001     1052300
005     20260122203309.0
024 7 _ |a 10.3390/brainsci15090908
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00915
|2 datacite_doi
037 _ _ |a FZJ-2026-00915
082 _ _ |a 570
100 1 _ |a Ke, Hongjie
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Predicting Regional Cerebral Blood Flow Using Voxel-Wise Resting-State Functional MRI
260 _ _ |a Basel
|c 2025
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769095049_32683
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Methods: Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) artifacts. Cortical patterns of MDD-related CBF differences decoded from rsfMRI using a PVA-corrected approach showed excellent agreement with CBF measured using single-photon emission computed tomography (SPECT) and arterial spin labeling (ASL). A support vector machine algorithm was trained to decode cortical voxel-wise CBF from temporal and power-spectral features of voxel-level rsfMRI time series while accounting for PVA. Three datasets, Amish Connectome Project (N = 300; 179 M/121 F, both rsfMRI and ASL data), UK Biobank (N = 8396; 3097 M/5319 F, rsfMRI data), and Amen Clinics Inc. datasets (N = 372: N = 183 M/189 F, SPECT data), were used. Results: PVA-corrected CBF values predicted from rsfMRI showed significant correlation with the whole-brain (r = 0.54, p = 2 × 10−5) and 31 out of 34 regional (r = 0.33 to 0.59, p < 1.1 × 10−3) rCBF measures from 3D ASL. PVA-corrected rCBF values showed significant regional deficits in the UKBB MDD group (Cohen’s d = −0.30 to −0.56, p < 10−28), with the strongest effect sizes observed in the frontal and cingulate areas. The regional deficit pattern of MDD-related hypoperfusion showed excellent agreement with CBF deficits observed in the SPECT data (r = 0.74, p = 4.9 × 10−7). Consistent with previous findings, this new method suggests that perfusion signals can be predicted using voxel-wise rsfMRI signals. Conclusions: CBF values computed from widely available rsfMRI can be used to study the impact of neuropsychiatric disorders such as MDD on cerebral neurophysiology.Keywords:cerebral blood flow; partial volume correction; prediction; support vector machine; rsfMRI
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Adhikari, Bhim M.
|0 0009-0008-1047-4206
|b 1
700 1 _ |a Pan, Yezhi
|b 2
700 1 _ |a Keator, David B.
|b 3
700 1 _ |a Amen, Daniel
|b 4
700 1 _ |a Gao, Si
|0 0000-0002-4473-1142
|b 5
700 1 _ |a Ma, Yizhou
|b 6
700 1 _ |a Thompson, Paul M.
|0 0000-0002-4720-8867
|b 7
700 1 _ |a Jahanshad, Neda
|b 8
700 1 _ |a Turner, Jessica A.
|b 9
700 1 _ |a van Erp, Theo G. M.
|b 10
700 1 _ |a Milad, Mohammed R.
|b 11
700 1 _ |a Soares, Jair C.
|b 12
700 1 _ |a Calhoun, Vince D.
|b 13
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177727
|b 14
700 1 _ |a Hong, L. Elliot
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ma, Tianzhou
|0 0000-0003-3605-0811
|b 16
700 1 _ |a Kochunov, Peter
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.3390/brainsci15090908
|g Vol. 15, no. 9, p. 908 -
|0 PERI:(DE-600)2651993-8
|n 9
|p 908 -
|t Brain Sciences
|v 15
|y 2025
|x 2076-3425
856 4 _ |u https://juser.fz-juelich.de/record/1052300/files/J%C3%BCrgen25.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052300
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)177727
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:31:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:31:02Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21