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Accurate and reliable monitoring of battery state parameters is crucial for ensuring optimal battery perfor-
mance, safety, and lifetime. Existing methods have limitations, such as requiring modeling of each degradation
mechanism involved or relying on direct measurement techniques that impose restrictions on field studies
or end-user use. In this paper, we propose a machine learning-based approach that combines the strengths
of electrochemical impedance spectroscopy (EIS) and machine learning algorithms to predict battery state
parameters. We have developed an efficient prediction system that can learn from EIS data and accurately
predict battery state parameters. Our approach is trained on an open dataset comprising of over 30,000 spectra,

generated using an automated measurement technique that outperforms current machine learning-based
models, particularly in terms of generalization across different cells and measurement setups.

1. Introduction

The increasing use of battery-powered devices and the need to
electrify vehicles has made it urgent to monitor battery state param-
eters accurately and reliably. Real-time tracking of state of health
(SOH), state of charge (SOC), and temperature are critical for en-
suring optimal performance, safety, and lifetime of batteries. As the
demand for high-performance and sustainable energy storage solu-
tions continues to grow, the ability to accurately predict battery state
parameters has become a bottleneck in developing advanced battery
management systems. Existing methods rely on modeling the underly-
ing physics of degradation, which requires modeling each degradation
mechanism involved (Reniers et al., 2019), or on direct measurement
techniques, which are more restrictive in terms of field studies or
end-user application. As an alternative, data-driven systems have been
proposed. However, their performance in generalizing to situations
significantly different from those in the training set has not been evalu-
ated (Babaeiyazdi et al., 2023; Buchicchio et al., 2023; Liu et al., 2024;
Wu et al., 2020; Zhang et al., 2020). The simple and reliable acquisition
of battery state parameters could be used to improve manufacturing
protocols for quality assurance, accelerate battery research, provide
notice for timely maintenance of end-user devices This could also im-
prove the economics of identifying which cells that may have a useful
second life after decommissioning (Montes et al., 2022). Electrochem-
ical impedance spectroscopy (EIS) has emerged as a powerful tool for

characterizing battery behavior, offering insights into the underlying
electrochemical processes that govern battery performance and degra-
dation. However, analysis of data generated by EIS measurements poses
significant challenges, as most require manual analysis for interpreta-
tion (Hu et al., 2023; Liu et al., 2024; Patrizi et al., 2024; Zhu et al.,
2024). Machine learning algorithms have demonstrated remarkable
capabilities in pattern recognition and prediction. By combining the
strengths of machine learning and EIS, we have developed an efficient
prediction system that can learn from EIS data and accurately predict
battery state parameters. We have compared it to two baselines: the
method proposed by Zhang et al. (2020), which we consider to be an
excellent representation of the current state of modeling in this field;
and a method trained with XGBoost (Chen & Guestrin, 2016). Zhang
et al. used a GPR model which achieved excellent predictive power.
The method and is validated against a variety of cell temperatures. This
method has the advantages of the increased degree of explainability
of GPR models as well as the inherent ability to estimate prediction
tolerance (Rasmussen & Williams, 2005). Although better prediction
metrics have previously been achieved on the dataset used Zhang et al.
have been previously achieved using CNNs (Babaeiyazdi et al., 2023),
a better combination of metrics, explainability, and verified robustness
against changes in battery state had not previously been achieved. In
pursuit of this research and to enable further development in this area,
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Acronyms

R? Coefficient of determination

CNN Convolutional neural network

EIS Electrochemical impedance spectroscopy

GPR Gaussian process regression

KISS KlI-basiertes Sortieren von Spektren

KissA Dataset comprised of 90% of the measure-
ments taken from cells 1-3, 6 and 8-15 of
the KISS dataset

KissB Dataset comprised of cells 0, 4, 7 and 16 of
the KISS dataset

KissVal Dataset comprised of 10% of the measure-
ments taken from cells 1-3, 6 and 8-15 of
the KISS dataset that are not in KissA

PFI Permutation feature importance

RMSE Root mean square error

SHAP Shapley additive explanations

SOC State of charge

SOH State of health

ZangA Dataset comprised of cells cycled at room
temperature and 45 °C by Zhang et al.

ZangB Dataset comprised of cells cycled at 35 °C
by Zhang et al.

we have created an open dataset of over 30,000 spectra, generated us-
ing automated measurement setup for battery cell condition variation.
This dataset provides a valuable resource for the research community,
particularly for validating advanced battery state prediction systems
and accelerating the development of energy storage solutions.

2. Datasets

Five datasets were used to train, validate and test the methods
considered in this paper. First, the dataset as measured by Zhang et al.
(2020) was used. This dataset was split into two parts in the same
way as Zhang et al. did when training and validating their GPR model
for multi-temperature prediction. These datasets were named ZangA
and ZangB. Secondly, a dataset was generated by cycling commercial
LR2032 cells under varying conditions, see Section 5.1. This dataset
was also split into two by separating it into cells 1-3, 5, 6, 8-15 and 0,
4,7, 16, see Table A.3. The first set of cells was further subdivided
by random sampling into two datasets with a 90/10 percent split.
These three datasets were labeled KissA, KissVal and KissB. The KissVal
dataset was only used during network architecture selection for the
convolutional neural network CNN model, while ZangA, ZangB, KissA
and KissB were used to train the methods described below.

3. Results

We consider the task of capacity estimation. In this case, the user
needs to know the capacity of the cells without knowing the SOC, SOH
or temperature of his cell. Four models were trained to perform this
task:

+ A reproduction of the GPR model by Zhang et al. trained on the
ZangA dataset.

» The GPR model trained on the KissA dataset.

» Our CNN model trained on the ZangA dataset.

» Our CNN model trained on the KissA dataset.

» A XGBoost model trained on the ZangA dataset.

* A XGBoost model trained on the KissA dataset.

Machine Learning with Applications 22 (2025) 100729

The models were validated by testing them on the corresponding
test dataset. Finally, models were examined for generalization by test-
ing them against the test portion of the opposite dataset. This allowed
us to check for the presence of generalization across different cells and
measurement setups.

3.1. In-distribution performance

As can be seen in Figs. 1, and 2, when evaluated on the same
distribution as the training data — in this case, ZangA for training
and ZangB for testing — all methods achieve respectable and broadly
similar results. The coefficient of determinations (R2s) is 0.959, 0.859
and 0.794 and the root mean square error (RMSE) of 0.00078, 0.00106
and 0.002 for the CNN, XGBoost and GPR models, respectively. These
results are comparable to the R?> = 0.953 reported by Babaeiyazdi et al.
using a deep neural network on the same dataset (Babaeiyazdi et al.,
2023).

With a larger number of cells, a greater variation in SOC and
temperature, as well as more noise, the KissA and KissB datasets present
a significantly greater challenge to the proposed regression methods.
This greater challenge results in greater separation between the results,
as can be seen in Fig. 3. The R? and RMSE also demonstrate this with
the values of 0.8071, 0.68, 0.5930 and 0.00452, 0.00134, 0.00688
respectively.

3.2. Cross-dataset generalization

So far, all methods show acceptable performance in both tasks.
However, when it comes to actual application it is of course of utmost
importance that the models generalize to new cells and measurement
setups. While the holdout method used to generate the KissB dataset
has been shown to be effective in determining when overfitting has
occurred (Roelofs et al., 2019; Steyerberg et al., 2003), external valida-
tion of models using independently acquired datasets remains the gold
standard for predicting generalization in the final application environ-
ment (Goodfellow et al., 2016). To this end we externally validated all
four models using opposite datasets.

As can be seen in Fig. 4 none of the models retained any predictive
power when trained on the ZangA dataset and tested against the KissB
dataset with the R? of all combinations being below zero.

When trained on the KissA dataset and tested against the ZangB
dataset the GPR and XGBoost models again perform poorly, see Fig.
5, with a R? below zero. However, the CNN model retained predictive
power with an R? of 0.212 and an RMSE of 0.0325.

As is intuitive and suggested by the data scaling law (Hestness et al.,
2017), when trained simultaneously on the KissA and ZangB datasets
the CNN model gains overall better performance on the combined
testing dataset with an R” of 0.8413 compared to 0.6505, this can also
be seen in Fig. 6. This suggests that the well-known performance scaling
rule with increasing dataset size and diversity remains effective (Rajput
et al.,, 2023; Zhang & Ling, 2018). However, this single sample is
insufficient to prove this in the general case.

4. Discussion

The failure of all models to generalize when trained on the ZangA
dataset shows, that while the holdout method is effective at predicting
generalization across examples from a similar population, general-
ization across different cells and measurement setups requires more
rigorous validation. When trained on a larger, more varied dataset,
the deep CNN begins to generalize while the performance of the GPR
and XGBoost models remains poor. Since the KissA dataset has a
significantly higher noise floor, the difference could potentially be due
to the well-known regularization effect of noise when applied to the
input features (Noh et al., 2017), or to the more varied distribution of
examples in the larger dataset. To further understand these differences
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in generalization we analyzed the feature importance of the CNN
models using a variation of permutation feature importance (PFI), as
well as SHAP (Lundberg & Lee, 2017), see Section 5.3.

As first discovered by Zhang et al. for the ZangA dataset, it is
sufficient to observe only the low frequency real part of the impedance

spectra, see Fig. 7.

Targeted drop-column importance was used to determine whether
the real part of the 1 Hz feature alone could predict the capacity of
a cell in the ZangA dataset. Indeed, a R?> of 0.731 was obtained by
training the CNN on input vectors zero padded to size 10 using only this
feature. Since the 1 Hz real part of the resistance is strongly correlated
with the DC internal resistance of the cell, without electrochemical
changes due to long-range ion diffusion, it is reasonable to assume that
the predictive power of the methods trained on the ZangA dataset is

largely based on the observation that the DC cell internal resistance
is lower at higher capacity (Morse & Sargent, 1911). Therefore, it is
not entirely surprising that when these methods are then applied to a
different cell with a different DC internal resistance, that the models
fail to correctly predict the capacities of these new cells.

Different behavior is observed in the CNN that was trained on the
KissA dataset, which also exhibits a degree of generalization over the
ZangB dataset. As can be seen in Figs. 8 and 9, a wide variety of features
is used to make the prediction in this case with particular emphasis
on the medium-high frequency imaginary part of the spectra. This
suggests that a more complex relationship exists between the features
and the output parameters compared to previous models. At these high
frequencies, processes such as charge transfer between the electrode
and the collectors, the ionic conductivity of the electrolyte, and the
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electronic conductivity in the carbon black contribute to the electrical
response. These are thus the candidate processes that have an impact
on the models final prediction.

4.1. Limitations

Although our model shows promising performance, some key limi-
tations remain. While our results demonstrate the potential for general-
ization across certain parameters, further study is required to validate
generalization across parameters not covered by the available datasets,
such as cells with larger capacities or different chemistries. Although
we have ragained interpetability by applying PFI and SHAP, the GPR
model as proposed by Zhang et al. has the advantage of being simpler
to interpret and providing intrinsic uncertainty estimates. Future study
on applying interpritable layers to CNN models used for this task may
be warrented.

4.2. Applications

The presented methodology enables rapid, non-invasive capacity
estimation from a single EIS sweep. The approach is suitable for on-
board BMS integration, high-throughput laboratory screening or quality
control. We hope the open dataset and accompanying code will provide
a benchmark for future research on data-driven battery diagnostics.
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Table 1
Networks considered.
Network Varied hyperparameters Range
Encoder layers [5, 25]
Downsample gap [0, 10]

Fully connected

encoder network Extra layers at end [0, 51

Batch normalization (Ioffe True/False

& Szegedy, 2015)

Dropout (Srivastava et al., {0, 0.1, 0.2}

2014)

Decoder, Encoder layers [5, 25]
Partially convolutional Downsample gap [0, 10]
encoder-decoder Extra layers at end [0, 5]
network. Batch normalization True/False

Dropout {0, 0.1, 0.2}
Partially convolutional Layer count [10, 100]
network, with skip Downsample gap [1, 5]
connections as proposed by Batch normalization True/False
He et al. (2015) Dropout {0, 0.1, 0.2}

Table 2
XGBoost hyperparameters, best combination of parameters highlighted in
bold.

Parameter Range
Maximum depth {2, 4, 6, 8, 10}
Minimum child weight {1, 3, 6}

{0.2, 0.6, 0.7, 0.8, 0.9, 1.0}

{0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 1}
{0, 0.1}

{0.3, 0.5, 0.8, 1.0}

Observation subsampling
Feature subsampling

L1 regularization

L2 regularization

5. Methods
5.1. Dataset generation

The measurement of 17 commercial Voltcraft 1r2032' cells was con-
ducted using the Biologic SP-240 with a single channel and 3 A power
amplifier. The single channel was multiplexed through an array of
relays using six tiles of the setup shown in Fig. B.10. 50 logarithmically
spaced samples were taken ranging from 100 mHz to 100 kHz. The
SOC, SOH and temperature parameters were varied according to Table
A.3. The measurements were randomly distributed across cycles, so
that all varied parameters were sampled in a uniformly at random. For
cells that were thermally cycled and SOC cycled, ten thermal cycles

1 UPC-A: 4064161214337.
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Table A.3
Cells in the KISS dataset.
KISS cell Thermal cycles Temperature range [°C] SOC cycled Min SOC Max SOC Charge rate
0 Y 35-55 Y 0 1 085C-1C
1 Y 35-55 Y 0 1 085C-1C
2 Y 35-55 Y 0 1 085C-1C
3 Y 35-55 Y 0 1 085C-1C
4 Y 35-55 N 0.33 0.33 0.85C-1C
5 Y 35-55 N 0.33 0.33 085C-1C
6 Y 35-55 N 0.66 0.66 085C-1C
7 Y 35-45 N 0.66 0.66 085C-1C
8 Y 35-45 Y 0 1 085C-1C
9 Y 35-45 Y 0 1 085C-1C
10 Y 35-45 Y 0 1 0.85C-1C
11 N 35-35 Y 0 1 0.85C-1C
12 N 35-35 Y 0 1 085C-1C
13 N 35-35 Y 0 1 085C-1C
14 N 45-45 Y 0 1 085C-1C
15 N 45-45 Y 0 1 085C-1C
16 N 45-45 Y 0 1 085C-1C

were performed for each SOC cycle. The charge rate was 0.85 C for all
samples, except for every 10th cycle in which 1 C was used. Charge
rates are relative to the average capacity of the cells at the beginning
of the test.

5.2. Model architecture selection

For our CNN model, the architecture was selected using a grid
search along a set of hyperparameters. These candidate models were
divided into three overarching candidate architectures and varied pa-
rameters (see Table 1):

The networks were trained on the KissA dataset and selected based
on the R? score obtained on the KissVal dataset. The configuration with
50 layers, a downsample gap of 2, batch normalization set to true, and
a dropout rate of 0.1 performed best against the KissVal dataset and
was thus selected. The parameters were optimized using the popular
AdamW algorithm (Loshchilov & Hutter, 2019) with a learning rate of
5e—3, a weight decay of 0.02, g, : 0.90 and p, : 0.99.

For our XGBoost model, we also performed a grid search to select
the best hyperparameters (see Table 2):

5.3. Permutation feature importance

In the general case, PFI is determined by an arbitrary function f :
D - S, where D, (,_,, are n uncorrelated features of an example D; in a
dataset D which contains K examples. The sensitivity of the function f
to Dy k) is estimated by observing the change in % Zili() f(D;) when
features Dy, g, are shuffled along i (Altmann et al., 2010; Breiman,
2001).

In the present case, f(D) = s(g(D)), where g(D) regression model
learnt by the CNN, s is the scoring function R? and D is our dataset
of K impedance spectra. However, this general approach is poorly
applicable, because in an impedance spectrum, neighboring features
are strongly correlated. Additionally, for a small dataset D, the current
values for each feature D(; g,, may not be representative of the
possible values for the given feature encountered in the broader case.

For these reasons we made two modifications to the established
method of PFI: First, instead of shuffling the features k along the
dataset examples i we replace D,; with a random variable {Z €
R | min(Dyy gxyx) < Z < max(Dyy . g;x)}- Secondly, instead of
replacing a single feature at a time we use a sliding window of width
w e {1,3,5,7,9,...} and stride 1, where all features within the window
are replaced by random variables. We call the examples of this thus
modified dataset Dp,,;, see Fig. C.11 for examples. The width of the
window w is then optimized such that | %% ili() max{ f(Dp,,;),0} |
begins to decrease with increasing window width w. For our model and
dataset this occurred at w = 5. Next, s(g) is computed with the window
centered around each feature i. The result is plotted in Figs. 8 and 7.

6. Resource availability

All code related to this article is open source under GPLv3, LGPLv3
or MIT license, depending on the subproject.

» The code implementing the networks, training and validation can
be found at https://github.com/EIS-KISS/TorchKissAnnPostdict.

+ The code implementing the XGBoost model can be found at https:
//github.com/EIS-KISS/XGBoost.

» The code applying the shap explainer can be found at https:
//github.com/EIS-KISS/sharp_analysis.

* The code used to translate the datasets can be found at https:
//github.com/EIS-KISS/dataformaters

» The code used to handle, filter and combine the datasets can be
found at https://github.com/EIS-KISS/KissDatasetGenerator

» The source data for the KissA and KissB datasets is available at
https://uvos.xyz/git/uvos/CoincellHellExpiramentData.

CRediT authorship contribution statement

Carl Philipp Klemm: Conceptualization, Methodology, Software,
Validation, Investigation, Data curation, Writing — original draft, Visu-
alization. Till Fromling: Supervision, Project administration, Funding
acquisition, Writing — review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Carl Klemm reports financial support was provided by rhd-instruments.
Carl Klemm reports financial support was provided by Hessisches Min-
isterium fiir Digitalisierung und Innovation. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

The authors gratefully acknowledge the support of this work in form
of the grant 21_0005_2A from the German State of Hesse as part of the
Distr@] program. This work was supported by rhd instruments GmbH
& Co. KG,? as part of the project KISS.

2 https://www.rhd-instruments.com.


https://github.com/EIS-KISS/TorchKissAnnPostdict
https://github.com/EIS-KISS/XGBoost
https://github.com/EIS-KISS/XGBoost
https://github.com/EIS-KISS/XGBoost
https://github.com/EIS-KISS/sharp_analysis
https://github.com/EIS-KISS/sharp_analysis
https://github.com/EIS-KISS/sharp_analysis
https://github.com/EIS-KISS/dataformaters
https://github.com/EIS-KISS/dataformaters
https://github.com/EIS-KISS/dataformaters
https://github.com/EIS-KISS/KissDatasetGenerator
https://uvos.xyz/git/uvos/CoincellHellExpiramentData
https://www.rhd-instruments.com

C.P. Klemm and T. Fromling

Machine Learning with Applications 22 (2025) 100729

[ 2 3 4 5 6 7 8 10 1 [ 12 [ 13 [ 1 [ 15 [ 16 | 17
A CoincellHell
EISMultiplexer A
—
—
B -
1 Coin Cell
. o DZF] 0
Heater
L &
D Impedance Analyzer
Regulator
E
F
G
H
Author: Carl Klemm File:
Coin cell Mesurement Setup
Date: 20.07.23 Folio: 1/1

Fig. B.10. Measurement setup for the KISS dataset (repeated 6 times).
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Fig. C.11. Examples of dataset permutation.

Appendix A. Kiss dataset structure
See Table A.3.

Appendix B. Measurement setup
See Fig. B.10.

Appendix C. PFI

See Fig. C.11.

Data availability

Data is available at https://uvos.xyz/git/uvos/CoincellHellExpiram
entData, code to the varoius utilities used is available at https://github.
com/orgs/EIS-KISS/repositories.
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