001     1052296
005     20260122203309.0
024 7 _ |a 10.1016/j.neuroimage.2025.121541
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00912
|2 datacite_doi
037 _ _ |a FZJ-2026-00912
082 _ _ |a 610
100 1 _ |a Li, Yuqin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a ERP-based interbrain causal model reveals closed-loop information interaction in interpersonal negotiations
260 _ _ |a Orlando, Fla.
|c 2025
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769091877_10571
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a decision-making dynamics in resource allocation. In this study, we used EEG hyperscanning alongside an iteratedultimatum game to investigate interbrain coupling and dyadic exchange behavior during negotiation. Frontalcortex event-related potentials (ERPs) revealed the distinct neural responses driven by partners’ behavioral cues:the proposer’s N200 differed significantly for fair versus unfair offers, and the responder’s feedback-relatednegativity (FRN) showed a trend toward significance for the same contrast, while the proposer’s N500 variedbetween acceptance and rejection feedback. Our analysis introduced a novel causal model based on directionalphase transfer entropy (dPTE) and time-varying ERP amplitudes, illustrating directed neural processes driven bysocial exchange, where the proposer’s brain activity initially exerts a causal impact on the responder’s, whosefeedback in turn influences the proposer, creating a closed-loop interaction that drives adaptive negotiationstrategies. Additionally, our prediction model with autoregression with exogenous input, which incorporatedthese causal links between brains, demonstrated higher accuracy than single-brain or reverse causal models,underscoring the significance of dynamic interbrain coupling in interpersonal coordination. This causal modelprovides a mechanistic explanation of how proposer-responder pairs perceive and adapt to each other’s de-cisions, facilitating shared attention and behavioral coordination in reciprocal, asymmetric negotiations. Thesefindings offer a novel theoretical framework for studying complex social behaviors through interbrain dynamicsand may inspire future applications in enhancing cooperative decision-making processes.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sarah, Genon
|0 P:(DE-Juel1)161225
|b 1
700 1 _ |a Chen, Chunli
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jiang, Lin
|b 3
700 1 _ |a Chen, Baodan
|b 4
700 1 _ |a Li, Rihui
|b 5
700 1 _ |a Liang, Zhen
|b 6
700 1 _ |a Yu, Jing
|0 0000-0003-2485-2286
|b 7
700 1 _ |a Dong, Debo
|0 P:(DE-Juel1)190904
|b 8
700 1 _ |a Wan, Fen
|0 0000-0002-9359-0737
|b 9
700 1 _ |a Becker, Benjamin
|0 0000-0002-9014-9671
|b 10
700 1 _ |a Yao, Dezhong
|b 11
700 1 _ |a Li, Fali
|b 12
700 1 _ |a Zhang, Dandan
|b 13
700 1 _ |a Xu, Peng
|0 P:(DE-Juel1)140459
|b 14
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2025.121541
|g Vol. 321, p. 121541 -
|0 PERI:(DE-600)1471418-8
|p 121541 -
|t NeuroImage
|v 321
|y 2025
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/1052296/files/Sarah%20%2B%20Debo25.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052296
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)190904
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2022
|d 2024-12-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21