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ARTICLE INFO ABSTRACT
Keywords: Uncovering the interbrain neural mechanisms underlying interpersonal negotiation offers insight into social
Interbrain couplings decision-making dynamics in resource allocation. In this study, we used EEG hyperscanning alongside an iterated

Ultimatum game
Interpersonal negotiations
Event-related potential
EEG hyperscanning

ultimatum game to investigate interbrain coupling and dyadic exchange behavior during negotiation. Frontal
cortex event-related potentials (ERPs) revealed the distinct neural responses driven by partners’ behavioral cues:
the proposer’s N200 differed significantly for fair versus unfair offers, and the responder’s feedback-related
negativity (FRN) showed a trend toward significance for the same contrast, while the proposer’s N500 varied
between acceptance and rejection feedback. Our analysis introduced a novel causal model based on directional
phase transfer entropy (dPTE) and time-varying ERP amplitudes, illustrating directed neural processes driven by
social exchange, where the proposer’s brain activity initially exerts a causal impact on the responder’s, whose
feedback in turn influences the proposer, creating a closed-loop interaction that drives adaptive negotiation
strategies. Additionally, our prediction model with autoregression with exogenous input, which incorporated
these causal links between brains, demonstrated higher accuracy than single-brain or reverse causal models,
underscoring the significance of dynamic interbrain coupling in interpersonal coordination. This causal model
provides a mechanistic explanation of how proposer-responder pairs perceive and adapt to each other’s de-
cisions, facilitating shared attention and behavioral coordination in reciprocal, asymmetric negotiations. These
findings offer a novel theoretical framework for studying complex social behaviors through interbrain dynamics
and may inspire future applications in enhancing cooperative decision-making processes.
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1. Introduction

Interpersonal negotiation—a pervasive aspect of social life—requires
constant decision-making to maximize gains and minimize losses. The
iterated ultimatum game (UG) is a widely used paradigm for investi-
gating the dynamics of negotiation (Alos-Ferrer et al., 2022; Heffner and
FeldmanHall, 2022; Rand et al., 2013). In the UG, a proposer suggests
how to split a sum, and the responder chooses to accept or reject the
offer. Acceptance results in both parties receiving the proposed
amounts; rejection leaves both with nothing. This iterative negotiation
creates an asymmetrical, dynamic interaction where roles adapt
continually, fostering complementary behaviors. We propose that
interacting individuals exhibit a dynamic, non-symmetric coupling
rather than simple synchronization, driven by ongoing social exchange.
Given the complexities of measuring such coupling, the present study
aims to examine brains integration during interactive negotiation by
examining interbrain causal coupling (i.e., the directional influence of
one individual’s brain activity on another’s, mediated by shared social
context or behavior) via EEG hyperscanning and decoding techniques.

Recent research has shown that interbrain coupling (i.e., neural
processes in one brain are coupled to those in another via information
exchange during social interaction), such as interbrain synchronization,
shapes individual behaviors in social interactions and supports complex
social functions (Ma and Tan, 2023; Ni et al., 2024; Pan et al., 2023;
Yang et al., 2020; Zhang et al., 2023). Although social behaviors do not
directly influence each other’s brains, they generate interbrain associ-
ations. Identifying neural mechanisms that enable individuals to nego-
tiate could significantly inform models of social interaction. EEG
hyperscanning offers a powerful tool to simultaneously monitor the
neural activity of interacting participants (Jahng et al., 2017; Kayhan
et al., 2022; Szymanski et al., 2017). Foundational studies demonstrate
that interacting animals and humans show interbrain EEG synchroni-
zations that encode both self- and partner-related behaviors, predicting
future interactions (Gonzalez et al., 2024; Kingsbury et al., 2019).
However, existing studies primarily address correlational rather than
causal coupling mechanisms in social decision-making (Jiang et al.,
2015; Yang et al., 2020). Distinguishing causal from correlative inter-
brain synchrony is essential, as social stimuli may produce
pseudo-correlations in the absence of genuine causal influence (Redcay
and Schilbach, 2019; Valencia and Froese, 2020). The causal analysis
also clarifies the direction of shared brain states and the behavioral
impacts between roles in interactive contexts (Bilek et al., 2022).

Our hypothesis is that directional brain coupling will be present,
especially from proposer to responder, reflecting the asymmetrical na-
ture of the UG, where the proposer initiates information flow. We
applied directional phase transfer entropy (dPTE) (Hillebrand et al.,
2016), a recently introduced, sensitive, computationally efficient,
data-driven method for quantifying the intensity and directionality of
interpersonal influence during interaction.

Moreover, most previous studies on interbrain causality have pri-
marily derived directed couplings from continuous brain signals (Leong
etal., 2017; Schippers et al., 2010). However, neural influences between
brains during social interaction are often elicited by behaviorally salient
events, which can be effectively captured by time-locked event-related
potentials (ERPs). ERPs thus provide crucial insights into real-time
interbrain coupling during interactive decision-making (Chuang et al.,
2024; Zhang et al., 2019), due to their high temporal resolution and
sensitivity to transient neural responses. In fact, the temporal resolution
of ERPs could even be superior to EEG oscillations, since ERPs are
instantaneous neural responses to events, while EEG oscillations reflect
ongoing brain states and connectivity dynamics (Amodio et al., 2014;
Pfurtscheller and Lopes da Silva, 1999; Yi et al., 2022). Therefore,
ERP-based causal analysis may offer a more precise approach for iden-
tifying task-specific interbrain couplings in dynamic interpersonal con-
texts. In this study, we focused on ERP components extracted from three
critical stages of the UG: the proposal, response, and feedback phases.
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Specifically, we analyzed ERP components such as the N200,
feedback-related negativity (FRN), and N500, which are especially
relevant to decision-making processes (Gehring and Willoughby, 2002;
Hassall et al., 2019; Nieuwenhuis et al., 2004; Polezzi et al., 2008b). The
N200, typically occurs approximately 180-280 ms after stimulus onset,
is sensitive to high-conflict contexts and strategic adjustments (Clayson
and Larson, 2013; Larson et al., 2014). The FRN is commonly elicited by
negative feedback, particularly in loss scenarios (Gehring and Wil-
loughby, 2002), involving the medial prefrontal cortex (mPFC) (Cohen
et al., 2007; Zhang et al., 2022). It reflects not only whether decision
outcomes meet personal expectations but also whether they align with
social norms (Miraghaie et al., 2022). The N500 reflects outcome pre-
dictability and tends to be larger in response to unpleasant or unpre-
dictable feedback compared to pleasant or predictable outcomes
(Mesrobian et al., 2018; Polezzi et al., 2008a, 2008b).

In summary, this study leverages recent EEG hyperscanning ad-
vances to reveal interbrain causal mechanisms in dyadic negotiation.
First, behavior interactions during iterative UG were assessed, with
experimental setups illustrated in Fig. 1. Second, we examined ERP
amplitude differences across UG phases (proposal, response, feedback)
and scenarios (fair/unfair, accept/reject). More importantly, an inter-
brain causal model was constructed based on time-variant ERP ampli-
tudes across negotiation stages. Finally, an autoregressive model with
exogenous inputs (ARX) was employed to construct both cross-brain
causal prediction models and single-brain prediction models, followed
by a comparison of their predictive performances. We hypothesize that
cross-brain causal prediction models will outperform single-brain
models in accuracy, as supported by previous studies (Bilek et al.,
2022). This study seeks to uncover the dynamic behavioral interactions
and interbrain causal couplings that underpin interpersonal negotiation.

2. Materials and methods
2.1. Participants

In this study, 70 proposer-responder pairs were recruited from the
student population of UESTC, totaling 140 right-handed healthy par-
ticipants (82 males, aged 17-28 years, mean 21.25 years; 58 females,
aged 18-26 years, mean 21.87 years). Each pair consisted of two
strangers randomly assigned to the roles of proposer and responder.
While such pairs are commonly referred to as “dyads” in the hyper-
scanning and social neuroscience literature (Li et al., 2021; Pan et al.,
2023; Pick et al., 2024), we adopt the term “proposer-responder pairs”
to emphasize their role-specific interaction within the structured nego-
tiation task and to improve clarity for readers who may be unfamiliar
with this domain-specific terminology. All participants had normal or
corrected-to-normal vision, no color-vision deficiency, no history of
neurological disorders, and no current psychiatric diagnoses or psy-
chotropic prescriptions. Written informed consent was obtained from all
participants before their enrollment in the study. The experimental
procedures have been approved by the Institution Research Ethics Board
of the University of Electronic Science and Technology of China
(ApprovallD:1061,423,091,127,369). To evaluate the adequacy of our
sample size, a post hoc power analysis was conducted using G*Power 3.1
(Faul et al., 2007). For two-tailed paired samples t-tests (Cohen’s d =
0.5, a = 0.05, power = 0.80), the required sample size was 34 partici-
pant pairs. For correlation analyses (r = 0.33, a = 0.05, power = 0.80),
the required sample size was 67 pairs. Thus, our actual sample of 70
pairs of participants exceeds both thresholds and ensures adequate sta-
tistical power for the reported analyses.

2.2. Experimental design
The iterated UG is a typical dyadic negotiation scenario that can be

employed to investigate physiological correlates of interactive decision-
making (Gabay et al., 2014; Yamagishi et al., 2012). Paired participants
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Fig. 1. Experimental setup of the ultimatum game (UG). Experimental design describing the interactive decision-making based on the UG task. Both participants
completed the tasks on two back-to-back computers, on which the results of the experiment were presented. The dotted box indicates a representative trial of the UG
task. Proposers first gave an offer to responders by selecting one of several valid options via keyboard (e.g., pressing “3" represents an offer split of 7 vs. 3; valid keys
include “1", “3", or “5”). Responders then decided to reject or accept the offer. RT represents the response time.

are presented with offers to divide a sum of money with their partners.
The proposer determines how to split a specific amount, while the
responder decides whether to accept or reject this division. If accepted,
both participants receive the specified amount; if rejected, neither
participant receives anything. Both participants completed the tasks on
two back-to-back computers (Fig. 1), on which the results of the
experiment were presented. Throughout the entire task, participants
were instructed to keep their gaze fixed on their own screens, mini-
mizing visual contact and non-verbal communication. Notably, the
game was played with strangers. Before the experiment, participants
were informed about the task and instructed to maximize benefits, with
two participants randomly assigned fixed roles. Participants performed
the UG task for about 10 min, and EEG data were recorded
simultaneously.

The timeline of the tasks is shown in Fig. 1. During the experiment,
all stimuli were centrally presented on a computer screen, and re-
sponders received a total of 90 offers from the proposer. In each trial, the
proposer splits ¥ 10; there are three allocation schemes: the fair (5: 5)
and the unfair offers, which consisted of extremely (1: 9) and moderately
unfair (3: 7) offers. Each trial started with a 500 ms presentation of a
fixation crosshair. Then, a presentation of the total amount allocated
was presented on both computer screens. The proposer was required to
press the number key (1 for “proposer get ¥ 9, and responder gets ¥ 1"; 3
for “proposer get ¥ 7, responder get ¥ 3"; 5 for “proposer get ¥ 5,
responder get ¥ 5”) on the keyboard and then the proposed offer was
presented on both computer screens. The responders were required to
consider the proposal and press a key (2 for “accept’” and 4 for “reject’’)
to respond. Subsequently, participants would receive the responder’s
response on the feedback screen (lasting 2000 ms). Following a 2000 ms

black screen, the next trial was initiated. In particular, as a proposer or a
responder during each trial, the reaction time of the decision should not
exceed 3 s, otherwise, there is no gain for each. The participant was
given a 30-second break after every 30 trials (30 trials as one block, and
the experiment consists of 3 blocks in total).

To accurately assess the cognitive and psychological processes of
participants in the UG task, we also collected the interpersonal trust
scale (ITS) (Rotter, 1967) and the self-report altruism scale (SAS)
(Gouveia et al.,, 2010) of all participants prior to the task. Upon
completion of the task, participants were asked to complete the same
scales once more, with the questions reordered to minimize response
bias. Finally, participants were informed of the cumulative bonus and
paid out.

2.3. Dual-EEG acquisition

Both participants were comfortably seated in an electrically shielded,
sound- and light-attenuated room. Two separate 64-channel ASA-Lab
amplifiers (ANT Neuro) with a sampling rate of 500 Hz were used to
collect EEG from proposers and responders, respectively. These two
acquisition systems received triggers from a server computer’s parallel
port to ensure signal synchronization. Two electrode caps were posi-
tioned following the 10-10 system. During recording, CPz and AFz
electrodes served as the reference and ground, respectively. Vertical and
horizontal electrooculograms (EOGs) to monitor eye movements were
recorded from 2 additional channels located at the right side of the right
eye and below the left eye. The online filter band was set at 0.3 ~ 100
Hz. Throughout the tasks, electrode impedances were kept below 5 kQ,
and participants received consistent instructions to relax and minimize
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eye movement as well as head or body motion.

2.4. Scale and behavioral analysis

First, for the normal distribution case, two-tailed paired sample t-
tests were used to quantify potential differences on scales (i.e., ITS and
SAS) between pre- and post-experiment for both the proposer and
responder. Decision-making behavioral performance was evaluated
using three indices: (a) fair offer rate: percentage of fair offers made by
the proposer, (b) acceptance rate: percentage of acceptance feedback
made by the responder, and (c) cumulative revenue: cumulative benefits
of the proposer. Subsequently, to describe the dynamic behaviors of the
proposer and responder at different stages of the UG task, the proposer’s
time-varying fair offer rate, the responder’s time-varying acceptance
rate, and the proposer’s time-varying cumulative revenue were calcu-
lated by adopting the sliding-window strategy. Here, we adopted a 10-
trial-length sliding window with an overlapping of 90 % between two
adjacency segments, which provided a 1-trial-length temporal resolu-
tion. Meanwhile, Pearson’s correlation coefficients between pairwise
time-varying behavioral series were calculated. Furthermore, to
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elucidate the relationships of behavioral performances between the two
participants, prediction models were constructed based on the re-
sponder’s acceptance rate, aiming to predict the task behaviors of the
proposer (details provided in the SI Appendix). Finally, the potential
relationship between scale and behaviors was also explored.

2.5. Dual-EEG analysis

In this study, we exclusively analyzed the task-specific EEG datasets.
The analytical procedures consisted of EEG preprocessing, data seg-
mentation, time-frequency analysis, EPR extraction, ERP components
determination, time-varying ERP amplitude extraction, interbrain
causal model construction based on dPTE, and ERP prediction based on
ARX model, as shown in Fig. 2. The details are described below.

2.5.1. EEG preprocessing

The raw EEG datasets were processed offline using EEGLAB and
custom MATLAB (v2014a; MathWorks, Inc., USA) scripts. Independent
component analysis (ICA) was first applied to remove artifacts,
including blinks, eye movements, heartbeat, and myoelectricity (He
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Fig. 2. Analysis procedures for EEG data. (A) EEG preprocessing, (B) EEG data segmentation, (C) Time-frequency analysis to identify the specified response of
different frequency bands during the UG task, (D) ERP extraction and ERP components determination, (E) Time-varying ERP amplitude extraction based on the
sliding windows, (F) Interbrain causal model construction, and (G) Time-varying ERP prediction based on AXR model. Herein, FRN is the feedback-related negativity,
dPTE is the directional phase transfer entropy, and ARX is the autoregression with exogenous input.
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et al., 2006), using the Infomax ICA algorithm implemented via the
“runica” function in EEGLAB. The identification and removal of artifact
components were based on a visual examination of each component’s
topography, time course, and spectrum, in combination with MARA
(Winkler et al., 2011) and IClabel diagnoses (Pion-Tonachini et al.,
2019). On average, 1 to 3 artifact components were removed per
participant. The EEG data were then re-referenced to a neutral reference
using the Reference Electrode Standardization Technique (REST) (Yao,
2001). Thereafter, [1, 30] Hz offline bandpass filtering was applied to
the re-referenced data using the “pop_eegfiltnew” function in EEGLAB.
For both the proposer and responder, EEG data from the decision and
feedback stages were extracted based on event markers corresponding to
stimulus onset. Data epochs were segmented into 1-second windows,
ranging from 200 ms before to 800 ms after the onset of the visual
stimulus (i.e., when the task-relevant screen was presented), as shown in
Fig. 2B After identifying target trials (i.e., trials from proposer’s proposal
stage, responder’s response stage, and proposer’s feedback stage),
baseline correction (baseline from —200 to 0 ms) and artifact-trial
removal by a threshold of +120 pV were applied. Only those epochs
without artifacts were considered for further analysis. The proposer’s
proposal stage included 88.2 + 2.4 epochs, the responder’s response
stage included 88.7 + 2.4 epochs, and the proposer’s feedback stage
included 87.3 + 4.1 epochs.

2.5.2. ERP extraction

The frontal cortex plays a critical role in human decision-making, as
evidenced by its continuous internal monitoring of decision feedback
and processing of high-conflict decision situations (Amodio and Frith,
2006; Paret et al., 2016; Rushworth et al., 2011). Therefore, in this
study, frontal ERP is primarily extracted. Before ERP extraction, aiming
to investigate the dynamics of task-related brain activity in the fre-
quency domain, we acquired the time-frequency distributions (TFDs) for
time sequences from the frontal lobe by using the wavelet toolbox in
MATLAB (v2014a). Particularly, we first calculated the TFDs for each
artifact-free trial, and the TFDs were then grand-averaged across trials
and subjects to achieve mean TFDs for each experimental stage. The
results revealed that the task-related time-frequency activities predom-
inantly concentrated on [1 — 10] Hz (Fig. 4A), while higher frequency
bands were markedly attenuated. Therefore, we applied an additional
1-10 Hz band-pass filter prior to ERP averaging to emphasize the
dominant low-frequency components and enhance the signal-to-noise
ratio for visualization and analysis.

Considering consistent findings from numerous studies that pro-
posers make decisions with high conflict, resulting in increased activa-
tion in the frontal and central regions (Vallet et al., 2019; Yin et al.,
2016), we focused on the N200 component during the proposal stage.
Specifically, for each participant, the individual peak latency within
180-280 ms was identified separately at electrodes FCz and Fz. The
mean amplitude within +20 ms around each peak was then calculated
for each electrode, and these two values were averaged to obtain the
final N200 amplitude. N200 amplitudes under fair and unfair conditions
were then compared using two-tailed paired t-tests. Inspired by previous
research (Billeke et al., 2013; Polezzi et al., 2008b), we examined the
FRN and N500 components at electrode Fz during the response and
feedback stages. For the response phase, FRN amplitudes were extracted
by identifying individual peaks within 220-350 ms and calculating
mean amplitudes within £20 ms, under both fair and unfair conditions,
followed by two-tailed paired samples t-tests. During the feedback stage,
FRN (220-350 ms) and N500 (400-600 ms) amplitudes were similarly
extracted after proposal acceptance or rejection and compared using
two-tailed paired samples t-tests. All electrode selections and time
windows were informed by prior literature and visually confirmed in
grand-averaged waveforms. The details of the amplitude of the ERP
components extracted are reported in the SI Appendix.
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2.5.3. Estimation of preferential causality based on dPTE

To further investigate the interbrain causal coupling, the dPTE
(Hillebrand et al., 2016) was wielded to estimate the preferential cau-
sality of two time-varying ERP amplitude sequences derived from the
proposer and responder. The range of dPTE values is from 0 to 1, with a
threshold of 0.5 indicating no preferential direction of information flow.
If information flows from time series i to time series j, then 1 > dPTE;; >
0.5; conversely, 0 < dPTE;; < 0.5 holds for opposite directionality.
Specifically, to obtain time-varying ERP amplitude sequences, we
applied a 10-trial-length sliding window across the 90 trials. Each
window included 10 consecutive trials, and adjacent windows over-
lapped by 90 %, resulting in a total of 81 sliding windows. For each
window, EEG epochs were averaged to obtain a mini-ERP, from which
the N200, FRN, and N500 amplitudes were extracted as described
above. If any trials within a given window contained artifacts, they were
excluded before averaging. This procedure generated time-varying ERP
amplitude sequences. Subsequently, dPTE was calculated between the
ERP amplitude sequences from the two participants in each
proposer-responder pair. The final causality value was obtained by
averaging the dPTE values across all pairs. Detailed methods for dPTE
are provided in the SI Appendix.

Thereafter, permutation testing (1000 times) was used to determine
whether the observed (original) dPTE explained the pattern of infor-
mation flow between two time-varying amplitude sequences better than
would be expected by chance. Concretely, for the causal information
flow between two time-varying ERP amplitudes, the statistical signifi-
cance was assessed by a non-parametric permutation test. In each per-
mutation test, the time-varying N200/FRN/N500 amplitudes were
shuffled randomly, and the entire calculation process of dPTE was per-
formed to obtain a dPTE_perm based on the shuffled dataset. This pro-
cedure was repeated 1000 times, and the final p-value was calculated as
the proportion of permutations where the absolute deviation of dPTE -
perm from 0.5 was equal to or greater than that of the original dPTE.
This two-tailed permutation test allows detection of significant directed
information flow in either direction.

2.5.4. Autoregression with exogenous input model for ERP prediction

The ARX model has been widely employed for signal prediction
(Jiang et al., 2019). In this study, the improved ARX model was used to
describe the time-varying ERP interactions of the proposer and
responder. Specifically, the N200 amplitude sequence (i.e., input) of the
proposer was used to predict the FRN amplitude sequence (i.e., output)
of the responder, and the latter was subsequently employed to predict
the N500 amplitude sequence (i.e., output) during feedback from the
proposer. To avoid the influence of a participant’s own past ERP
amplitude series on the ARX prediction model, we used only the single
participant’s own past amplitude data and the reverse cross-brain model
for prediction, and then compared their predictive performance.
Importantly, to quantitatively index the performance of the predicting
model, the Pearson’s correlation coefficients between all participants’
actual and predicted amplitude under each sliding window, as well as
between all windows’ actual and predicted amplitude for each partici-
pant, together with root mean square error (RMSE), were calculated.
Further details regarding ARX can be found in the SI Appendix.

3. Results
3.1. Scale and individual behaviors

First, the changes in the interpersonal interaction-related scales (i.e.,
ITS and SAS) before and after conducting the UG experiments were
probed. Two-tailed paired sample t-tests revealed significant differences
in both ITS and SAS scores between pre- and post-task. For proposers,
post-task scores were significantly higher than pre-task scores for ITS
(mean change = +4.7 + 1.2, t = 4.072, p < 0.001) and SAS (mean
change = +0.3440.15, t = 2.274, p = 0.026). Similarly, responders also
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showed significant increases in ITS (mean change = +3.0 + 1.1, t =
2.684, p =0.009) and SAS (mean change = +0.25 + 0.12, t = 2.096,p =
0.040), as shown in Fig. 3A. Second, the time-varying fair offer rate
(tFO) of the proposer, time-varying acceptance rate (tAR) of the
responder, and the time-varying cumulative revenue (tCR) of the pro-
poser were calculated. To quantitatively describe the changing trend of
the behaviors, the linear fitting slope of each participant’s time-varying
behavior was calculated. By conducting the one-tailed hypothesis test
against zero for the slope, a gradual increase in tFO (t = 1.918, p =
0.030, showing a trend toward significance) of the proposer, tAR (t =
2.244, p = 0.014) of the responder, and tCR (t = 2.244, p = 0.014) of the
proposer were observed (see Fig. 3B). Furthermore, positive correlations
among these behaviors were found using Pearson’s correlation and
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predictive analysis. Detailed information was summarized in the SI
Appendix, Figs. S1A-B. Third, the associations between differences in
scales (i.e., ITS and SAS) and fluctuations in behavior before and after
the task were examined, with multiple correlations corrected using the
false discovery rate (FDR). As presented in Fig. 3C, the fluctuations of
the proposer’s cumulative revenue (r = 0.343, pppr = 0.004) were
positively correlated with their own ITS difference, and the fluctuations
of the proposer’s fair offer rate (r = 0.333, pppr = 0.006) were positively
related to the responder’s ITS difference. The correlation coefficient r
and the statistical significance level p between the scale differences and
the behavioral fluctuations as shown in Table S1.
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correlation coefficient, and p represents the statistical significance level.



Y. Li et al.
3.2. Grand-mean ERP statistics

The temporal dynamics of three ERP components (i.e., N200, FRN,
and N500) were explored in this study to unravel the development of
interpersonal interaction over time (Du et al., 2022). To investigate the
specified response of different frequency bands and time points during
the UG task, TFDs for both participants were initially calculated. Fig. 4A
shows the averaged TFDs on the frontal lobe. In specific, it was deter-
mined that brain activity during tasks was mainly concentrated in the
1~10 Hz frequency range; by contrast, the high band activity is

Proposer’s proposal stage

Responder’s response stage
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attenuated. Thus, a 1~10 Hz bandpass filter was applied to extract ERPs
accordingly. The filter was implemented using a zero-phase sinc finite
impulse response (FIR) filter with an order of 200 and a Hamming
window, applied via the “pop_eegfiltnew” function in EEGLAB. Ac-
cording to the results and previous research on decision-making
(Gehring and Willoughby, 2002; Hassall et al., 2019; Nieuwenhuis
et al., 2004; Polezzi et al., 2008b), this study mainly focused on the
N200, FRN, and N500 to investigate the ongoing interbrain interactions
during their participation in the UG tasks.

First, the N200 from the proposers was extracted during the proposal

Proposer’s feedback stage
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Fig. 4. Grand-mean ERP results. (A) Time-frequency distributions of the frontal lobe for the proposer’s proposal stage, responder’s response stage, and proposer’s
feedback stage. (B) The ERP waveforms under fair and unfair conditions for the proposers at the proposal stage. (C) The ERP waveforms under fair and unfair
conditions for the responders at the response stage. (D) The ERP waveforms under acceptance and rejection feedback for the proposer at the feedback stage. The blue
and red lines (shadows) indicate the mean (s.e.) of the fair (acceptance) and unfair (rejection) ERP in all subjects, respectively. Asterisk indicates statistically sig-
nificant difference (p < 0.05, two-tailed). (E) The topographic t-maps of both conditions (e.g., fair offer vs. unfair offer, and acceptance feedback vs. rejection
feedback). Higher t-values indicate greater differences, primarily localized in frontal regions. Warmer colors (e.g., red) indicate greater amplitudes for unfair offers
(N200, FRN) or rejection feedback (N500), while cooler colors (e.g., blue) indicate the opposite. Color bar represents t-values (unitless).
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stage. A two-tailed paired-samples t-test revealed a significant difference
in N200 amplitudes between unfair and fair proposals (p = 0.019), with
unfair proposals evoking larger amplitudes (—5.312 + 0.669 pV; mean
+ s.e.) than fair proposals (—4.481 + 0.521 pV) at electrodes FCz and Fz
(see Fig. 4B). A two-tailed paired-samples t-test revealed no statistically
significant difference in FRN amplitudes between unfair and fair pro-
posals (p = 0.08) at electrode Fz. However, a trend toward larger FRN
amplitudes in response to unfair proposals (—1.266 + 0.359 pV)
compared to fair proposals (—0.673 + 0.314 pV) was observed. Third,
the FRN and N500 amplitudes were extracted during the feedback stage.
A two-tailed paired-samples t-test revealed a significant difference in
N500 amplitudes between rejection and acceptance feedback (p <
0.001), with rejection feedback evoking larger amplitudes (—3.328 +
0.234 pV) than acceptance feedback (—1.305 + 0.180 pV) at electrode
Fz (see Fig. 4D). In contrast, there was no significant difference in FRN
amplitudes between acceptance (—0.433 + 0.200 pV) and rejection
(—0.364 + 0.331 pV) feedback (p = 0.415). Therefore, subsequent an-
alyses were performed based on the N200, FRN, and N500 components
of the proposal, response, and feedback stages, respectively. Meanwhile,
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paired samples t-tests were conducted to examine topographic differ-
ences in the amplitudes of three ERP components (i.e., N200, FRN, and
N500) between conditions (e.g., fair vs. unfair offers and acceptance vs.
rejection feedback). The resulting t-value topographic maps (Fig. 4E)
indicate that significant differences are predominantly localized in the
frontal cortex.

3.3. Interbrain causal model of the ERP components

The dPTE was used to assess the preferred direction of information
transmission for time-varying ERP amplitudes between proposers and
responders. The process of extracting time-varying ERP amplitude se-
quences for each participant is illustrated in Figs. 5A-C. By definition, a
dPTE,, greater than 0.5 indicates that information flows preferentially
from time series X to time series Y; whereas, a dPTE,, smaller than 0.5
indicates that information flows preferentially from time series Y to time
series X. Fig. 5D depicts the preferred direction of information flow.
There exists a subtle but significant causal pact of the proposer’s N200

amplitude on the responder’s FRN amplitude (dPTE = 0.5231,
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Ppermutation < 0.001, two-tailed) and the proposer’s N500 amplitude
(dPTE = 0.5137, ppermutation = 0.012, two-tailed). Additionally, in
determining the causal relationship between the brain activity of the
response and feedback stages, the responder’s FRN amplitude showed a
significant directional effect on the proposer’s N500 amplitude (dPTE =
0.5125, ppermutation = 0.020, two-tailed). Fig. S5E shows the permutation
test results.

Moreover, the relationships between ERP (i.e., N200, FRN, and
N500) and behavioral fluctuations (i.e., proposers’ fair offer rate, re-
sponders’ acceptance rate, and proposers’ cumulative revenue) were
explored and adjusted for multiple correlations using FDR. As shown in
Fig. 6, the fluctuations in fair offer rate (r = 0.348, pppgr = 0.004),
acceptance rate (r = 0.333, prpg = 0.005), and cumulative revenue (r =
0.293, prpr = 0.015) were significantly positively correlated with the
fluctuations in N500 amplitude. The correlation coefficient r and the
statistical significance level p between the behavior fluctuations and the
ERP fluctuations as depicted in Table S2.

3.4. Prediction results based on the interbrain causal relationships

To advance a comprehensive understanding of the functional
meaning of interbrain causal couplings during interpersonal negotia-
tions, prediction models were developed using ARX to account for time-
varying interbrain flows between the two participants. In the single-
brain prediction model, an individual’s own time-varying ERP ampli-
tude sequence served as both the input and the target output, thereby
modeling the prediction of future neural responses based solely on one’s
own past activity. In contrast, the causal and reverse causal cross-brain
prediction models used the partner’s signal as the input and the in-
dividual’s own signal as the output, enabling the prediction of future
neural activity based on both the individual’s and their partner’s past
signals. Fig. 7 depicts the correlation coefficient R and RMSE between
actual and predicted ERP amplitudes predicted for a single subject and
for a single sliding window (SW) by the causal cross-brain and single-
brain prediction models, respectively, and SI Appendix, Figs. S2-3 de-
picts the RMSE between the actual and predicted ERP amplitudes pre-
dicted for a single subject and for a single SW by the reverse causal cross-
brain prediction model, respectively.

Specifically, as shown in Figs. 7A-B, two-tailed paired samples t-tests
revealed that compared to the correlation coefficient R (single subject:
0.893 + 0.007 pV; single SW: 0.949+ 0.001 pV) and RMSE (single
subject: 0.817 + 0.018 pV; single SW: 0.828 + 0.008 pV) between actual
and predicted FRN amplitudes in the single-brain prediction model, the
correlation coefficient R (single subject: 0.918 + 0.005 pV; single SW:
0.960+ 0.001 pV, p < 0.001) between actual and predicted FRN am-
plitudes was found to be larger and the RMSE (single subject: 0.714 +
0.16 pV; single SW: 0.724 + 0.007 pV, p < 0.001) was found to be
smaller in the causal cross-brain prediction model. Figs. 7C-D illustrates
that the correlation coefficient R between the actual and predicted N500
amplitudes of the causal cross-brain prediction model (single subject:
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0.893 + 0.006 pV; single SW: 0.935 + 0.002 pV) were higher than that
of the single-brain prediction model (single subject: 0.867 + 0.007 pV;
single SW: 0.920 + 0.003 pV, p < 0.001), while the RMSE between the
actual and predicted N500 amplitudes of the causal cross-brain predic-
tion model (single subject: 0.721 + 0.024 pV; single SW: 0.744 + 0.010
pV) were lower than that of the single-brain prediction model (single
subject: 0.809 £ 0.026 pV; single SW: 0.832 £ 0.012 pV, p < 0.001).
Furthermore, to verify the unique predictive value of the causal cross-
brain prediction model, ERP amplitudes were predicted based on the
reverse cross-brain causal prediction model. The correlation coefficient
R of the reverse causal cross-brain prediction model was found to be
significantly lower, and the RMSE was found to be significantly higher
than those of the causal cross-brain and single-brain models. The cor-
responding results are summarized in the SI Appendix, Figs. S2-3.
Therefore, a prediction model that includes causal relationships be-
tween the brains of interacting individuals is more effective in predicting
performance than prediction models that do not include between-brain
and reverse causal relationships, as shown by the significantly larger
correlation coefficient R and smaller RMSE between the actual and
predicted ERP amplitudes.

4. Discussion

Understanding the social brain requires a two-person perspective
that captures its dynamic adaptations to others during ongoing in-
teractions (Redcay and Schilbach, 2019). However, the interbrain causal
mechanisms underlying interpersonal coordination, particularly in
asymmetrical decision-making contexts, remain unclear. In this study,
we employed EEG hyperscanning to investigate directional influences
between the brain activities of interacting individuals during economic
negotiation, and to examine interpersonal scales and behavioral changes
in participant pairs. The results show three key findings: 1) Reciprocal
patterns in interpersonal scales and behaviors, suggesting compromise
and cooperative behavior emerging from self-interest during negotia-
tion; 2) Significant ERP differences were found, with larger N200 in
proposers and a trend toward larger FRN in responders for unfair offers,
and larger N500 in proposers following rejection feedback; and 3) There
exists a causal coupling between time-varying ERP amplitudes, enabling
effective prediction of the partner’s subsequent brain activity. This study
is, to our knowledge, the first to investigate ERP-based causal couplings,
offering a promising approach for studying complex social behaviors
within EEG hyperscanning.

Social bonding is sustained by interactive experiences that shape
individual dispositions and internal preferences (Bault et al., 2017).
Rotter’s trust theory posits that trust is rooted in expectations shaped by
social exchanges (Rotter, 1967). The observed increase in interpersonal
trust and altruism scores after partner interaction suggests stronger
prosocial dispositions (Philippe Rushton et al., 1981; Thielmann et al.,
2020; van Dijk and De Dreu, 2021), with significant positive correlations
between trust scores and negotiation performance. These results imply
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that reciprocal beliefs are reinforced through repeated social exchanges
with unfamiliar partners, fostering trust and prosocial behavior that
facilitate cooperative negotiation. Interestingly, despite the post-task
increase in self-reported altruism, it did not correlate with behavioral
outcomes, suggesting that behavioral change in dynamic negotiation
may be more strongly driven by situational trust shaped through
ongoing interaction than by altruistic tendencies. This supports the
earlier observation of reciprocal patterns in interpersonal scales and
behaviors, indicating that cooperation emerges more from mutual
adaptation and self-interest negotiation than from generalized prosocial
traits. In behavioral terms, using real participants enhances ecological
validity over traditional UG paradigms. Responders’ tendencies to reject
low offers compelled proposers to share more equitably, resulting in
balanced outcomes and effective coordination as negotiations pro-
gressed. Prior behaviors informed each party’s intention, indicating that
feedback from responders on earlier proposals shaped proposers’ sub-
sequent offers, establishing adaptive and cooperative strategies.

At the neural level, ERP components (N200, FRN, and N500) varied
significantly across UG stages and conditions. During the proposal
phase, high N200 amplitudes for unfair offers reflected increased con-
flict processing, consistent with prior findings (Konig et al., 2021;
Whitehead et al., 2017). In the response phase, responders’ FRN
amplitude showed a trend toward greater negativity for unfair offers,
indicating a potential sensitivity to fairness violations (Fehr and Fisch-
bacher, 2003; Mayer et al., 2019). During feedback, rejection feedback
elicited a pronounced N500 response, reflecting proposers’ heightened
sensitivity to negative feedback (Bellebaum et al., 2010; Chen et al.,
2010). The N500 component may reflect the cognitive evaluation of
outcome expectancy violations and the adjustment of future decision
strategies. Significant correlations between N500 fluctuations and
behavioral adjustments further indicate that dynamic brain responses
are shaped by reciprocal behavioral cues, underscoring the iterative,
interactive nature of interpersonal negotiation.

Beyond individual neural changes, accumulating evidence suggests
that interbrain correlation is an inherent feature of complex social in-
teractions, primarily facilitating execution and coordination (Hasson
et al., 2012; Kingsbury and Hong, 2020; Zhang and Yartsev, 2019). Most
studies have examined interbrain synchrony, defined as the temporal
alignment of neural activity between social partners (Feldman, 2007;
Kingsbury et al., 2019; Valencia and Froese, 2020). However, the iter-
ated UG involves asymmetric proposer-responder roles, making it
essential to characterize the directionality of interbrain coupling to
better understand dynamic decision-making processes (Bilek et al.,
2022). Our findings demonstrate that temporal variations in the brain
activity of proposers and responders carry information about their
partner’s state, reflecting shared attention and mutual adaptation during
negotiations. Although emerging research has started to assess the
directionality of information flow between brains (Leong et al., 2017;
Qiao et al., 2025; Schippers et al., 2010), most have focused on joint
attention tasks or non-iterative paradigms. In contrast, by leveraging a
novel analytical framework based on time-varying ERP amplitudes and
dPTE, we identified interbrain causal coupling: the proposer had a sig-
nificant influence on responder’s neural information during the initial
phase, as proposers introduced offers, while the feedback phase closed
this loop, with responders’ choices guiding proposers’ future offers.
These findings align with prior work showing that interactive behavioral
information, mediated through real-time feedback and non-verbal cues,
fosters interbrain coupling within dyadic partners (Jiang et al., 2012;
Luft et al., 2022; Speer et al., 2024).

Notably, while the observed dPTE values indicate only modest de-
viations from 0.5, this pattern is consistent with prior research
(Hillebrand et al., 2016) and reflects a statistically reliable directional
bias in interactions of neural activities. This directional coupling,
although subtle, provides insight into how role-based asymmetries (e.g.,
proposer vs. responder) modulate the temporal evolution of neural in-
formation during dynamic social exchange. Like the neural synchrony
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observed in animal studies (Kingsbury et al., 2019), our ERP-based
prediction models demonstrate that including interbrain causal re-
lationships enables more accurate prediction of a partner’s brain activity
than single-brain models. This model of causal coupling illuminates how
interbrain dynamics evolve alongside behavioral negotiation, each
informing and refining the other.

In summary, this study identified distinct behavioral interaction
patterns and directional interbrain coupling during dyadic economic
negotiation. The use of ERP-based causal coupling provides new insights
into human behavior in asymmetrical interactive decision-making, with
implications for developing interventions targeting ERP-based coupling.
For instance, future studies could explore whether neuromodulation (e.
g., transcranial magnetic stimulation (TMS)) applied to one partner’s
brain activity might indirectly influence the other’s neural or behavioral
responses during interaction, thereby facilitating interpersonal coordi-
nation and providing further evidence for directional interbrain influ-
ence. Nevertheless, several limitations should be acknowledged. First,
although the observed causal effects reached statistical significance, the
corresponding effect sizes (dPTE values ~0.51-0.52) were modest.
These subtle effects warrant cautious interpretation. Future studies with
increased statistical power—through larger samples, improved signal-
to-noise ratio, or multimodal imaging—are necessary to validate and
extend these findings. Second, although there was a trend for unfair
proposals to evoke larger FRN amplitudes compared to fair proposals,
this difference did not reach statistical significance in two-tailed tests (p
= 0.08). This borderline result may reflect limited statistical power or
variability in neural responses, warranting further investigation with
larger samples. Finally, given the turn-taking, computer-mediated setup
of the current paradigm, future studies could adopt more naturalistic,
unconstrained interaction settings to capture interbrain causal dynamics
more profoundly, enriching our understanding of human social inter-
action in this most authentic form.
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