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Abstract

Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychi-
atric disorders, including major depressive disorder (MDD). Methods: Here, we show that
rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while
correcting for partial volume averaging (PVA) artifacts. Cortical patterns of MDD-related
CBF differences decoded from rsfMRI using a PVA-corrected approach showed excel-
lent agreement with CBF measured using single-photon emission computed tomography
(SPECT) and arterial spin labeling (ASL). A support vector machine algorithm was trained
to decode cortical voxel-wise CBF from temporal and power-spectral features of voxel-level
rsfMRI time series while accounting for PVA. Three datasets, Amish Connectome Project
(N = 300; 179 M/121 F, both rsfMRI and ASL data), UK Biobank (N = 8396; 3097 M/5319
F, rsfMRI data), and Amen Clinics Inc. datasets (N = 372: N = 183 M/189 F, SPECT data),
were used. Results: PVA-corrected CBF values predicted from rsfMRI showed signifi-
cant correlation with the whole-brain (r = 0.54, p = 2 × 10−5) and 31 out of 34 regional
(r = 0.33 to 0.59, p < 1.1 × 10−3) rCBF measures from 3D ASL. PVA-corrected rCBF values
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showed significant regional deficits in the UKBB MDD group (Cohen’s d = −0.30 to −0.56,
p < 10−28), with the strongest effect sizes observed in the frontal and cingulate areas. The
regional deficit pattern of MDD-related hypoperfusion showed excellent agreement with
CBF deficits observed in the SPECT data (r = 0.74, p = 4.9 × 10−7). Consistent with previous
findings, this new method suggests that perfusion signals can be predicted using voxel-
wise rsfMRI signals. Conclusions: CBF values computed from widely available rsfMRI
can be used to study the impact of neuropsychiatric disorders such as MDD on cerebral
neurophysiology.

Keywords: cerebral blood flow; partial volume correction; prediction; support vector
machine; rsfMRI

1. Introduction
Cerebral blood flow (CBF) is a rigorously maintained physiological parameter re-

sponsible for the brain’s metabolic equilibrium and normal neurometabolic function [1].
Regional CBF (rCBF) alterations are associated with aging, cardiometabolic, and neuropsy-
chiatric illnesses, including major depressive disorder (MDD) and others [2–7]. CBF takes
up ~15% of the cardiovascular output [8], and there is a tight coupling between rCBF and
cerebral metabolism metabolic homeostasis [9]. In MDD, single-photon emission computed
tomography (SPECT) and positron emission tomography (PET) studies suggest that re-
gional cortical hypoperfusion is a specific biomarker linked to symptoms, cognitive deficits,
and clinical outcomes [5,10–13]. Specifically, lower rCBF in frontal areas and the cingulum
can serve as a prognostic tool to infer the successes of therapies, including deep-brain
stimulation for treatment-resistant depression [4,5,14]. However, most of the rCBF studies
in MDD and other neuropsychiatric disorders to date were performed in samples with
modest statistical power, as CBF data are costly and challenging to collect [5]. For exam-
ple, a recent meta-analysis of 42 studies reported an average sample size of N = 42 ± 26
(ranging from 11 to 100), and ~75% of the studies had fewer than 50 participants [14]. This
contributes to the high heterogeneity of rCBF findings in MDD and other disorders [14–16].
Here, we demonstrate that a practical proxy for rCBF can be derived from resting-state
functional MRI (rsfMRI). The advantage of this approach is that rsfMRI data are routinely
collected in large and inclusive cohorts, including the major national biobanks and clinical
neuroimaging consortia, thus providing statistically powerful samples to quantify regional
differences. We demonstrate how findings in predicted rCBF data from a large sample of
subjects with MDD and controls shows excellent agreement with ground-truth measures
derived from the classical SPECT-CBF measurement approach.

rCBF can be measured non-invasively using nuclear medicine techniques (SPECT/PET)
or with arterial spin labeling (ASL) MRI. It is quantified as the blood volume that flows
per unit mass per unit time in brain tissue (mL/100 g/min). rCBF data can be captured
at rest, during cognitive or behavioral tasks, or during a physiological challenge such
as hypercapnia [17]. Existing approaches to quantify rCBF have limitations that have
prevented their use in large and inclusive national and international biobanking efforts.
SPECT and PET can map CBF using radioactive blood flow tracers but they are limited
by high cost per study, radiation safety concerns—especially in healthy participants—and
low spatial resolution [18]. ASL imaging uses magnetically labeled blood as an exogenous
tracer and calculates CBF maps by fitting a multicompartmental perfusion model using
images acquired with and without labeling of inflowing blood [19]. However, ASL studies
also suffer from methodological limitations that have prevented their wide use, including
a relatively long acquisition time, low signal-to-noise ratio, and variable labeling perfor-
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mance. Together, these challenges have limited most rCBF studies, leading to challenges in
replication and reproducibility of biological findings.

Research carried out by our group and others shows that the measures extracted from
rsfMRI time series can serve as a proxy for rCBF [20,21]. RsfMRI evaluates the properties of
brain function by measuring changes in deoxyhemoglobin associated with neuronal activa-
tion in the resting state; this signal also reflects some of the changes underlying CBF [22–28].
We used a modification of the regional homogeneity quantification approach to derive a
proxy for voxel-wise CBF values that shows empirical sensitivity to both metabolic and
neuropsychiatric illnesses [2,3]. Chand and colleagues demonstrated that machine learning
can be used to predict rCBF from variance in the rsfMRI time series [29]. In their study, they
trained a support vector network to predict accuracy for rCBF values using atlas-based
measurements of the frequency power spectrum. Their approach showed a good agree-
ment between whole-brain predicted and measured CBF, but the prediction for rCBF was
variable by region. The potential issues contributing to this suboptimal prediction may
be due to confounding effects of partial volume averaging (PVA)—a situation explained
below. The novelties of this study from a methodological perspective include (A) prediction
being performed at the voxel level and the information from neighboring voxels also being
incorporated to achieve better prediction accuracy, (B) spectral features being extracted
from a wide range of frequencies compared to previous studies, and (C) the inclusion of
PVA correction. We included three datasets and compared case–control effects between
predicted and measured CBF.

The SPECT-, PET-, and MRI-based perfusion imaging approaches typically allow
insufficient spatial resolution to resolve the cortical gray matter (GM) ribbon that is evident
on high-resolution T1-weighted anatomical MRI. This limited resolution leads to PVA
artifacts because a single voxel may contain both high-and-low CBF GM and neighboring
white matter (WM)/cerebrospinal fluid (CSF) [30]. This PVA of multiple tissues leads to
artificially lowered cortical CBF estimates, which are reduced by a fraction dependent
on the ratio of the voxel size to the regional GM thickness or, more precisely, the GM
volume within the voxel. This is especially important for quantitative rCBF studies in
neuropsychiatric illnesses with regionally specific reductions in cortical GM, as it causes
artificially lower rCBF values in cases vs. controls [31]. Therefore, quantitative measures
of rCBF should account for PVA effects [31,32]. Here, we show that the variable regional
performance of the original approach by Chand and colleagues may have been caused by
a failure to account for PVA. We expand their model to include partial voxel occupancy
values to correct the reduction in rCBF influenced by PVA effects. We also train the original
model and show significant changes in the ability to accurately predict rCBF values and
regional MDD-related hypoperfusion.

Here, we propose to use the support vector machine (SVM) method to link the infor-
mation contained in the spectral features extracted from voxel-wise time-series data and
voxel-level CBF. Voxel-wise estimates, in contrast to regions-of-interest approaches used
before, can possibly correct for partial voxel occupancy and provide a better rCBF proxy
independent of the underlying atlas. SVM is a powerful and flexible supervised machine
learning method specifically designed for prediction problems with correlated features,
such as neighboring voxel-wise time series; the use of different kernel functions in SVM
makes it especially effective in handling high-dimensionality and complex non-linear and
non-separatable patterns common in voxel-wise imaging data. We aim to demonstrate
that the information and insight gained by training the SVM model is translatable across
diverse datasets.
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2. Materials and Methods
2.1. Study Sample

ACP: We analyzed data from a family-based cohort scanned with MRI as a part of
the Amish Connectome Project (ACP), consisting of 300 Amish participants (179 M/121
F, mean age ± s.d.: 37.5 ± 16.3 years) who had both rsfMRI and ASL data available
(https://www.humanconnectome.org/study/amish-connectome-project, accessed on 1
June 2025). All participants provided written informed consent on forms approved by the
Institutional Review Board of the University of Maryland Baltimore, Baltimore, MD, USA.

UKBB: The UKBB sample consisted of 18,898 participants (8833 M/10,065 F, mean
age ± s.d.: 63.2 ± 7.5 years) with rsfMRI and volumetric 3D T1-weighted MRI data. We
used the UKBB parser software to classify participants into subgroups based on their
ICD codes, medication information, symptom severity, hospital records, self-reported
diagnoses, and other variables using a previously published schema [33]. We separated
this sample into MDD cases, N = 2290 participants (790 M/1500 F, mean age ± s.d.:
62.1 ± 7.4 years) with recurrent MDD, and N = 6106 participants (2287 M/3819 F, mean
age ± s.d.: 61.9 ± 7.1 years) who were free of MDD or any other psychiatric condition. The
University of Maryland Baltimore provided the initial ethical approval for using the UKBB
datasets.

Amen Clinics Inc.: The Amen Clinics Inc. (ACI) sample included N = 372 participants
(N = 183 M/189 F, mean age ± s.d.: 45.3 ± 17.1 years). This sample consisted of healthy
controls and individuals experiencing symptoms of depression: N = 296 patients with
recurrent or first-episode MDD (N = 183/113 M/F, mean age ± s.d.: 46.1 ± 17.2 years) and
N = 76 healthy controls (34 M/42 F, mean age ± s.d.: 42.2 ± 17.2 years). All patients in the
study gave informed consent to have their anonymous data used in future research at the
time of their initial visit to the clinic. The study was approved by the Integ Review Board
(004-Amen Clinics Inc.) on 19 September 2014 and determined to be except category 4.

The demographics, inclusion/exclusion criteria, symptom scale ratings, and sample
characteristics for all study samples are detailed in the Supplementary Materials.

2.2. Arterial Spin Labeling Data Acquisition, Processing, and CBF Extraction

A 3T Siemens Prisma scanner with 64 channels and three-dimensional (3D) pseudo-
continuous ASL (pCASL) was used to acquire the arterial spin labeling (ASL) data that
included 13 pairs of labeled and control scans (see Supplementary Materials). A 3D T1-
weighted image was acquired for anatomical reference for tissue segmentation. A brain
volume (M0) was also acquired without background suppression to normalize the control-
label difference for CBF quantification. A standard single-compartment ASL model was
used for CBF perfusion estimation, and partial volume effects correction was performed
with a spatially regularized method [34] using the FSL software package. Spatial regulariza-
tion, motion correction, and partial volume corrections were performed in FSL v6.0.1. The
high-resolution structural image provided partial volume estimates (PVEs) for the different
tissue types (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)). Partial
volume-corrected CBF maps were used to extract the quantitative voxel-wise CBF signals
using the volumetric Desikan–Killiany (DK) atlas that consisted of thirty-four cortical brain
regions from each hemisphere.

2.3. RsfMRI Data Acquisition, Processing, Time-Series Extraction, and Spectral Features

For ACP participants, there were two rsfMRI scans; oblique axial acquisitions alter-
nated between phase encoding in the anterior-to-posterior (AP) and posterior-to-anterior
(PA) directions within a single run. Separate single-band reference images, acquired simi-
larly to resting scans, were used for spatial distortion correction. UKBB rsfMRI data were

https://www.humanconnectome.org/study/amish-connectome-project
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acquired on 3T Siemens Skyra scanners with the standard Siemens 32-channel receive head
coil (full protocols in the Supplementary Materials).

The rsfMRI data were processed using the analysis workflow developed by the En-
hancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium; details of
the processing steps have been described in prior publications [35,36] and the Supplemen-
tary Materials. The preprocessed data were then used to extract the voxel-wise time-series
data using the volumetric DK atlas, which consisted of thirty-four cortical brain regions
from each hemisphere. Voxel-wise time-series data were used to calculate the voxel-wise
spectral features from the power spectrum using Fourier transformation, and the spectral
features were then used in the rCBF prediction analysis.

2.4. Structural MRI Data Collection and Partial Voxel Occupancy Calculation

ACP T1-weighted imaging. High-resolution (0.8 mm isotropic), high-GM-WM con-
trast (~25%) T1-weighted images were acquired using a retrospective motion-corrected
protocol [37] using a 3T Siemens Prisma scanner equipped with a 64-channel head coil (see
the Supplementary Materials for details). Processing of T1-weighted structural data was
performed using the HCP preprocessing pipeline [38]. Briefly, we used T1-weighted images
produced by the PreFreeSurfer part of the workflow: correction for shape distortions, B1

homogeneity correction, registration to rsfMRI images for the same subject, registration to
the MNI space, and removal of the non-brain tissue.

UKBB T1-weighted imaging. Three-dimensional T1-weighted imaging (data field
20252) was performed at an isotropic resolution of 1 mm using a 3T Siemens Skyra scanner
equipped with a 32-channel coil. We used T1-weighted images following registration to the
MNI space, correction of B1 homogeneity, and removal of the non-brain tissue.

Following this preprocessing, T1-weighted ACP and UKBB images were segmented
into GM, WM, and CSF using the FSL-FAST tool v6.0.1, which provided partial tissue
segmentation maps [39]. The GM partial occupancy maps were smoothed with a 5 mm
full width at half maximum Gaussian filter and resampled to 2 mm isotropic resolution to
match the rsfMRI data. The partial voxel occupancy maps for GM were used to train the
PVA-corrected CBF predictor.

2.5. SPECT Data Acquisition, Processing, and Analyses

SPECT scans were acquired using a Picker (Philips) Prism XP 3000 triple-headed
gamma camera (Picker Int. Inc., Ohio Nuclear Medicine Division, Bedford Hills, OH, USA)
with low-energy, high-resolution fan beam collimators. For each procedure, a weight-
appropriate dose of 99 mTc–hexamethylpropyleneamine oxime was administered intra-
venously at rest while the subjects sat in a dimly lit room with their eyes open. Subjects
were scanned for approximately 30 min after injection. Data acquisition yielded 120 images
per scan, with each image separated by three degrees, spanning 360◦. A low-pass filter was
applied with a high cutoff, and Chang attenuation correction was performed [40]. The final
reconstructed image was 128 × 128 × 78, with a voxel size of 2.5 mm isotropic.

2.6. CBF Prediction Based on Voxel-Wise Cortical rsfMRI Data

The R package “e1071” [41] provided functionality for the support vector model (SVM)
regression with a radial basis function kernel [42]. We used the eight-bin schema of spectral
power density of the voxel-wise rsfMRI time series (with midpoints of 0.04, 0.12, 0.20, 0.28,
0.36, 0.44, 0.52, and 0.60 Hz). This range of frequencies covered the frequency range of
the signals captured in our fMRI acquisition, the ACP dataset. These frequency ranges
included the frequency bands reported by Chand and colleagues in their study [29]. This
created a feature vector of eight elements per voxel. We limited this analysis to cortical
voxels (based on the population-wide template) to remove the subcortical signals (Figure 1).
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We combined the features from six nearest neighboring voxels to improve the SNR (in total,
56 spectral features per voxel). In addition, a value between 0 and 1 (1 indicating 100%) of
GM tissue occupancy was used as an additional feature for the SVM model. During the
preliminary stages, several prediction models were explored, including Random Forest and
Gradient Boost approaches. However, SVM emerged as the better performer compared
to the other methods. The choices of the two most important tunning parameters in SVM,
“gamma” and “C”, were determined based on 10-fold cross-validation results. In addition,
we split our data into a training set and a testing set. We trained the model using two
approaches: with and without partial occupancy. For the latter, only the spectral features
were used for prediction. We identified an optimal SVM model from the training set and
evaluated the prediction accuracy (observed vs. predicted CBF correlation) of the selected
model in the testing set. The prediction accuracy of our model in the testing dataset was
reasonably close to the prediction in the training dataset. The model was trained twice. At
first, the partial occupancy parameter was set to 0 for all voxels, which corresponded to the
model used by Chand and colleagues [29]. Next, the partial GM occupancy parameter was
provided from the partial voxel segmentation map of the corresponding T1-weighted image;
the values ranged from 0 (no GM occupancy) to 1 (full GM occupancy). The computation
work for the prediction of CBF signals, including the partial occupancy metrics in the
analysis, was carried out for each voxel, voxel by voxel, instead of using the average signal
from the given brain regions, as in the study by Chand and colleagues [29]. However, all
the results, finally, were derived by averaging all the voxel-level computed measures across
the sixty-four DK atlas regions.

Figure 1. CBF prediction scheme using voxel-wise cortical rsfMRI data (sample for a representative
subject). R package e1071 provided the functionality for the support vector model (SVM) regression,
and the radial basis function kernel was used. We used an eight-bin schema of the spectral power
density of the voxel-wise rsfMRI time series, FB1 to FB8 (FB: frequency band), and frequency range
values for each band were provided. In addition, a value between 0 and 1 for gray matter (GM) tissue
occupancy was used as an additional feature for the SVM model.

2.7. Analysis

All statistical analyses were performed in R v4.3.2. Analyses were focused on evalua-
tion of PVA correction (including the partial occupancy metrics) for predicting voxel-wise
CBF from voxel-wise rsfMRI data and were performed in two independent cohorts. In the
ACP cohort, where both rsfMRI and CBF data were available, we evaluated the effects of
PVA correction on the accuracy of the CBF prediction. The ACP dataset was randomly
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split, with 2/3 of the data in the training set and 1/3 in the testing set. Note that the split
was performed in such a way that there was no age or sex difference between them, and
diagnosis was not taken into consideration. The testing dataset was used to perform a cor-
relation analysis of predicted and actual CBF for whole-brain average and 34 regional CBF
values calculated using the DK atlas regions. We used Bonferroni correction for multiple
comparisons (N = 34).

In UKBB, only rsfMRI data were available. We used PVA-corrected CBF prediction to
evaluate the pattern of regional CBF differences between MDD individuals and healthy
controls (HCs). We used Student’s t-tests to compare the rCBF, as predicted from rsfMRI for
MDD vs. HC group differences, and calculated Cohen’s d effect sizes, and their significance
was determined based on multiple comparison correction, N = 34.

In the Amen Clinics Inc. sample, only SPECT-measured CBF was available. We
processed the data, extracted the regional CBF values using DK atlas regions and then
calculated regional effect sizes for rCBF differences between MDD cases and HCs for each of
these atlas regions. Finally, the regional effect sizes for the rCBF differences between MDD
cases and HCs computed based on the rsfMRI data were compared to the corresponding
regional effect sizes obtained from the SPECT data. All the codes for CBF prediction,
statistical analyses, and examples are available at https://github.com/kehongjie/rsfMRI_
CBF, accessed on 1 June 2025.

3. Results
3.1. Effects of Including PVA on rCBF Prediction in the ACP Sample

The model parameter training step was performed using ~2 × 105 voxels comprising
the cortical GM for each subject in the training dataset. The prediction accuracy of the
original (uncorrected) and partial volume averaging (PVA)-corrected models evaluated
in the testing dataset are shown in Table 1. True, PVA-corrected/uncorrected CBF maps,
computed using the voxel-wise rsfMRI time-series data with and without PVA correction,
from a representative subject are shown in Figure S2. The PVA-corrected CBF values
averaged for the whole brain showed numerically higher correlation with measured,
whole-brain CBF values (r = 0.68 vs. 0.50, p = 2.5 × 10−13 vs. 4.2 × 10−7, for corrected vs.
original), and the difference in correlation coefficients approached statistical significance
(Z = 1.95, p = 0.05).

Table 1. Regional correlation coefficients between predicted rCBF values (original and PVA-corrected)
and rCBF values measured using ASL during the same session (ACP cohort). The statistically
significant values after multiple comparison corrections are bolded (p < 0.05/34 = 1.5 × 10−3). The
differences between the correlation coefficients (z-value) are presented.

Name of Region Abbreviation Original Model Corrected Model Z-Value of Difference
(Significance)

Banks of superior temporal
sulcus BSTS 0.26 (p = 1.2 × 10−2) 0.42 (p = 3.2 × 10−5) 1.21 (p = 1.9 × 10−1)

Caudal anterior cingulate CACG 0.16 (p = 1.1 × 10−1) 0.38 (p = 2.0 × 10−4) 1.64 (p = 1.0 × 10−1)

Caudal middle frontal gyrus CMFG 0.13 (p = 1.7 × 10−1) 0.41 (p = 4.6 × 10−5) 2.11 (p = 4.3 × 10−2)

Cuneus CU 0.16 (p = 1.2 × 10−1) 0.46 (p = 2.7 × 10−6) 2.38 (p = 2.3 × 10−2)

Entorhinal cortex EC 0.07 (p = 3.2 × 10−1) 0.59 (p = 2.8 × 10−10) 4.22 (p = 5.4 × 10−5)

Fusiform gyrus FG 0.13 (p = 1.8 × 10−1) 0.58 (p = 7.4 × 10−10) 3.70 (p = 4.3 × 10−4)

Inferior parietal gyrus IPG 0.24 (p = 2.0 × 10−2) 0.36 (p = 3.4 × 10−4) 0.95 (p = 2.5 × 10−1)

Inferior temporal gyrus ITG 0.14 (p = 1.5 × 10−1) 0.49 (p = 5.2 × 10−7) 2.74 (p = 9.3 × 10−3)

https://github.com/kehongjie/rsfMRI_CBF
https://github.com/kehongjie/rsfMRI_CBF
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Table 1. Cont.

Name of Region Abbreviation Original Model Corrected Model Z-Value of Difference
(Significance)

Isthmus cingulate gyrus ICG 0.17 (p = 8.8 × 10−2) 0.43 (p = 1.7 × 10−5) 1.97 (p = 5.7 × 10−2)

Lateral occipital gyrus LOG 0.16 (p = 1.0 × 10−1) 0.45 (p = 5.2 × 10−6) 2.23 (p = 3.3 × 10−2)

Lateral orbito-frontal gyrus LOFG 0.09 (p = 2.7 × 10−1) 0.49 (p = 5.8 × 10−7) 3.10 (p = 3.3 × 10−3)

Lingual gyrus LG 0.11 (p = 2.1 × 10−1) 0.51 (p = 1.4 × 10−7) 3.13 (p = 3.0 × 10−3)

Medial orbito-frontal gyrus MOFG 0.09 (p = 2.6 × 10−1) 0.42 (p = 2.3 × 10−5) 2.50 (p = 1.8 × 10−2)

Middle temporal gyrus MTG 0.16 (p = 1.1 × 10−1) 0.34 (p = 8.5 × 10−4) 1.35 (p = 1.6 × 10−1)

Para hippocampal gyrus PHIG 0.09 (p = 2.6 × 10−1) 0.55 (p = 5.2 × 10−9) 3.70 (p = 4.3 × 10−4)

Para central gyrus PaCG 0.07 (p = 3.0 × 10−1) 0.49 (p = 4.7 × 10−7) 3.23 (p = 2.2 × 10−3)

Pars-opercularis POP 0.19 (p = 6.8 × 10−2) 0.38 (p = 2.1 × 10−4) 1.43 (p = 1.4 × 10−1)

Pars-orbitalis POR 0.10 (p = 2.3 × 10−1) 0.33 (p = 1.1 × 10−3) 1.70 (p = 9.5 × 10−2)

Pars-triangularis PTR 0.12 (p = 2.0 × 10−1) 0.29 (p = 4.7 × 10−3) 1.28 (p = 1.8 × 10−1)

Pericalcarine PCAL 0.16 (p = 1.2 × 10−1) 0.48 (p = 9.1 × 10−7) 2.55 (p = 1.5 × 10−2)

Postcentral gyrus PoCG 0.09 (p = 2.6 × 10−1) 0.42 (p = 2.3 × 10−5) 2.51 (p = 1.7 × 10−2)

Posterior cingulate gyrus PCG 0.18 (p = 8.0 × 10−2) 0.39 (p = 1.0 × 10−4) 1.62 (p = 1.0 × 10−1)

Precentral gyrus PrCG 0.09 (p = 2.7 × 10−1) 0.46 (p = 2.9 × 10−6) 2.86 (p = 6.7 × 10−3)

Precuneus PCU 0.18 (p = 7.7 × 10−2) 0.42 (p = 2.6 × 10−5) 1.84 (p = 7.0 × 10−2)

Rostral anterior cingulate gyrus RACG 0.17 (p = 9.6 × 10−2) 0.36 (p = 3.9 × 10−4) 1.45 (p = 1.4 × 10−1)

Rostral middle frontal gyrus RMFG 0.09 (p = 2.7 × 10−1) 0.31 (p = 2.6 × 10−3) 1.62 (p = 1.1 × 10−1)

Superior frontal gyrus SFG 0.09 (p = 2.8 × 10−1) 0.45 (p = 5.0 × 10−6) 2.79 (p = 8.1 × 10−3)

Superior parietal gyrus SPG 0.17 (p = 9.8 × 10−2) 0.49 (p = 6.6 × 10−7) 2.51 (p = 1.7 × 10−2)

Superior temporal gyrus STG 0.15 (p = 1.3 × 10−1) 0.35 (p = 5.7 × 10−4) 1.50 (p = 1.3 × 10−1)

Supramarginal gyrus SMG 0.23 (p = 2.8 × 10−2) 0.40 (p = 7.4 × 10−5) 1.33 (p = 1.7 × 10−1)

Frontal pole FP 0.12 (p = 1.9 × 10−1) 0.53 (p = 3.6 × 10−8) 3.23 (p = 2.1 × 10−3)

Temporal pole TP 0.15 (p = 1.4 × 10−1) 0.50 (p = 2.5 × 10−7) 2.79 (p = 8.0 × 10−3)

Transverse temporal gyrus TTG 0.18 (p = 7.2 × 10−2) 0.27 (p = 8.7 × 10−3) 0.65 (p = 3.2 × 10−1)

Insula IN 0.18 (p = 7.7 × 10−2) 0.42 (p = 2.3 × 10−5) 1.87 (p = 7.0 × 10−2)

The predicted and measured voxel-wise CBF values were averaged in the testing
dataset for the N = 34 DK atlas cortical regions that provided the regional metrics. The
uncorrected (original) model showed no significant correlations between measured and
predicted CBF values (for N = 34 multiple-comparison correction). In contrast, the PVA-
corrected model showed significant correlation between predicted and measured CBF for
31 regions (average r ± s.e. = 0.43 ± 0.07). This improvement was statistically significant
(p = 3.0 × 10−5) based on a pairwise t-test when compared to the average correlation
coefficient observed for the original model (average r ± s.e. = 0.14 ± 0.04). The CBF
values predicted by the PVA-corrected model were significantly correlated with measured
CBF values for 31 out of 34 regions (r = 0.32 to 0.59, all p < 0.0015). The correction was
nominally significant (p < 0.05) for the remaining three structures: pars triangularis (PTR,
r = 0.29), rostral middle frontal gyrus (RMFG, r = 0.31), and transverse temporal gyrus
(TTG, r = 0.27). The difference in the correlation coefficients between the original and
PVA-corrected models was significant (p < 0.05) for 18 regions (Table 1).
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3.2. rCBF Differences Between the UKBB MDD Cohort and the Amen Clinics Inc. Cohort

The voxel-wise PVA-corrected CBF values for the UKBB subjects were averaged to
produce 34 regional rCBF values. The effect sizes of the predicted CBF (for corrected model)
differences between MDD cases and HCs are shown in Figures 2 and 3A. The stronger
effect sizes were more negative and are represented by hotter colors. MDD was associated
with significantly lower CBF for 32 cortical regions. The strongest negative effect sizes
were observed in the superior frontal, inferior parietal, and postcentral gyri (effect sizes:
−0.38/−0.37 ± 0.2, p < 10−16). The predicted CBF differences for fusiform and rostral
anterior cingulate areas did not show significant differences between participants with
MDD and HCs. The PVA-corrected rCBF values in the UKBB controls showed a strong
positive correlation with the PVA-corrected rCBF values in the ACP cohort (Figure S3).

 
Figure 2. Brain surface rendered effect size maps: The effect sizes of the (A) predicted CBF (for
corrected model) differences between MDD cases and controls for the UKBB cohort and (B) CBF
differences between MDD cases and controls in the Amen Clinic Inc. cohort. Each subplot was
supplied with a color bar, and a vertical white mark in the color bar represents the color that
corresponds to corrected p < 0.05 (multiple corrections). Note that the stronger negative effect sizes
are represented by hotter colors.

Figure 3. Cohen’s d effect sizes for predicted CBF with and without partial voxel averaging (PVA)
correction and CBF measured by SPECT. Subplot (A) shows regional effect size values, whereas
subplots (B,C) show the relationship between MDD-related regional CBF differences as measured by
SPECT and the MDD-related regional differences based on rsfMRI-derived CBF measurement with
and without PVA correction.
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The rCBF effect sizes in the Amen Clinics Inc. cohort showed regions where MDD
cases differed significantly from HCs, and these were significant for 18 out of 34 regions
(d = −0.70 to −0.36, p < 0.0015; d means Cohen’s d in this manuscript) (Table 2). The highest
regional effect sizes were observed for the lateral orbitofrontal (LG) (d = −0.70) followed by
the precuneus (PCU) and supramarginal (SG) areas (d = −0.67) (see Figure 3A).

Table 2. Regional MDD effect sizes for predicted rCBF values with PVA correction (UKBB cohort)
and for rCBF values measured using SPECT (Amen Clinics Inc. cohort). The statistically significant
values after multiple-comparison corrections are in boldface (p < 0.05/34 = 1.5 × 10−3).

Region Abbreviation MDD Effect Size (UKBB) MDD Effect Size (Amen
Clinics Inc.)

Banks of superior temporal sulcus BSTS −0.28 (p < 10−16) −0.27 (p = 0.01)

Caudal anterior cingulate CACG −0.34 (p < 10−16) −0.55 (p = 6 × 10−7)

Caudal middle frontal gyrus CMFG −0.10 (p = 4 × 10−5) −0.29 (p = 0.009)

Cuneus CU −0.24 (p < 10−16) −0.33 (p = 0.002)

Entorhinal cortex EC −0.13 (p = 3 × 10−8) −0.03 (p = 0.4)

Fusiform gyrus FG −0.27 (p < 10−16) −0.46 (p = 3 × 10−5)

Inferior parietal gyrus IPG −0.20 (p < 10−16) −0.45 (p = 3 × 10−5)

Inferior temporal gyrus ITG −0.25 (p < 10−16) −0.27 (p = 0.02)

Isthmus cingulate gyrus ICG −0.39 (p < 10−16) −0.41 (p = 2 × 10−4)

Lateral occipital gyrus LOG −0.24 (p < 10−16) −0.37 (p = 1 × 10−3)

Lateral orbito-frontal gyrus LOFG −0.30 (p < 10−16) −0.70 (p = 2 × 10−10)

Lingual gyrus LG −0.19 (p = 10−16) −0.18 (p = 0.09)

Medial orbito-frontal gyrus MOFG −0.29 (p < 10−16) −0.58 (p = 1 × 10−7)

Middle temporal gyrus MTG −0.32 (p < 10−16) −0.64 (p = 6 × 10−9)

Para hippocampal gyrus PHIG −0.28 (p < 10−16) −0.28 (p = 0.01)

Para central gyrus PaCG −0.25 (p < 10−16) −0.41 (p = 2 × 10−4)

Pars-opercularis POP −0.37 (p < 10−16) −0.67 (p = 1 × 10−9)

Pars-orbitalis POR −0.31 (p < 10−16) −0.27 (p = 0.02)

Pars-triangularis PTR −0.35 (p < 10−16) −0.69 (p = 4 × 10−10)

Pericalcarine PCAL −0.10 (p = 1 × 10−5) −0.03 (p = 0.4)

Postcentral gyrus PoCG −0.25 (p < 10−16) −0.32 (p = 0.004)

Posterior cingulate gyrus PCG −0.17 (p = 1 × 10−14) 0.19 (p = 0.08)

Precentral gyrus PrCG −0.31 (p < 10−16) −0.26 (p = 0.02)

Precuneus PCU −0.24 (p < 10−16) −0.37 (p = 8 × 10−4)

Rostral anterior cingulate gyrus RACG −0.03 (p = 0.2) −0.005 (p = 0.4)

Rostral middle frontal gyrus RMFG −0.30 (p < 10−16) −0.56 (p = 3 × 10−7)

Superior frontal gyrus SFG −0.38 (p < 10−16) −0.42 (p = 2 × 10−4)

Superior parietal gyrus SPG −0.17 (p = 3 × 10−14) −0.29 (p = 0.008)

Superior temporal gyrus STG −0.31 (p < 10−16) −0.67 (p = 1 × 10−9)

Supramarginal gyrus SMG −0.25 (p < 10−16) −0.51 (p = 2 × 10−6)

Frontal pole FP −0.06 (p = 0.008) 0.06 (p = 0.3)

Temporal pole TP −0.24 (p < 10−16) −0.46 (p = 3 × 10−5)

Transverse temporal gyrus TTG −0.14 (p = 1 × 10−8) −0.36 (p = 1 × 10−3)

Insula IN −0.34 (p < 10−16) −0.39 (p = 4 × 10−4)
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The regional effects for predicted CBF values in the UKBB cohort showed statistically
significant positive correlations with those computed from the Amen Clinics Inc. SPECT
data (r = 0.74, p = 4.9 × 10−7 (see Figure 3B). This suggests a good agreement between
the MDD-related rCBF differences as measured by SPECT and the MDD-related regional
differences based on rsfMRI-derived CBF measurement.

In the post hoc analyses, we re-calculated the CBF effect sizes in the UKBB sample
using the original, non-PVA-corrected model by Chand and colleagues (Table S1). The com-
puted effect sizes were also significantly correlated with the effect sizes observed from the
Amen Clinics Inc. cohort, but the correlation coefficient was numerically lower (Figure 3C).
We further calculated the MDD-related effect sizes for regional cortical thickness in the
UKBB sample (Table S2). These effect sizes were not significantly correlated with predicted
CBF values (p > 0.4). However, effect sizes for cortical GM thickness in the UKBB were
significantly correlated with those reported by the ENIGMA-MDD workgroup (r = 0.64,
p = 5 × 10−4). Moreover, the differences in the numbers of voxels that the ROIs contained
showed no differences in predicted and measured voxel-wise CBF values between groups
and datasets. We further calculated and tabulated correlation coefficients with age for
the rCBF values predicted using the original and PVA-corrected rCBF values for the non-
psychiatric controls of the UKBB sample (Table S3). The correlation coefficients between
regional measurements of the cortical GM thickness and age were also calculated. The
scatter plots between regional r-values for rCBF and GM thickness showed that the regional
variance in rCBF values predicted using the original model was significantly explained
by a reduction in cortical GM thickness with age (r = 0.43, p = 0.01) (Figure S4A). The
PVA-corrected rCBF showed no significant correlation with aging-related trends in cortical
GM thickness (r = 0.11, p = 0.54) (Figure S4B).

4. Discussion
This study demonstrated that a proxy measurement for rCBF, a sensitive phenotype for

neuropsychiatric and metabolic illnesses, can be derived from widely available rsfMRI. We
extended the original work by Chand and colleagues which found that the spectral features
of rsfMRI signals [29] can be used to decode rCBF. The study by Chand and colleagues was
performed using averaged region-wise data and showed variable, by region, performance
in predicting rCBF. We performed this analysis at the voxel-wise level, while correcting
for PVA artifacts. This improved the ability of the original method to accurately predict
rCBF. We found that rCBF values, predicted from rsfMRI data, demonstrate a pattern of
significant effect sizes associated with the recurrent MDD in a large and inclusive sample
of participants in the UKBB study. This regional pattern showed good agreement with the
pattern of rCBF differences in MDD patients measured using the SPECT modality. Overall,
we showed that a useful and practical rCBF proxy signal can reliably be predicted from the
rsfMRI data, which are widely available in many large-scale biobanks and clinical cohorts
with neuroimaging, thus providing a valuable phenotype for studies of neuropsychiatric
disorders where more direct measures of rCBF may not be available.

The study by Chand and colleagues used the SVM to decode rCBF signals from the
spectral features extracted from region-wise average rsfMRI signals. We made this approach
more focused and practical by performing this prediction on a voxel-by-voxel level. This
offers two advantages over region-of-interest approaches: the voxel-wise prediction can
be corrected for PVA, and the predicted rCBF signal is independent of the underlying
atlas/regions of interest. The PVA correction is necessary for quantitative analysis of
the nuclear medicine studies, including SPECT and PET, where the sampling resolution
(voxel dimensions of 4–8 mm) is insufficient to resolve the cortical GM ribbon [31,32]. The
rsfMRI and ASL sequences have a much higher spatial resolution (~2–3 mm) than PET
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or SPECT data. However, PVA is still needed for quantitative rCBF analysis in studies of
neuropsychiatric disorders, where the lower GM thickness in cases can lead to an artificial
apparent reduction in the measured rCBF. The scatter plots between regional r-values for
rCBF and GM thickness showed that the regional variance in rCBF values predicted using
the original model was significantly explained by a reduction in cortical GM thickness
with age (Figure S4A). The PVA-corrected rCBF showed no significant correlation with
aging-related trends, and this was also true for cortical GM thickness (Figure S4B). These
finding replicate previous reports by our group and others that uncorrected, average
cortical uptake values are proportional to regional cortical thickness values and that the
aging trends in PVA-corrected cortical uptake values are independent of the aging trends
in cortical thickness [31,32,43,44].

We used CBF difference in MDD to demonstrate the practical application of rCBF pre-
diction. The PVA-corrected rCBF predictions from rsfMRI showed remarkable agreement
with rCBF patterns derived using the classical SPECT approach from an independent clini-
cal sample of people experiencing an acute depressive episode. We chose MDD as it is one
of the most common neuropsychiatric illnesses affecting ~10% of the population. Findings
of cerebral hypoperfusion in MDD are replicable and predictive of the clinical state and
treatment outcome [4,5,43]. On the other hand, subjects with MDD show only modest dif-
ferences in cortical GM thickness, which is, likewise, a replicable finding [42,43]. Research
findings from the SPECT/PET data were used to hypothesize that MDD is specifically
associated with the hypoperfusion of the limbic–frontal circuitry, including the dorsolateral
frontal and cingulate areas, and linked it to cognitive and behavioral deficits [45]. This
consistency in regional findings between rsfMRI measures (local connectivity) and CBF
provides a plausible physiological mechanism by linking patterns of lower regional val-
ues to patterns of lower regional CBF. Lower rsfMRI values in the cingulate, frontal, and
temporal areas were reported in patients with MDD and were correlated with symptom
severity and cognitive performance [46,47]. These areas show the highest MDD-related
effect sizes in the UKBB and Amen Clinics Inc. datasets. However, the effect sizes were
statistically significant; they were mostly small to medium, and those that included parietal
and temporal areas were more widespread. The UKBB sample consisted of 8396 partici-
pants, a comparatively larger sample size, with a mean age ± s.d. of 62.0 ± 7.2 years, which
afforded higher statistical power (significant rCBF reductions in 32/34 regions), whereas
the ACI sample consisted of 372 participants, a comparatively smaller sample size, with
a mean age ± s.d. of 45.3 ± 17.1 years, thus leading to larger variation in the effect sizes
(significant rCBF reductions in 18/34 regions). Note that the UKBB MDD participants
were a non-treatment-seeking population, whereas the ACI participants were specialty
treatment-seeking MDD patients. Our post hoc analysis demonstrated that the pattern of
regional effects for the PVA-corrected rCBF pattern did not overlap with the effects of the
MDD on regional cortical thickness, yet the MDD effect on cortical thickness was in good
agreement with those reported by ENIGMA-MDD workgroup.

This study has limitations. The original prediction approach piloted by Chand and
colleagues was focused on cortical phenotypes and excluded the subcortical brain structures.
We likewise limited our analysis to the cortical voxels and excluded subcortical regions.
The rCBF prediction and PVA correction for the subcortical regions will likely require
training of a separate SVM predictor (which needs to be explored) because the patterns of
association between power spectra and CBF differ between cortical and subcortical regions.
Likewise, the patterns of PVA may differ as well because subcortical GM nuclei often
include penetrating white matter tracts, where accurate GM/WM ratios will be needed,
thus requiring a different PVA correction training. Moreover, including the contribution
of WM CBF and WM voxel occupancy measures for predicting CBF values remains to
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be considered and explored in detail in a future study. In addition, it is unlikely that
the outcomes of the training will be translatable across all rsfMRI protocols. We showed
that the training of the rCBF predictor on the ACP data showed good performance in the
UKBB sample, but both datasets were collected using Siemens 3T scanners and multiband
sequences with similar acquisition parameters. Significant deviation from this protocol is
expected to require a re-training of the rCBF prediction approach. Of the three datasets, only
the ACP dataset includes both ASL and rsfMRI data from the same subjects, allowing for
direct validation of rsfMRI-predicted CBF against ASL measurements, but the UKBB dataset
provides only rsfMRI data, while ACI includes only SPECT data. The validation of these
datasets was indirect, relying on effect size correlations. Moreover, our analysis included
possible frequency ranges in rsfMRI data, which include respiratory cycles and frequency
(>0.5 Hz). We found no association between the spectral power density and noise calculated
from raw rsfMRI data (Figure S5). The effects of the physiological noise components could
have been corrected if physiological recordings for respiratory and cardiac cycles were
available, which would have strengthened the spectral features’ robustness. In addition,
this study mainly aimed to determine the overall trend of contrast between MDD and
control subjects at the population level; how it differs from other clinical characteristics
needs to be explored in future studies or clinical trials specifically focusing on MDD patients,
with MDD subtypes taken into consideration. Note that while age and sex differ across the
cohorts, inferences drawn here still need to be interpreted with caution, even though the
regional effects for predicted CBF from rsfMRI data in the UKBB sample were significantly
correlated with the CBF measured with the SPECT data in the Amen Clinics Inc. sample.
We here used the machine learning approach that captures statistical associations rather
than physiologically meaningful relationships. It still opens up the avenue for using a
biophysical model as an alternative approach that strengthens the interpretability and
reliability of research findings needed for clinical translation.

5. Conclusions
This study demonstrated that rCBF can be predicted from the frequency spectra of

rsfMRI data. This provides an opportunity to study effects of neuropsychiatric illnesses on
rCBF because of the much wider availability of rsfMRI compared to ASL/SPECT/PET data
in large and inclusive datasets such as the UKBB, ABCD, and HCP datasets, as well as in the
ENIGMA Consortium clinical working groups. We further demonstrated that the correction
for PVA is a necessary step during this analysis. PVA-corrected rCBF values showed better
agreement with ASL-derived CBF values in the testing dataset and SPECT-derived MDD
effect sizes. The uncorrected rCBF values showed statistically weaker association with
ASL-derived CBF values and SPECT-derived MDD effect sizes. Overall, a useful and
practical rCBF proxy signal can reliably be predicted from the rsfMRI data, which can be a
putative biomarker for brain disorders.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/brainsci15090908/s1: Table S1. Regional MDD effect size for pre-
dicted rCBF values with no PVA-correction for the UKBB cohort. Table S2. Correlation between corti-
cal thickness with age and MDD effect size for cortical thickness (UKBB cohort). Table S3. Correlation
coefficients between predicted CBF (no PVA-correction and with PVA-correction) with age (UKBB
cohort). Figure S1: Brief summary outline illustrating the three datasets used in the study.
Figure S2: Representative CBF maps for a participant from the ACP cohort. Figure S3: Relationship
between average PVA-corrected regional CBF between the ACP and UKBB cohorts (controls). Voxel-
wise CBF values were predicted using voxel-wise rsfMRI timeseries data first and then signals were
averaged from corresponding voxels to get the average regional CBF values. Figure S4: Relationship
between the correlation values for gray matter (GM) thickness vs. age and the correlation values for
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predicted regional CBF values (no PVA-corrected and PVA-corrected) vs. age. Figure S5: Relationship
between noise signals from the raw rsfMRI data using MPPCA denoising technique and the corre-
sponding band-wise spectral power density measures (N = 40). Figure S6: Association between the
average predicted rCBF values (DK atlas) from the UKBB healthy controls and the correspondingly
measured rCBF values from the Amen Clinics Inc. healthy controls.
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