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A B S T R A C T

Uncovering the interbrain neural mechanisms underlying interpersonal negotiation offers insight into social 
decision-making dynamics in resource allocation. In this study, we used EEG hyperscanning alongside an iterated 
ultimatum game to investigate interbrain coupling and dyadic exchange behavior during negotiation. Frontal 
cortex event-related potentials (ERPs) revealed the distinct neural responses driven by partners’ behavioral cues: 
the proposer’s N200 differed significantly for fair versus unfair offers, and the responder’s feedback-related 
negativity (FRN) showed a trend toward significance for the same contrast, while the proposer’s N500 varied 
between acceptance and rejection feedback. Our analysis introduced a novel causal model based on directional 
phase transfer entropy (dPTE) and time-varying ERP amplitudes, illustrating directed neural processes driven by 
social exchange, where the proposer’s brain activity initially exerts a causal impact on the responder’s, whose 
feedback in turn influences the proposer, creating a closed-loop interaction that drives adaptive negotiation 
strategies. Additionally, our prediction model with autoregression with exogenous input, which incorporated 
these causal links between brains, demonstrated higher accuracy than single-brain or reverse causal models, 
underscoring the significance of dynamic interbrain coupling in interpersonal coordination. This causal model 
provides a mechanistic explanation of how proposer-responder pairs perceive and adapt to each other’s de
cisions, facilitating shared attention and behavioral coordination in reciprocal, asymmetric negotiations. These 
findings offer a novel theoretical framework for studying complex social behaviors through interbrain dynamics 
and may inspire future applications in enhancing cooperative decision-making processes.
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1. Introduction

Interpersonal negotiation—a pervasive aspect of social life—requires 
constant decision-making to maximize gains and minimize losses. The 
iterated ultimatum game (UG) is a widely used paradigm for investi
gating the dynamics of negotiation (Alós-Ferrer et al., 2022; Heffner and 
FeldmanHall, 2022; Rand et al., 2013). In the UG, a proposer suggests 
how to split a sum, and the responder chooses to accept or reject the 
offer. Acceptance results in both parties receiving the proposed 
amounts; rejection leaves both with nothing. This iterative negotiation 
creates an asymmetrical, dynamic interaction where roles adapt 
continually, fostering complementary behaviors. We propose that 
interacting individuals exhibit a dynamic, non-symmetric coupling 
rather than simple synchronization, driven by ongoing social exchange. 
Given the complexities of measuring such coupling, the present study 
aims to examine brains integration during interactive negotiation by 
examining interbrain causal coupling (i.e., the directional influence of 
one individual’s brain activity on another’s, mediated by shared social 
context or behavior) via EEG hyperscanning and decoding techniques.

Recent research has shown that interbrain coupling (i.e., neural 
processes in one brain are coupled to those in another via information 
exchange during social interaction), such as interbrain synchronization, 
shapes individual behaviors in social interactions and supports complex 
social functions (Ma and Tan, 2023; Ni et al., 2024; Pan et al., 2023; 
Yang et al., 2020; Zhang et al., 2023). Although social behaviors do not 
directly influence each other’s brains, they generate interbrain associ
ations. Identifying neural mechanisms that enable individuals to nego
tiate could significantly inform models of social interaction. EEG 
hyperscanning offers a powerful tool to simultaneously monitor the 
neural activity of interacting participants (Jahng et al., 2017; Kayhan 
et al., 2022; Szymanski et al., 2017). Foundational studies demonstrate 
that interacting animals and humans show interbrain EEG synchroni
zations that encode both self- and partner-related behaviors, predicting 
future interactions (Gonzalez et al., 2024; Kingsbury et al., 2019). 
However, existing studies primarily address correlational rather than 
causal coupling mechanisms in social decision-making (Jiang et al., 
2015; Yang et al., 2020). Distinguishing causal from correlative inter
brain synchrony is essential, as social stimuli may produce 
pseudo-correlations in the absence of genuine causal influence (Redcay 
and Schilbach, 2019; Valencia and Froese, 2020). The causal analysis 
also clarifies the direction of shared brain states and the behavioral 
impacts between roles in interactive contexts (Bilek et al., 2022).

Our hypothesis is that directional brain coupling will be present, 
especially from proposer to responder, reflecting the asymmetrical na
ture of the UG, where the proposer initiates information flow. We 
applied directional phase transfer entropy (dPTE) (Hillebrand et al., 
2016), a recently introduced, sensitive, computationally efficient, 
data-driven method for quantifying the intensity and directionality of 
interpersonal influence during interaction.

Moreover, most previous studies on interbrain causality have pri
marily derived directed couplings from continuous brain signals (Leong 
et al., 2017; Schippers et al., 2010). However, neural influences between 
brains during social interaction are often elicited by behaviorally salient 
events, which can be effectively captured by time-locked event-related 
potentials (ERPs). ERPs thus provide crucial insights into real-time 
interbrain coupling during interactive decision-making (Chuang et al., 
2024; Zhang et al., 2019), due to their high temporal resolution and 
sensitivity to transient neural responses. In fact, the temporal resolution 
of ERPs could even be superior to EEG oscillations, since ERPs are 
instantaneous neural responses to events, while EEG oscillations reflect 
ongoing brain states and connectivity dynamics (Amodio et al., 2014; 
Pfurtscheller and Lopes da Silva, 1999; Yi et al., 2022). Therefore, 
ERP-based causal analysis may offer a more precise approach for iden
tifying task-specific interbrain couplings in dynamic interpersonal con
texts. In this study, we focused on ERP components extracted from three 
critical stages of the UG: the proposal, response, and feedback phases. 

Specifically, we analyzed ERP components such as the N200, 
feedback-related negativity (FRN), and N500, which are especially 
relevant to decision-making processes (Gehring and Willoughby, 2002; 
Hassall et al., 2019; Nieuwenhuis et al., 2004; Polezzi et al., 2008b). The 
N200, typically occurs approximately 180–280 ms after stimulus onset, 
is sensitive to high-conflict contexts and strategic adjustments (Clayson 
and Larson, 2013; Larson et al., 2014). The FRN is commonly elicited by 
negative feedback, particularly in loss scenarios (Gehring and Wil
loughby, 2002), involving the medial prefrontal cortex (mPFC) (Cohen 
et al., 2007; Zhang et al., 2022). It reflects not only whether decision 
outcomes meet personal expectations but also whether they align with 
social norms (Miraghaie et al., 2022). The N500 reflects outcome pre
dictability and tends to be larger in response to unpleasant or unpre
dictable feedback compared to pleasant or predictable outcomes 
(Mesrobian et al., 2018; Polezzi et al., 2008a, 2008b).

In summary, this study leverages recent EEG hyperscanning ad
vances to reveal interbrain causal mechanisms in dyadic negotiation. 
First, behavior interactions during iterative UG were assessed, with 
experimental setups illustrated in Fig. 1. Second, we examined ERP 
amplitude differences across UG phases (proposal, response, feedback) 
and scenarios (fair/unfair, accept/reject). More importantly, an inter
brain causal model was constructed based on time-variant ERP ampli
tudes across negotiation stages. Finally, an autoregressive model with 
exogenous inputs (ARX) was employed to construct both cross-brain 
causal prediction models and single-brain prediction models, followed 
by a comparison of their predictive performances. We hypothesize that 
cross-brain causal prediction models will outperform single-brain 
models in accuracy, as supported by previous studies (Bilek et al., 
2022). This study seeks to uncover the dynamic behavioral interactions 
and interbrain causal couplings that underpin interpersonal negotiation.

2. Materials and methods

2.1. Participants

In this study, 70 proposer-responder pairs were recruited from the 
student population of UESTC, totaling 140 right-handed healthy par
ticipants (82 males, aged 17–28 years, mean 21.25 years; 58 females, 
aged 18–26 years, mean 21.87 years). Each pair consisted of two 
strangers randomly assigned to the roles of proposer and responder. 
While such pairs are commonly referred to as “dyads” in the hyper
scanning and social neuroscience literature (Li et al., 2021; Pan et al., 
2023; Pick et al., 2024), we adopt the term “proposer–responder pairs” 
to emphasize their role-specific interaction within the structured nego
tiation task and to improve clarity for readers who may be unfamiliar 
with this domain-specific terminology. All participants had normal or 
corrected-to-normal vision, no color-vision deficiency, no history of 
neurological disorders, and no current psychiatric diagnoses or psy
chotropic prescriptions. Written informed consent was obtained from all 
participants before their enrollment in the study. The experimental 
procedures have been approved by the Institution Research Ethics Board 
of the University of Electronic Science and Technology of China 
(ApprovalID:1061,423,091,127,369). To evaluate the adequacy of our 
sample size, a post hoc power analysis was conducted using G*Power 3.1 
(Faul et al., 2007). For two-tailed paired samples t-tests (Cohen’s d =
0.5, α = 0.05, power = 0.80), the required sample size was 34 partici
pant pairs. For correlation analyses (r = 0.33, α = 0.05, power = 0.80), 
the required sample size was 67 pairs. Thus, our actual sample of 70 
pairs of participants exceeds both thresholds and ensures adequate sta
tistical power for the reported analyses.

2.2. Experimental design

The iterated UG is a typical dyadic negotiation scenario that can be 
employed to investigate physiological correlates of interactive decision- 
making (Gabay et al., 2014; Yamagishi et al., 2012). Paired participants 
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are presented with offers to divide a sum of money with their partners. 
The proposer determines how to split a specific amount, while the 
responder decides whether to accept or reject this division. If accepted, 
both participants receive the specified amount; if rejected, neither 
participant receives anything. Both participants completed the tasks on 
two back-to-back computers (Fig. 1), on which the results of the 
experiment were presented. Throughout the entire task, participants 
were instructed to keep their gaze fixed on their own screens, mini
mizing visual contact and non-verbal communication. Notably, the 
game was played with strangers. Before the experiment, participants 
were informed about the task and instructed to maximize benefits, with 
two participants randomly assigned fixed roles. Participants performed 
the UG task for about 10 min, and EEG data were recorded 
simultaneously.

The timeline of the tasks is shown in Fig. 1. During the experiment, 
all stimuli were centrally presented on a computer screen, and re
sponders received a total of 90 offers from the proposer. In each trial, the 
proposer splits ¥ 10; there are three allocation schemes: the fair (5: 5) 
and the unfair offers, which consisted of extremely (1: 9) and moderately 
unfair (3: 7) offers. Each trial started with a 500 ms presentation of a 
fixation crosshair. Then, a presentation of the total amount allocated 
was presented on both computer screens. The proposer was required to 
press the number key (1 for “proposer get ¥ 9, and responder gets ¥ 1″; 3 
for “proposer get ¥ 7, responder get ¥ 3″; 5 for “proposer get ¥ 5, 
responder get ¥ 5”) on the keyboard and then the proposed offer was 
presented on both computer screens. The responders were required to 
consider the proposal and press a key (2 for ‘‘accept’’ and 4 for ‘‘reject’’) 
to respond. Subsequently, participants would receive the responder’s 
response on the feedback screen (lasting 2000 ms). Following a 2000 ms 

black screen, the next trial was initiated. In particular, as a proposer or a 
responder during each trial, the reaction time of the decision should not 
exceed 3 s, otherwise, there is no gain for each. The participant was 
given a 30-second break after every 30 trials (30 trials as one block, and 
the experiment consists of 3 blocks in total).

To accurately assess the cognitive and psychological processes of 
participants in the UG task, we also collected the interpersonal trust 
scale (ITS) (Rotter, 1967) and the self-report altruism scale (SAS) 
(Gouveia et al., 2010) of all participants prior to the task. Upon 
completion of the task, participants were asked to complete the same 
scales once more, with the questions reordered to minimize response 
bias. Finally, participants were informed of the cumulative bonus and 
paid out.

2.3. Dual-EEG acquisition

Both participants were comfortably seated in an electrically shielded, 
sound- and light-attenuated room. Two separate 64-channel ASA-Lab 
amplifiers (ANT Neuro) with a sampling rate of 500 Hz were used to 
collect EEG from proposers and responders, respectively. These two 
acquisition systems received triggers from a server computer’s parallel 
port to ensure signal synchronization. Two electrode caps were posi
tioned following the 10–10 system. During recording, CPz and AFz 
electrodes served as the reference and ground, respectively. Vertical and 
horizontal electrooculograms (EOGs) to monitor eye movements were 
recorded from 2 additional channels located at the right side of the right 
eye and below the left eye. The online filter band was set at 0.3 ~ 100 
Hz. Throughout the tasks, electrode impedances were kept below 5 kΩ, 
and participants received consistent instructions to relax and minimize 

Fig. 1. Experimental setup of the ultimatum game (UG). Experimental design describing the interactive decision-making based on the UG task. Both participants 
completed the tasks on two back-to-back computers, on which the results of the experiment were presented. The dotted box indicates a representative trial of the UG 
task. Proposers first gave an offer to responders by selecting one of several valid options via keyboard (e.g., pressing “3″ represents an offer split of 7 vs. 3; valid keys 
include “1″, “3″, or “5”). Responders then decided to reject or accept the offer. RT represents the response time.
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eye movement as well as head or body motion.

2.4. Scale and behavioral analysis

First, for the normal distribution case, two-tailed paired sample t- 
tests were used to quantify potential differences on scales (i.e., ITS and 
SAS) between pre- and post-experiment for both the proposer and 
responder. Decision-making behavioral performance was evaluated 
using three indices: (a) fair offer rate: percentage of fair offers made by 
the proposer, (b) acceptance rate: percentage of acceptance feedback 
made by the responder, and (c) cumulative revenue: cumulative benefits 
of the proposer. Subsequently, to describe the dynamic behaviors of the 
proposer and responder at different stages of the UG task, the proposer’s 
time-varying fair offer rate, the responder’s time-varying acceptance 
rate, and the proposer’s time-varying cumulative revenue were calcu
lated by adopting the sliding-window strategy. Here, we adopted a 10- 
trial-length sliding window with an overlapping of 90 % between two 
adjacency segments, which provided a 1-trial-length temporal resolu
tion. Meanwhile, Pearson’s correlation coefficients between pairwise 
time-varying behavioral series were calculated. Furthermore, to 

elucidate the relationships of behavioral performances between the two 
participants, prediction models were constructed based on the re
sponder’s acceptance rate, aiming to predict the task behaviors of the 
proposer (details provided in the SI Appendix). Finally, the potential 
relationship between scale and behaviors was also explored.

2.5. Dual-EEG analysis

In this study, we exclusively analyzed the task-specific EEG datasets. 
The analytical procedures consisted of EEG preprocessing, data seg
mentation, time-frequency analysis, EPR extraction, ERP components 
determination, time-varying ERP amplitude extraction, interbrain 
causal model construction based on dPTE, and ERP prediction based on 
ARX model, as shown in Fig. 2. The details are described below.

2.5.1. EEG preprocessing
The raw EEG datasets were processed offline using EEGLAB and 

custom MATLAB (v2014a; MathWorks, Inc., USA) scripts. Independent 
component analysis (ICA) was first applied to remove artifacts, 
including blinks, eye movements, heartbeat, and myoelectricity (He 

Fig. 2. Analysis procedures for EEG data. (A) EEG preprocessing, (B) EEG data segmentation, (C) Time-frequency analysis to identify the specified response of 
different frequency bands during the UG task, (D) ERP extraction and ERP components determination, (E) Time-varying ERP amplitude extraction based on the 
sliding windows, (F) Interbrain causal model construction, and (G) Time-varying ERP prediction based on AXR model. Herein, FRN is the feedback-related negativity, 
dPTE is the directional phase transfer entropy, and ARX is the autoregression with exogenous input.
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et al., 2006), using the Infomax ICA algorithm implemented via the 
“runica” function in EEGLAB. The identification and removal of artifact 
components were based on a visual examination of each component’s 
topography, time course, and spectrum, in combination with MARA 
(Winkler et al., 2011) and IClabel diagnoses (Pion-Tonachini et al., 
2019). On average, 1 to 3 artifact components were removed per 
participant. The EEG data were then re-referenced to a neutral reference 
using the Reference Electrode Standardization Technique (REST) (Yao, 
2001). Thereafter, [1, 30] Hz offline bandpass filtering was applied to 
the re-referenced data using the “pop_eegfiltnew” function in EEGLAB. 
For both the proposer and responder, EEG data from the decision and 
feedback stages were extracted based on event markers corresponding to 
stimulus onset. Data epochs were segmented into 1-second windows, 
ranging from 200 ms before to 800 ms after the onset of the visual 
stimulus (i.e., when the task-relevant screen was presented), as shown in 
Fig. 2B After identifying target trials (i.e., trials from proposer’s proposal 
stage, responder’s response stage, and proposer’s feedback stage), 
baseline correction (baseline from − 200 to 0 ms) and artifact-trial 
removal by a threshold of ±120 μV were applied. Only those epochs 
without artifacts were considered for further analysis. The proposer’s 
proposal stage included 88.2 ± 2.4 epochs, the responder’s response 
stage included 88.7 ± 2.4 epochs, and the proposer’s feedback stage 
included 87.3 ± 4.1 epochs.

2.5.2. ERP extraction
The frontal cortex plays a critical role in human decision-making, as 

evidenced by its continuous internal monitoring of decision feedback 
and processing of high-conflict decision situations (Amodio and Frith, 
2006; Paret et al., 2016; Rushworth et al., 2011). Therefore, in this 
study, frontal ERP is primarily extracted. Before ERP extraction, aiming 
to investigate the dynamics of task-related brain activity in the fre
quency domain, we acquired the time-frequency distributions (TFDs) for 
time sequences from the frontal lobe by using the wavelet toolbox in 
MATLAB (v2014a). Particularly, we first calculated the TFDs for each 
artifact-free trial, and the TFDs were then grand-averaged across trials 
and subjects to achieve mean TFDs for each experimental stage. The 
results revealed that the task-related time-frequency activities predom
inantly concentrated on [1 – 10] Hz (Fig. 4A), while higher frequency 
bands were markedly attenuated. Therefore, we applied an additional 
1–10 Hz band-pass filter prior to ERP averaging to emphasize the 
dominant low-frequency components and enhance the signal-to-noise 
ratio for visualization and analysis.

Considering consistent findings from numerous studies that pro
posers make decisions with high conflict, resulting in increased activa
tion in the frontal and central regions (Vallet et al., 2019; Yin et al., 
2016), we focused on the N200 component during the proposal stage. 
Specifically, for each participant, the individual peak latency within 
180–280 ms was identified separately at electrodes FCz and Fz. The 
mean amplitude within ±20 ms around each peak was then calculated 
for each electrode, and these two values were averaged to obtain the 
final N200 amplitude. N200 amplitudes under fair and unfair conditions 
were then compared using two-tailed paired t-tests. Inspired by previous 
research (Billeke et al., 2013; Polezzi et al., 2008b), we examined the 
FRN and N500 components at electrode Fz during the response and 
feedback stages. For the response phase, FRN amplitudes were extracted 
by identifying individual peaks within 220–350 ms and calculating 
mean amplitudes within ±20 ms, under both fair and unfair conditions, 
followed by two-tailed paired samples t-tests. During the feedback stage, 
FRN (220–350 ms) and N500 (400–600 ms) amplitudes were similarly 
extracted after proposal acceptance or rejection and compared using 
two-tailed paired samples t-tests. All electrode selections and time 
windows were informed by prior literature and visually confirmed in 
grand-averaged waveforms. The details of the amplitude of the ERP 
components extracted are reported in the SI Appendix.

2.5.3. Estimation of preferential causality based on dPTE
To further investigate the interbrain causal coupling, the dPTE 

(Hillebrand et al., 2016) was wielded to estimate the preferential cau
sality of two time-varying ERP amplitude sequences derived from the 
proposer and responder. The range of dPTE values is from 0 to 1, with a 
threshold of 0.5 indicating no preferential direction of information flow. 
If information flows from time series i to time series j, then 1 > dPTEi,j >

0.5; conversely, 0 < dPTEi,j < 0.5 holds for opposite directionality. 
Specifically, to obtain time-varying ERP amplitude sequences, we 
applied a 10-trial-length sliding window across the 90 trials. Each 
window included 10 consecutive trials, and adjacent windows over
lapped by 90 %, resulting in a total of 81 sliding windows. For each 
window, EEG epochs were averaged to obtain a mini-ERP, from which 
the N200, FRN, and N500 amplitudes were extracted as described 
above. If any trials within a given window contained artifacts, they were 
excluded before averaging. This procedure generated time-varying ERP 
amplitude sequences. Subsequently, dPTE was calculated between the 
ERP amplitude sequences from the two participants in each 
proposer-responder pair. The final causality value was obtained by 
averaging the dPTE values across all pairs. Detailed methods for dPTE 
are provided in the SI Appendix.

Thereafter, permutation testing (1000 times) was used to determine 
whether the observed (original) dPTE explained the pattern of infor
mation flow between two time-varying amplitude sequences better than 
would be expected by chance. Concretely, for the causal information 
flow between two time-varying ERP amplitudes, the statistical signifi
cance was assessed by a non-parametric permutation test. In each per
mutation test, the time-varying N200/FRN/N500 amplitudes were 
shuffled randomly, and the entire calculation process of dPTE was per
formed to obtain a dPTE_perm based on the shuffled dataset. This pro
cedure was repeated 1000 times, and the final p-value was calculated as 
the proportion of permutations where the absolute deviation of dPTE_
perm from 0.5 was equal to or greater than that of the original dPTE. 
This two-tailed permutation test allows detection of significant directed 
information flow in either direction.

2.5.4. Autoregression with exogenous input model for ERP prediction
The ARX model has been widely employed for signal prediction 

(Jiang et al., 2019). In this study, the improved ARX model was used to 
describe the time-varying ERP interactions of the proposer and 
responder. Specifically, the N200 amplitude sequence (i.e., input) of the 
proposer was used to predict the FRN amplitude sequence (i.e., output) 
of the responder, and the latter was subsequently employed to predict 
the N500 amplitude sequence (i.e., output) during feedback from the 
proposer. To avoid the influence of a participant’s own past ERP 
amplitude series on the ARX prediction model, we used only the single 
participant’s own past amplitude data and the reverse cross-brain model 
for prediction, and then compared their predictive performance. 
Importantly, to quantitatively index the performance of the predicting 
model, the Pearson’s correlation coefficients between all participants’ 
actual and predicted amplitude under each sliding window, as well as 
between all windows’ actual and predicted amplitude for each partici
pant, together with root mean square error (RMSE), were calculated. 
Further details regarding ARX can be found in the SI Appendix.

3. Results

3.1. Scale and individual behaviors

First, the changes in the interpersonal interaction-related scales (i.e., 
ITS and SAS) before and after conducting the UG experiments were 
probed. Two-tailed paired sample t-tests revealed significant differences 
in both ITS and SAS scores between pre- and post-task. For proposers, 
post-task scores were significantly higher than pre-task scores for ITS 
(mean change = +4.7 ± 1.2, t = 4.072, p < 0.001) and SAS (mean 
change = +0.34±0.15, t = 2.274, p = 0.026). Similarly, responders also 
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showed significant increases in ITS (mean change = +3.0 ± 1.1, t =
2.684, p = 0.009) and SAS (mean change =+0.25 ± 0.12, t = 2.096, p =
0.040), as shown in Fig. 3A. Second, the time-varying fair offer rate 
(tFO) of the proposer, time-varying acceptance rate (tAR) of the 
responder, and the time-varying cumulative revenue (tCR) of the pro
poser were calculated. To quantitatively describe the changing trend of 
the behaviors, the linear fitting slope of each participant’s time-varying 
behavior was calculated. By conducting the one-tailed hypothesis test 
against zero for the slope, a gradual increase in tFO (t = 1.918, p =
0.030, showing a trend toward significance) of the proposer, tAR (t =
2.244, p = 0.014) of the responder, and tCR (t = 2.244, p = 0.014) of the 
proposer were observed (see Fig. 3B). Furthermore, positive correlations 
among these behaviors were found using Pearson’s correlation and 

predictive analysis. Detailed information was summarized in the SI 
Appendix, Figs. S1A-B. Third, the associations between differences in 
scales (i.e., ITS and SAS) and fluctuations in behavior before and after 
the task were examined, with multiple correlations corrected using the 
false discovery rate (FDR). As presented in Fig. 3C, the fluctuations of 
the proposer’s cumulative revenue (r = 0.343, pFDR = 0.004) were 
positively correlated with their own ITS difference, and the fluctuations 
of the proposer’s fair offer rate (r = 0.333, pFDR = 0.006) were positively 
related to the responder’s ITS difference. The correlation coefficient r 
and the statistical significance level p between the scale differences and 
the behavioral fluctuations as shown in Table S1.

Fig. 3. Scale and behavior results. (A) Interpersonal trust scale (ITS) and self-report altruism scale (SAS) scores of the proposer and responder before and after tasks. 
Asterisk indicates statistically significant difference (p < 0.05, two-tailed). (B) Temporal dynamics of proposer’s fair offer rate, responder’s acceptance rate, and 
proposer’s cumulative revenue during the UG. In each subfigure, values are the mean and standard error (mean ± s.e.) of time-varying behaviors. One-tailed t-tests 
against zero were used to assess the significance of increasing trends over time (p < 0.025). (C) Relationships between scale differences and behavioral fluctuations. 
In each subfigure, the distribution of behaviors and scales is shown on the right and upper sides of the frame, respectively; the green line is the fitted curve, r is the 
correlation coefficient, and p represents the statistical significance level.
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3.2. Grand-mean ERP statistics

The temporal dynamics of three ERP components (i.e., N200, FRN, 
and N500) were explored in this study to unravel the development of 
interpersonal interaction over time (Du et al., 2022). To investigate the 
specified response of different frequency bands and time points during 
the UG task, TFDs for both participants were initially calculated. Fig. 4A 
shows the averaged TFDs on the frontal lobe. In specific, it was deter
mined that brain activity during tasks was mainly concentrated in the 
1~10 Hz frequency range; by contrast, the high band activity is 

attenuated. Thus, a 1~10 Hz bandpass filter was applied to extract ERPs 
accordingly. The filter was implemented using a zero-phase sinc finite 
impulse response (FIR) filter with an order of 200 and a Hamming 
window, applied via the “pop_eegfiltnew” function in EEGLAB. Ac
cording to the results and previous research on decision-making 
(Gehring and Willoughby, 2002; Hassall et al., 2019; Nieuwenhuis 
et al., 2004; Polezzi et al., 2008b), this study mainly focused on the 
N200, FRN, and N500 to investigate the ongoing interbrain interactions 
during their participation in the UG tasks.

First, the N200 from the proposers was extracted during the proposal 

Fig. 4. Grand-mean ERP results. (A) Time-frequency distributions of the frontal lobe for the proposer’s proposal stage, responder’s response stage, and proposer’s 
feedback stage. (B) The ERP waveforms under fair and unfair conditions for the proposers at the proposal stage. (C) The ERP waveforms under fair and unfair 
conditions for the responders at the response stage. (D) The ERP waveforms under acceptance and rejection feedback for the proposer at the feedback stage. The blue 
and red lines (shadows) indicate the mean (s.e.) of the fair (acceptance) and unfair (rejection) ERP in all subjects, respectively. Asterisk indicates statistically sig
nificant difference (p < 0.05, two-tailed). (E) The topographic t-maps of both conditions (e.g., fair offer vs. unfair offer, and acceptance feedback vs. rejection 
feedback). Higher t-values indicate greater differences, primarily localized in frontal regions. Warmer colors (e.g., red) indicate greater amplitudes for unfair offers 
(N200, FRN) or rejection feedback (N500), while cooler colors (e.g., blue) indicate the opposite. Color bar represents t-values (unitless).

Y. Li et al.                                                                                                                                                                                                                                        NeuroImage 321 (2025) 121541 

7 



stage. A two-tailed paired-samples t-test revealed a significant difference 
in N200 amplitudes between unfair and fair proposals (p = 0.019), with 
unfair proposals evoking larger amplitudes (− 5.312 ± 0.669 μV; mean 
± s.e.) than fair proposals (− 4.481 ± 0.521 μV) at electrodes FCz and Fz 
(see Fig. 4B). A two-tailed paired-samples t-test revealed no statistically 
significant difference in FRN amplitudes between unfair and fair pro
posals (p = 0.08) at electrode Fz. However, a trend toward larger FRN 
amplitudes in response to unfair proposals (− 1.266 ± 0.359 μV) 
compared to fair proposals (− 0.673 ± 0.314 μV) was observed. Third, 
the FRN and N500 amplitudes were extracted during the feedback stage. 
A two-tailed paired-samples t-test revealed a significant difference in 
N500 amplitudes between rejection and acceptance feedback (p <
0.001), with rejection feedback evoking larger amplitudes (− 3.328 ±
0.234 μV) than acceptance feedback (− 1.305 ± 0.180 μV) at electrode 
Fz (see Fig. 4D). In contrast, there was no significant difference in FRN 
amplitudes between acceptance (− 0.433 ± 0.200 μV) and rejection 
(− 0.364 ± 0.331 μV) feedback (p = 0.415). Therefore, subsequent an
alyses were performed based on the N200, FRN, and N500 components 
of the proposal, response, and feedback stages, respectively. Meanwhile, 

paired samples t-tests were conducted to examine topographic differ
ences in the amplitudes of three ERP components (i.e., N200, FRN, and 
N500) between conditions (e.g., fair vs. unfair offers and acceptance vs. 
rejection feedback). The resulting t-value topographic maps (Fig. 4E) 
indicate that significant differences are predominantly localized in the 
frontal cortex.

3.3. Interbrain causal model of the ERP components

The dPTE was used to assess the preferred direction of information 
transmission for time-varying ERP amplitudes between proposers and 
responders. The process of extracting time-varying ERP amplitude se
quences for each participant is illustrated in Figs. 5A-C. By definition, a 
dPTExy greater than 0.5 indicates that information flows preferentially 
from time series X to time series Y; whereas, a dPTExy smaller than 0.5 
indicates that information flows preferentially from time series Y to time 
series X. Fig. 5D depicts the preferred direction of information flow. 
There exists a subtle but significant causal pact of the proposer’s N200 
amplitude on the responder’s FRN amplitude (dPTE = 0.5231, 

Fig. 5. Interbrain causal model. (A-C) Extraction of the time-varying N200/FRN/N500 amplitude. Using a 10-trial-length sliding window (SW) with an overlapping 
of 90 % between two adjacent segments, time-varying amplitude sequences of ERP components of the proposer and responder were obtained. (D) Causal model for 
different time-varying ERP amplitude sequences. The causal flow in the dashed box represents intra-brain coupling, and the causal flow without a box represents 
interbrain coupling. * indicates ppermutation < 0.05. (E) Permutation testing results of the dPTE values. After 1000 random shufflings of the time-varying ERP am
plitudes, the 1000 dPTE values were obtained. The black dashed lines denote the positions of the actual dPTE values.
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ppermutation < 0.001, two-tailed) and the proposer’s N500 amplitude 
(dPTE = 0.5137, ppermutation = 0.012, two-tailed). Additionally, in 
determining the causal relationship between the brain activity of the 
response and feedback stages, the responder’s FRN amplitude showed a 
significant directional effect on the proposer’s N500 amplitude (dPTE =
0.5125, ppermutation = 0.020, two-tailed). Fig. 5E shows the permutation 
test results.

Moreover, the relationships between ERP (i.e., N200, FRN, and 
N500) and behavioral fluctuations (i.e., proposers’ fair offer rate, re
sponders’ acceptance rate, and proposers’ cumulative revenue) were 
explored and adjusted for multiple correlations using FDR. As shown in 
Fig. 6, the fluctuations in fair offer rate (r = 0.348, pFDR = 0.004), 
acceptance rate (r = 0.333, pFDR = 0.005), and cumulative revenue (r =
0.293, pFDR = 0.015) were significantly positively correlated with the 
fluctuations in N500 amplitude. The correlation coefficient r and the 
statistical significance level p between the behavior fluctuations and the 
ERP fluctuations as depicted in Table S2.

3.4. Prediction results based on the interbrain causal relationships

To advance a comprehensive understanding of the functional 
meaning of interbrain causal couplings during interpersonal negotia
tions, prediction models were developed using ARX to account for time- 
varying interbrain flows between the two participants. In the single- 
brain prediction model, an individual’s own time-varying ERP ampli
tude sequence served as both the input and the target output, thereby 
modeling the prediction of future neural responses based solely on one’s 
own past activity. In contrast, the causal and reverse causal cross-brain 
prediction models used the partner’s signal as the input and the in
dividual’s own signal as the output, enabling the prediction of future 
neural activity based on both the individual’s and their partner’s past 
signals. Fig. 7 depicts the correlation coefficient R and RMSE between 
actual and predicted ERP amplitudes predicted for a single subject and 
for a single sliding window (SW) by the causal cross-brain and single- 
brain prediction models, respectively, and SI Appendix, Figs. S2–3 de
picts the RMSE between the actual and predicted ERP amplitudes pre
dicted for a single subject and for a single SW by the reverse causal cross- 
brain prediction model, respectively.

Specifically, as shown in Figs. 7A-B, two-tailed paired samples t-tests 
revealed that compared to the correlation coefficient R (single subject: 
0.893 ± 0.007 μV; single SW: 0.949± 0.001 μV) and RMSE (single 
subject: 0.817 ± 0.018 μV; single SW: 0.828 ± 0.008 μV) between actual 
and predicted FRN amplitudes in the single-brain prediction model, the 
correlation coefficient R (single subject: 0.918 ± 0.005 μV; single SW: 
0.960± 0.001 μV, p < 0.001) between actual and predicted FRN am
plitudes was found to be larger and the RMSE (single subject: 0.714 ±
0.16 μV; single SW: 0.724 ± 0.007 μV, p < 0.001) was found to be 
smaller in the causal cross-brain prediction model. Figs. 7C-D illustrates 
that the correlation coefficient R between the actual and predicted N500 
amplitudes of the causal cross-brain prediction model (single subject: 

0.893 ± 0.006 μV; single SW: 0.935 ± 0.002 μV) were higher than that 
of the single-brain prediction model (single subject: 0.867 ± 0.007 μV; 
single SW: 0.920 ± 0.003 μV, p < 0.001), while the RMSE between the 
actual and predicted N500 amplitudes of the causal cross-brain predic
tion model (single subject: 0.721 ± 0.024 μV; single SW: 0.744 ± 0.010 
μV) were lower than that of the single-brain prediction model (single 
subject: 0.809 ± 0.026 μV; single SW: 0.832 ± 0.012 μV, p < 0.001). 
Furthermore, to verify the unique predictive value of the causal cross- 
brain prediction model, ERP amplitudes were predicted based on the 
reverse cross-brain causal prediction model. The correlation coefficient 
R of the reverse causal cross-brain prediction model was found to be 
significantly lower, and the RMSE was found to be significantly higher 
than those of the causal cross-brain and single-brain models. The cor
responding results are summarized in the SI Appendix, Figs. S2–3. 
Therefore, a prediction model that includes causal relationships be
tween the brains of interacting individuals is more effective in predicting 
performance than prediction models that do not include between-brain 
and reverse causal relationships, as shown by the significantly larger 
correlation coefficient R and smaller RMSE between the actual and 
predicted ERP amplitudes.

4. Discussion

Understanding the social brain requires a two-person perspective 
that captures its dynamic adaptations to others during ongoing in
teractions (Redcay and Schilbach, 2019). However, the interbrain causal 
mechanisms underlying interpersonal coordination, particularly in 
asymmetrical decision-making contexts, remain unclear. In this study, 
we employed EEG hyperscanning to investigate directional influences 
between the brain activities of interacting individuals during economic 
negotiation, and to examine interpersonal scales and behavioral changes 
in participant pairs. The results show three key findings: 1) Reciprocal 
patterns in interpersonal scales and behaviors, suggesting compromise 
and cooperative behavior emerging from self-interest during negotia
tion; 2) Significant ERP differences were found, with larger N200 in 
proposers and a trend toward larger FRN in responders for unfair offers, 
and larger N500 in proposers following rejection feedback; and 3) There 
exists a causal coupling between time-varying ERP amplitudes, enabling 
effective prediction of the partner’s subsequent brain activity. This study 
is, to our knowledge, the first to investigate ERP-based causal couplings, 
offering a promising approach for studying complex social behaviors 
within EEG hyperscanning.

Social bonding is sustained by interactive experiences that shape 
individual dispositions and internal preferences (Bault et al., 2017). 
Rotter’s trust theory posits that trust is rooted in expectations shaped by 
social exchanges (Rotter, 1967). The observed increase in interpersonal 
trust and altruism scores after partner interaction suggests stronger 
prosocial dispositions (Philippe Rushton et al., 1981; Thielmann et al., 
2020; van Dijk and De Dreu, 2021), with significant positive correlations 
between trust scores and negotiation performance. These results imply 

Fig. 6. Relationships between the fluctuations of ERP amplitudes and decision-making behaviors. In each subfigure, the distribution of behaviors and ERP am
plitudes is shown on the right and upper sides of the frame, respectively; the red line is the fitted curve, r is the correlation coefficient, and p represents the statistical 
significance level.
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Fig. 7. Prediction results of the ARX model. (A) Correlation coefficient R between the actual and predicted amplitudes for the causal cross-brain (N200 predicted 
FRN) and single-brain (FRN predicted FRN) prediction models in the single subject and the single sliding window. (B) RMSE between the actual and predicted 
amplitudes for the causal cross-brain (N200 predicted FRN) and single-brain (FRN predicted FRN) prediction models in the single subject and the single sliding 
window. (C) Correlation coefficient R between the actual and predicted amplitudes for the causal cross-brain (FRN predicted N500) and single-brain (N500 predicted 
N500) prediction models in the single subject and the single sliding window. (D) RMSE between the actual and predicted amplitudes for the causal cross-brain (FRN 
predicted N500) and single-brain (N500 predicted N500) prediction models in the single subject and the single sliding window. The RMSE is the root mean square 
error, * represents p < 0.05. N200—> FRN and FRN—> N500 represent information flows preferentially from N200 to FRN and information flows preferentially 
from FRN to N500, respectively.
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that reciprocal beliefs are reinforced through repeated social exchanges 
with unfamiliar partners, fostering trust and prosocial behavior that 
facilitate cooperative negotiation. Interestingly, despite the post-task 
increase in self-reported altruism, it did not correlate with behavioral 
outcomes, suggesting that behavioral change in dynamic negotiation 
may be more strongly driven by situational trust shaped through 
ongoing interaction than by altruistic tendencies. This supports the 
earlier observation of reciprocal patterns in interpersonal scales and 
behaviors, indicating that cooperation emerges more from mutual 
adaptation and self-interest negotiation than from generalized prosocial 
traits. In behavioral terms, using real participants enhances ecological 
validity over traditional UG paradigms. Responders’ tendencies to reject 
low offers compelled proposers to share more equitably, resulting in 
balanced outcomes and effective coordination as negotiations pro
gressed. Prior behaviors informed each party’s intention, indicating that 
feedback from responders on earlier proposals shaped proposers’ sub
sequent offers, establishing adaptive and cooperative strategies.

At the neural level, ERP components (N200, FRN, and N500) varied 
significantly across UG stages and conditions. During the proposal 
phase, high N200 amplitudes for unfair offers reflected increased con
flict processing, consistent with prior findings (König et al., 2021; 
Whitehead et al., 2017). In the response phase, responders’ FRN 
amplitude showed a trend toward greater negativity for unfair offers, 
indicating a potential sensitivity to fairness violations (Fehr and Fisch
bacher, 2003; Mayer et al., 2019). During feedback, rejection feedback 
elicited a pronounced N500 response, reflecting proposers’ heightened 
sensitivity to negative feedback (Bellebaum et al., 2010; Chen et al., 
2010). The N500 component may reflect the cognitive evaluation of 
outcome expectancy violations and the adjustment of future decision 
strategies. Significant correlations between N500 fluctuations and 
behavioral adjustments further indicate that dynamic brain responses 
are shaped by reciprocal behavioral cues, underscoring the iterative, 
interactive nature of interpersonal negotiation.

Beyond individual neural changes, accumulating evidence suggests 
that interbrain correlation is an inherent feature of complex social in
teractions, primarily facilitating execution and coordination (Hasson 
et al., 2012; Kingsbury and Hong, 2020; Zhang and Yartsev, 2019). Most 
studies have examined interbrain synchrony, defined as the temporal 
alignment of neural activity between social partners (Feldman, 2007; 
Kingsbury et al., 2019; Valencia and Froese, 2020). However, the iter
ated UG involves asymmetric proposer-responder roles, making it 
essential to characterize the directionality of interbrain coupling to 
better understand dynamic decision-making processes (Bilek et al., 
2022). Our findings demonstrate that temporal variations in the brain 
activity of proposers and responders carry information about their 
partner’s state, reflecting shared attention and mutual adaptation during 
negotiations. Although emerging research has started to assess the 
directionality of information flow between brains (Leong et al., 2017; 
Qiao et al., 2025; Schippers et al., 2010), most have focused on joint 
attention tasks or non-iterative paradigms. In contrast, by leveraging a 
novel analytical framework based on time-varying ERP amplitudes and 
dPTE, we identified interbrain causal coupling: the proposer had a sig
nificant influence on responder’s neural information during the initial 
phase, as proposers introduced offers, while the feedback phase closed 
this loop, with responders’ choices guiding proposers’ future offers. 
These findings align with prior work showing that interactive behavioral 
information, mediated through real-time feedback and non-verbal cues, 
fosters interbrain coupling within dyadic partners (Jiang et al., 2012; 
Luft et al., 2022; Speer et al., 2024).

Notably, while the observed dPTE values indicate only modest de
viations from 0.5, this pattern is consistent with prior research 
(Hillebrand et al., 2016) and reflects a statistically reliable directional 
bias in interactions of neural activities. This directional coupling, 
although subtle, provides insight into how role-based asymmetries (e.g., 
proposer vs. responder) modulate the temporal evolution of neural in
formation during dynamic social exchange. Like the neural synchrony 

observed in animal studies (Kingsbury et al., 2019), our ERP-based 
prediction models demonstrate that including interbrain causal re
lationships enables more accurate prediction of a partner’s brain activity 
than single-brain models. This model of causal coupling illuminates how 
interbrain dynamics evolve alongside behavioral negotiation, each 
informing and refining the other.

In summary, this study identified distinct behavioral interaction 
patterns and directional interbrain coupling during dyadic economic 
negotiation. The use of ERP-based causal coupling provides new insights 
into human behavior in asymmetrical interactive decision-making, with 
implications for developing interventions targeting ERP-based coupling. 
For instance, future studies could explore whether neuromodulation (e. 
g., transcranial magnetic stimulation (TMS)) applied to one partner’s 
brain activity might indirectly influence the other’s neural or behavioral 
responses during interaction, thereby facilitating interpersonal coordi
nation and providing further evidence for directional interbrain influ
ence. Nevertheless, several limitations should be acknowledged. First, 
although the observed causal effects reached statistical significance, the 
corresponding effect sizes (dPTE values ~0.51–0.52) were modest. 
These subtle effects warrant cautious interpretation. Future studies with 
increased statistical power—through larger samples, improved signal- 
to-noise ratio, or multimodal imaging—are necessary to validate and 
extend these findings. Second, although there was a trend for unfair 
proposals to evoke larger FRN amplitudes compared to fair proposals, 
this difference did not reach statistical significance in two-tailed tests (p 
= 0.08). This borderline result may reflect limited statistical power or 
variability in neural responses, warranting further investigation with 
larger samples. Finally, given the turn-taking, computer-mediated setup 
of the current paradigm, future studies could adopt more naturalistic, 
unconstrained interaction settings to capture interbrain causal dynamics 
more profoundly, enriching our understanding of human social inter
action in this most authentic form.
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