| Home > Publications database > ERP-based interbrain causal model reveals closed-loop information interaction in interpersonal negotiations > print |
| 001 | 1052296 | ||
| 005 | 20260122203309.0 | ||
| 024 | 7 | _ | |a 10.1016/j.neuroimage.2025.121541 |2 doi |
| 024 | 7 | _ | |a 1053-8119 |2 ISSN |
| 024 | 7 | _ | |a 1095-9572 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00912 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00912 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Li, Yuqin |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a ERP-based interbrain causal model reveals closed-loop information interaction in interpersonal negotiations |
| 260 | _ | _ | |a Orlando, Fla. |c 2025 |b Academic Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769091877_10571 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a decision-making dynamics in resource allocation. In this study, we used EEG hyperscanning alongside an iteratedultimatum game to investigate interbrain coupling and dyadic exchange behavior during negotiation. Frontalcortex event-related potentials (ERPs) revealed the distinct neural responses driven by partners’ behavioral cues:the proposer’s N200 differed significantly for fair versus unfair offers, and the responder’s feedback-relatednegativity (FRN) showed a trend toward significance for the same contrast, while the proposer’s N500 variedbetween acceptance and rejection feedback. Our analysis introduced a novel causal model based on directionalphase transfer entropy (dPTE) and time-varying ERP amplitudes, illustrating directed neural processes driven bysocial exchange, where the proposer’s brain activity initially exerts a causal impact on the responder’s, whosefeedback in turn influences the proposer, creating a closed-loop interaction that drives adaptive negotiationstrategies. Additionally, our prediction model with autoregression with exogenous input, which incorporatedthese causal links between brains, demonstrated higher accuracy than single-brain or reverse causal models,underscoring the significance of dynamic interbrain coupling in interpersonal coordination. This causal modelprovides a mechanistic explanation of how proposer-responder pairs perceive and adapt to each other’s de-cisions, facilitating shared attention and behavioral coordination in reciprocal, asymmetric negotiations. Thesefindings offer a novel theoretical framework for studying complex social behaviors through interbrain dynamicsand may inspire future applications in enhancing cooperative decision-making processes. |
| 536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Sarah, Genon |0 P:(DE-Juel1)161225 |b 1 |
| 700 | 1 | _ | |a Chen, Chunli |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Jiang, Lin |b 3 |
| 700 | 1 | _ | |a Chen, Baodan |b 4 |
| 700 | 1 | _ | |a Li, Rihui |b 5 |
| 700 | 1 | _ | |a Liang, Zhen |b 6 |
| 700 | 1 | _ | |a Yu, Jing |0 0000-0003-2485-2286 |b 7 |
| 700 | 1 | _ | |a Dong, Debo |0 P:(DE-Juel1)190904 |b 8 |
| 700 | 1 | _ | |a Wan, Fen |0 0000-0002-9359-0737 |b 9 |
| 700 | 1 | _ | |a Becker, Benjamin |0 0000-0002-9014-9671 |b 10 |
| 700 | 1 | _ | |a Yao, Dezhong |b 11 |
| 700 | 1 | _ | |a Li, Fali |b 12 |
| 700 | 1 | _ | |a Zhang, Dandan |b 13 |
| 700 | 1 | _ | |a Xu, Peng |0 P:(DE-Juel1)140459 |b 14 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.neuroimage.2025.121541 |g Vol. 321, p. 121541 - |0 PERI:(DE-600)1471418-8 |p 121541 - |t NeuroImage |v 321 |y 2025 |x 1053-8119 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1052296/files/Sarah%20%2B%20Debo25.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1052296 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161225 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)190904 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROIMAGE : 2022 |d 2024-12-16 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:47:40Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:47:40Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-16 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-16 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROIMAGE : 2022 |d 2024-12-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|