001     1052339
005     20260123203315.0
024 7 _ |a 10.5194/gmd-18-8777-2025
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00942
|2 datacite_doi
037 _ _ |a FZJ-2026-00942
082 _ _ |a 550
100 1 _ |a Hickman, Sebastian H. M.
|0 0000-0001-7437-0846
|b 0
245 _ _ |a Applications of Machine Learning and Artificial Intelligence in Tropospheric Ozone Research
260 _ _ |a Katlenburg-Lindau
|c 2025
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769154827_24946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Machine learning (ML) is transforming atmospheric chemistry, offering powerful tools to address challenges in tropospheric ozone research, a critical area for climate resilience and public health. As in adjacent fields, ML approaches complement existing research by learning patterns from ever-increasing volumes of atmospheric and environmental data relevant to ozone. We highlight the rapid progress made in the field since Phase 1 of the Tropospheric Ozone Assessment Report (TOAR), focussing particularly on the most active areas of research, namely short-term ozone forecasting, emulation of atmospheric chemistry and the use of remote sensing for ozone estimation. This review provides a comprehensive synthesis of recent advancements, highlights critical challenges, and proposes actionable pathways to develop ML in ozone research. Further advances hinge on addressing domain-specific issues such as the dependence of ozone concentrations on several poorly observed precursor species, as well as making progress on generic ML challenges such as the definition of suitable benchmarks and developing robust, explainable models. Reaping the full potential of ML for ozone research and operational applications will require close collaborations across atmospheric chemistry, ML and computational science and vigilant pursuit of the rapid developments in adjacent fields.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kelp, Makoto M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Griffiths, Paul T.
|0 0000-0002-1089-340X
|b 2
|e Corresponding author
700 1 _ |a Doerksen, Kelsey
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Miyazaki, Kazuyuki
|0 0000-0002-1466-4655
|b 4
700 1 _ |a Pennington, Elyse A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koren, Gerbrand
|0 0000-0002-2275-0713
|b 6
700 1 _ |a Iglesias-Suarez, Fernando
|0 0000-0003-3403-8245
|b 7
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 8
700 1 _ |a Chang, Kai-Lan
|0 0000-0001-5812-3183
|b 9
700 1 _ |a Cooper, Owen R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Archibald, Alex
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Sommariva, Roberto
|0 0000-0002-2728-5814
|b 12
700 1 _ |a Carlson, David
|0 0000-0003-1005-6385
|b 13
700 1 _ |a Wang, Hantao
|0 P:(DE-HGF)0
|b 14
700 1 _ |a West, J. Jason
|0 0000-0001-5652-4987
|b 15
700 1 _ |a Liu, Zhenze
|0 0000-0001-8326-3698
|b 16
773 _ _ |a 10.5194/gmd-18-8777-2025
|g Vol. 18, no. 22, p. 8777 - 8800
|0 PERI:(DE-600)2456725-5
|n 22
|p 8777 - 8800
|t Geoscientific model development
|v 18
|y 2025
|x 1991-959X
856 4 _ |u https://juser.fz-juelich.de/record/1052339/files/gmd-18-8777-2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052339
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:29:04Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21