001     1052307
005     20260122220308.0
037 _ _ |a FZJ-2026-00918
088 _ _ |2 Other
|a Whitepaper 1
100 1 _ |0 P:(DE-Juel1)180916
|a Aach, Marcel
|b 0
|u fzj
245 _ _ |a Automotive Foundation Models: Fundamentals, Training Concepts and Applications
260 _ _ |c 2025
300 _ _ |a 177 p.
336 7 _ |2 DRIVER
|a report
336 7 _ |2 ORCID
|a REPORT
336 7 _ |0 10
|2 EndNote
|a Report
336 7 _ |2 DataCite
|a Output Types/Report
336 7 _ |0 PUB:(DE-HGF)29
|2 PUB:(DE-HGF)
|a Report
|b report
|m report
|s 1769095269_32683
336 7 _ |2 BibTeX
|a TECHREPORT
520 _ _ |a Generative AI has gained wide attention through large-scale models such as DALL-E 3, StableDiffusion, and GPT-4, creating new opportunities for innovation while raising important ethicalquestions. At the core of these advancements are foundation models: massive neural networkspretrained on extensive datasets and designed to adapt across diverse tasks and data modalities.Their ability to unify camera, LiDAR, radar, and other sensor data has significant potential forenhancing perception, prediction, and planning in autonomous driving.
This report discusses the fundamental concepts underlying foundation models, including theirarchitectural structures, training regimens, and interpretability considerations. It examines cur-rent literature for foundation models and their application and use in the domain of autonomousdriving. Techniques for generative sensor data synthesis are outlined, demonstrating how arti-ficial datasets can replicate complex driving environments and reduce the expense of collectingreal-world samples. Methods for extending these generative approaches to sequential or videodata are also highlighted, enabling realistic motion forecasting and scenario simulation. Fi-nally, the report explores how abstract representations, such as semantic maps or symbolic data,can increase explainability and computational efficiency when applied to autonomous driving.This whitepaper aims to provide both foundational understanding and practical guidance ofthe current state-of-the-art for leveraging generative AI and foundation models in the field ofautonomous driving.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5112
|a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 1
536 _ _ |0 G:(BMWK)19A23014l
|a nxtAIM - nxtAIM – NXT GEN AI Methods (19A23014l)
|c 19A23014l
|x 2
536 _ _ |0 G:(DE-Juel-1)SDLFSE
|a SDL Fluids & Solids Engineering
|c SDLFSE
|x 3
700 1 _ |0 P:(DE-HGF)0
|a Adolph, Laurenz
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Baumann, Stefan
|b 2
700 1 _ |0 P:(DE-Juel1)192312
|a Benassou, Sabrina
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bernhard, David
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Bernhard, Sebastian
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Bouzidi, Mohamed-Khalil
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Braun, Markus
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Brox, Thomas
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Burdorf, Sven
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Dauner, Daniel
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Graaff, Thies de
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Doğan, Samed
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Derajic, Bojan
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Flohr, Fabian
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Galesso, Silvio
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Ganzer, Malte
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Gottschalk, Hanno
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Heid, Dominik
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Heue, Falk
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Hu, Tao
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Hubschneider, Christian
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Kästingschäfer, Marius
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Keser, Mert
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Khongsab, Peerayut
|b 24
700 1 _ |0 P:(DE-HGF)0
|a Kowol, Kamil
|b 25
700 1 _ |0 P:(DE-HGF)0
|a Krause, Felix
|b 26
700 1 _ |0 P:(DE-HGF)0
|a Kromm, Edward
|b 27
700 1 _ |0 P:(DE-HGF)0
|a Lucente, Giovanni
|b 28
700 1 _ |0 P:(DE-HGF)0
|a Lukin, Artem
|b 29
700 1 _ |0 P:(DE-HGF)0
|a Mariani, Annajoyce
|b 30
700 1 _ |0 P:(DE-HGF)0
|a Mittal, Sudhanshu
|b 31
700 1 _ |0 P:(DE-HGF)0
|a Mousakhan, Arian
|b 32
700 1 _ |0 P:(DE-HGF)0
|a Mualla, Firas
|b 33
700 1 _ |0 P:(DE-HGF)0
|a Molin, Adam
|b 34
700 1 _ |0 P:(DE-HGF)0
|a Neuhöfer, Jonas
|b 35
700 1 _ |0 P:(DE-HGF)0
|a Niemeijer, Joshua
|b 36
700 1 _ |0 P:(DE-HGF)0
|a Bernal, Christian Ojeda
|b 37
700 1 _ |0 P:(DE-HGF)0
|a Ommer, Björn
|b 38
700 1 _ |0 P:(DE-HGF)0
|a Ourania Tze, Christina
|b 39
700 1 _ |0 P:(DE-HGF)0
|a Peyinghaus, Sven
|b 40
700 1 _ |0 P:(DE-HGF)0
|a Piecha, Pascal
|b 41
700 1 _ |0 P:(DE-HGF)0
|a Prestel, Ulrich
|b 42
700 1 _ |0 P:(DE-HGF)0
|a Ramazzina, Andrea
|b 43
700 1 _ |0 P:(DE-HGF)0
|a Reichardt, Jörg
|b 44
700 1 _ |0 P:(DE-HGF)0
|a Rist, Christoph
|b 45
700 1 _ |0 P:(DE-HGF)0
|a Ritter, Werner
|b 46
700 1 _ |0 P:(DE-HGF)0
|a Rochau, Dennis
|b 47
700 1 _ |0 P:(DE-HGF)0
|a Savarino, Fabrizio
|b 48
700 1 _ |0 P:(DE-HGF)0
|a Schenkel, Philipp
|b 49
700 1 _ |0 P:(DE-HGF)0
|a Schlauch, Christian
|b 50
700 1 _ |0 P:(DE-HGF)0
|a Schmidt, Julian
|b 51
700 1 _ |0 P:(DE-HGF)0
|a Taş, Ömer Şahin
|b 52
700 1 _ |0 P:(DE-HGF)0
|a Thiel, Laurenz
|b 53
700 1 _ |0 P:(DE-HGF)0
|a Vivekanandan, Abhishek
|b 54
700 1 _ |0 P:(DE-HGF)0
|a Walz, Stefanie
|b 55
700 1 _ |0 P:(DE-Juel1)200557
|a Wang, Jiangtao
|b 56
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Wang, Zhaoze
|b 57
700 1 _ |0 P:(DE-HGF)0
|a Wiederer, Julian
|b 58
700 1 _ |0 P:(DE-HGF)0
|a Winter, Katharina
|b 59
700 1 _ |0 P:(DE-HGF)0
|a Wunderlich, Carolin
|b 60
700 1 _ |0 P:(DE-HGF)0
|a Yadav, Harsh
|b 61
700 1 _ |0 P:(DE-HGF)0
|a Yao, Yue
|b 62
700 1 _ |0 P:(DE-HGF)0
|a Yang, Yutong
|b 63
856 4 _ |u https://nxtaim.de/publikationen/
856 4 _ |u https://juser.fz-juelich.de/record/1052307/files/nxtAIM_Whitepaper_AutomotiveFM_D01.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1052307
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180916
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)192312
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)200557
|a Forschungszentrum Jülich
|b 56
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5112
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a report
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21