imaging, 42(1), 23–41. https://doi.org/10.1002/jmri.24768

Ma, J., He, Y., Li, F., Han, L., You, C., & Wang, B. (2024). Segment anything in medical 
images. Nature Communications, 15(1), 654. https://doi.org/10.1038/s41467-024- 
44824-z

Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural 
Networks for Volumetric Medical Image Segmentation. In 2016 Fourth International 
Conference on 3D Vision (3DV) (pp. 565–571). https://doi.org/10.1109/ 
3DV.2016.79

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression 
analysis. John Wiley & Sons. 

Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., 
McDonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B., & Rueckert, D. (2018). 
Attention U-Net: Learning Where to Look for the Pancreas (No. arXiv:1804.03999). 
arXiv. https://doi.org/10.48550/arXiv.1804.03999.

Ravanfar, P., Loi, S. M., Syeda, W. T., Van Rheenen, T. E., Bush, A. I., Desmond, P., 
Cropley, V. L., Lane, D. J. R., Opazo, C. M., Moffat, B. A., Velakoulis, D., & 
Pantelis, C. (2021). Systematic Review: Quantitative Susceptibility Mapping (QSM) 
of Brain Iron Profile in Neurodegenerative Diseases. Frontiers in Neuroscience, 15, 
Article 618435. https://doi.org/10.3389/fnins.2021.618435

Reetz, K., Dogan, I., Costa, A. S., Dafotakis, M., Fedosov, K., Giunti, P., Parkinson, M. H., 
Sweeney, M. G., Mariotti, C., Panzeri, M., Nanetti, L., Arpa, J., Sanz-Gallego, I., 
Durr, A., Charles, P., Boesch, S., Nachbauer, W., Klopstock, T., Karin, I., … 
Schulz, J. B. (2015). Biological and clinical characteristics of the European 
Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: A cross- 
sectional analysis of baseline data. The Lancet Neurology, 14(2), 174–182. https:// 
doi.org/10.1016/S1474-4422(14)70321-7

Reetz, K., Dogan, I., Hilgers, R.-D., Giunti, P., Mariotti, C., Durr, A., Boesch, S., 
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