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 A B S T R A C T

Accurate and reliable monitoring of battery state parameters is crucial for ensuring optimal battery perfor-
mance, safety, and lifetime. Existing methods have limitations, such as requiring modeling of each degradation 
mechanism involved or relying on direct measurement techniques that impose restrictions on field studies 
or end-user use. In this paper, we propose a machine learning-based approach that combines the strengths 
of electrochemical impedance spectroscopy (EIS) and machine learning algorithms to predict battery state 
parameters. We have developed an efficient prediction system that can learn from EIS data and accurately 
predict battery state parameters. Our approach is trained on an open dataset comprising of over 30,000 spectra, 
generated using an automated measurement technique that outperforms current machine learning-based 
models, particularly in terms of generalization across different cells and measurement setups.
1. Introduction

The increasing use of battery-powered devices and the need to 
electrify vehicles has made it urgent to monitor battery state param-
eters accurately and reliably. Real-time tracking of state of health 
(SOH), state of charge (SOC), and temperature are critical for en-
suring optimal performance, safety, and lifetime of batteries. As the 
demand for high-performance and sustainable energy storage solu-
tions continues to grow, the ability to accurately predict battery state 
parameters has become a bottleneck in developing advanced battery 
management systems. Existing methods rely on modeling the underly-
ing physics of degradation, which requires modeling each degradation 
mechanism involved (Reniers et al., 2019), or on direct measurement 
techniques, which are more restrictive in terms of field studies or 
end-user application. As an alternative, data-driven systems have been 
proposed. However, their performance in generalizing to situations 
significantly different from those in the training set has not been evalu-
ated (Babaeiyazdi et al., 2023; Buchicchio et al., 2023; Liu et al., 2024; 
Wu et al., 2020; Zhang et al., 2020). The simple and reliable acquisition 
of battery state parameters could be used to improve manufacturing 
protocols for quality assurance, accelerate battery research, provide 
notice for timely maintenance of end-user devices This could also im-
prove the economics of identifying which cells that may have a useful 
second life after decommissioning (Montes et al., 2022). Electrochem-
ical impedance spectroscopy (EIS) has emerged as a powerful tool for 
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characterizing battery behavior, offering insights into the underlying 
electrochemical processes that govern battery performance and degra-
dation. However, analysis of data generated by EIS measurements poses 
significant challenges, as most require manual analysis for interpreta-
tion (Hu et al., 2023; Liu et al., 2024; Patrizi et al., 2024; Zhu et al., 
2024). Machine learning algorithms have demonstrated remarkable 
capabilities in pattern recognition and prediction. By combining the 
strengths of machine learning and EIS, we have developed an efficient 
prediction system that can learn from EIS data and accurately predict 
battery state parameters. We have compared it to two baselines: the 
method proposed by Zhang et al. (2020), which we consider to be an 
excellent representation of the current state of modeling in this field; 
and a method trained with XGBoost (Chen & Guestrin, 2016). Zhang 
et al. used a GPR model which achieved excellent predictive power. 
The method and is validated against a variety of cell temperatures. This 
method has the advantages of the increased degree of explainability 
of GPR models as well as the inherent ability to estimate prediction 
tolerance (Rasmussen & Williams, 2005). Although better prediction 
metrics have previously been achieved on the dataset used Zhang et al. 
have been previously achieved using CNNs (Babaeiyazdi et al., 2023), 
a better combination of metrics, explainability, and verified robustness 
against changes in battery state had not previously been achieved. In 
pursuit of this research and to enable further development in this area, 
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Acronyms

𝑅2 Coefficient of determination
CNN Convolutional neural network
EIS Electrochemical impedance spectroscopy
GPR Gaussian process regression
KISS KI-basiertes Sortieren von Spektren
KissA Dataset comprised of 90% of the measure-

ments taken from cells 1–3, 6 and 8–15 of 
the KISS dataset

KissB Dataset comprised of cells 0, 4, 7 and 16 of 
the KISS dataset

KissVal Dataset comprised of 10% of the measure-
ments taken from cells 1–3, 6 and 8–15 of 
the KISS dataset that are not in KissA

PFI Permutation feature importance
RMSE Root mean square error
SHAP Shapley additive explanations
SOC State of charge
SOH State of health
ZangA Dataset comprised of cells cycled at room 

temperature and 45 ◦C by Zhang et al.
ZangB Dataset comprised of cells cycled at 35 ◦C 

by Zhang et al.

we have created an open dataset of over 30,000 spectra, generated us-
ing automated measurement setup for battery cell condition variation. 
This dataset provides a valuable resource for the research community, 
particularly for validating advanced battery state prediction systems 
and accelerating the development of energy storage solutions.

2. Datasets

Five datasets were used to train, validate and test the methods 
considered in this paper. First, the dataset as measured by Zhang et al. 
(2020) was used. This dataset was split into two parts in the same 
way as Zhang et al. did when training and validating their GPR model 
for multi-temperature prediction. These datasets were named ZangA 
and ZangB. Secondly, a dataset was generated by cycling commercial 
LR2032 cells under varying conditions, see Section 5.1. This dataset 
was also split into two by separating it into cells 1–3, 5, 6, 8–15 and 0, 
4, 7, 16, see Table  A.3. The first set of cells was further subdivided 
by random sampling into two datasets with a 90/10 percent split. 
These three datasets were labeled KissA, KissVal and KissB. The KissVal 
dataset was only used during network architecture selection for the 
convolutional neural network CNN model, while ZangA, ZangB, KissA 
and KissB were used to train the methods described below.

3. Results

We consider the task of capacity estimation. In this case, the user 
needs to know the capacity of the cells without knowing the SOC, SOH 
or temperature of his cell. Four models were trained to perform this 
task:

• A reproduction of the GPR model by Zhang et al. trained on the 
ZangA dataset.

• The GPR model trained on the KissA dataset.
• Our CNN model trained on the ZangA dataset.
• Our CNN model trained on the KissA dataset.
• A XGBoost model trained on the ZangA dataset.
• A XGBoost model trained on the KissA dataset.
2 
The models were validated by testing them on the corresponding 
test dataset. Finally, models were examined for generalization by test-
ing them against the test portion of the opposite dataset. This allowed 
us to check for the presence of generalization across different cells and 
measurement setups.

3.1. In-distribution performance

As can be seen in Figs.  1, and 2, when evaluated on the same 
distribution as the training data — in this case, ZangA for training 
and ZangB for testing — all methods achieve respectable and broadly 
similar results. The coefficient of determinations (𝑅2s) is 0.959, 0.859 
and 0.794 and the root mean square error (RMSE) of 0.00078, 0.00106 
and 0.002 for the CNN, XGBoost and GPR models, respectively. These 
results are comparable to the 𝑅2 = 0.953 reported by Babaeiyazdi et al. 
using a deep neural network on the same dataset (Babaeiyazdi et al., 
2023).

With a larger number of cells, a greater variation in SOC and 
temperature, as well as more noise, the KissA and KissB datasets present 
a significantly greater challenge to the proposed regression methods. 
This greater challenge results in greater separation between the results, 
as can be seen in Fig.  3. The 𝑅2 and RMSE also demonstrate this with 
the values of 0.8071, 0.68, 0.5930 and 0.00452, 0.00134, 0.00688 
respectively.

3.2. Cross-dataset generalization

So far, all methods show acceptable performance in both tasks. 
However, when it comes to actual application it is of course of utmost 
importance that the models generalize to new cells and measurement 
setups. While the holdout method used to generate the KissB dataset 
has been shown to be effective in determining when overfitting has 
occurred (Roelofs et al., 2019; Steyerberg et al., 2003), external valida-
tion of models using independently acquired datasets remains the gold 
standard for predicting generalization in the final application environ-
ment (Goodfellow et al., 2016). To this end we externally validated all 
four models using opposite datasets.

As can be seen in Fig.  4 none of the models retained any predictive 
power when trained on the ZangA dataset and tested against the KissB 
dataset with the 𝑅2 of all combinations being below zero.

When trained on the KissA dataset and tested against the ZangB 
dataset the GPR and XGBoost models again perform poorly, see Fig. 
5, with a 𝑅2 below zero. However, the CNN model retained predictive 
power with an 𝑅2 of 0.212 and an RMSE of 0.0325.

As is intuitive and suggested by the data scaling law (Hestness et al., 
2017), when trained simultaneously on the KissA and ZangB datasets 
the CNN model gains overall better performance on the combined 
testing dataset with an 𝑅2 of 0.8413 compared to 0.6505, this can also 
be seen in Fig.  6. This suggests that the well-known performance scaling 
rule with increasing dataset size and diversity remains effective (Rajput 
et al., 2023; Zhang & Ling, 2018). However, this single sample is 
insufficient to prove this in the general case.

4. Discussion

The failure of all models to generalize when trained on the ZangA 
dataset shows, that while the holdout method is effective at predicting 
generalization across examples from a similar population, general-
ization across different cells and measurement setups requires more 
rigorous validation. When trained on a larger, more varied dataset, 
the deep CNN begins to generalize while the performance of the GPR 
and XGBoost models remains poor. Since the KissA dataset has a 
significantly higher noise floor, the difference could potentially be due 
to the well-known regularization effect of noise when applied to the 
input features (Noh et al., 2017), or to the more varied distribution of 
examples in the larger dataset. To further understand these differences 
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Fig. 1. ZangB results from the CNN, GPR and XGBoost models trained on the ZangA dataset.

Fig. 2. Relative error of the CNN, GPR and XGBoost models trained on the ZangA dataset.
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Fig. 3. Relative error of the CNN, GPR and XGBoost models on the KissB dataset when trained on the KissA dataset.

Fig. 4. KissB results from the CNN, GPR and XGBoost models trained on the KissA dataset.
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Fig. 5. KissB results from the CNN, GPR XGBoost models trained on the KissA dataset.
Fig. 6. Resulting predictions by the CNN model trained on the combined KissA + ZangA dataset tested on KissB and ZangB.
in generalization we analyzed the feature importance of the CNN 
models using a variation of permutation feature importance (PFI), as 
well as SHAP (Lundberg & Lee, 2017), see Section 5.3.

As first discovered by Zhang et al. for the ZangA dataset, it is 
sufficient to observe only the low frequency real part of the impedance 
spectra, see Fig.  7.

Targeted drop-column importance was used to determine whether 
the real part of the 1 Hz feature alone could predict the capacity of 
a cell in the ZangA dataset. Indeed, a 𝑅2 of 0.731 was obtained by 
training the CNN on input vectors zero padded to size 10 using only this 
feature. Since the 1 Hz real part of the resistance is strongly correlated 
with the DC internal resistance of the cell, without electrochemical 
changes due to long-range ion diffusion, it is reasonable to assume that 
the predictive power of the methods trained on the ZangA dataset is 
5 
largely based on the observation that the DC cell internal resistance 
is lower at higher capacity (Morse & Sargent, 1911). Therefore, it is 
not entirely surprising that when these methods are then applied to a 
different cell with a different DC internal resistance, that the models 
fail to correctly predict the capacities of these new cells.

Different behavior is observed in the CNN that was trained on the 
KissA dataset, which also exhibits a degree of generalization over the 
ZangB dataset. As can be seen in Figs.  8 and 9, a wide variety of features 
is used to make the prediction in this case with particular emphasis 
on the medium-high frequency imaginary part of the spectra. This 
suggests that a more complex relationship exists between the features 
and the output parameters compared to previous models. At these high 
frequencies, processes such as charge transfer between the electrode 
and the collectors, the ionic conductivity of the electrolyte, and the 
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Fig. 7. Feature importance of the CNN network trained on the ZangA dataset.

Fig. 8. Permutation feature importance of the CNN network trained on the 
KissA dataset.

electronic conductivity in the carbon black contribute to the electrical 
response. These are thus the candidate processes that have an impact 
on the models final prediction.

4.1. Limitations

Although our model shows promising performance, some key limi-
tations remain. While our results demonstrate the potential for general-
ization across certain parameters, further study is required to validate 
generalization across parameters not covered by the available datasets, 
such as cells with larger capacities or different chemistries. Although 
we have ragained interpetability by applying PFI and SHAP, the GPR 
model as proposed by Zhang et al. has the advantage of being simpler 
to interpret and providing intrinsic uncertainty estimates. Future study 
on applying interpritable layers to CNN models used for this task may 
be warrented.

4.2. Applications

The presented methodology enables rapid, non-invasive capacity 
estimation from a single EIS sweep. The approach is suitable for on-
board BMS integration, high-throughput laboratory screening or quality 
control. We hope the open dataset and accompanying code will provide 
a benchmark for future research on data-driven battery diagnostics.
6 
Fig. 9. Mean absolute SHAP values of the CNN network trained on the KissA 
dataset.

Table 1
Networks considered.
 Network Varied hyperparameters Range  
 
Fully connected 
encoder network

Encoder layers [5, 25]  
 Downsample gap [0, 10]  
 Extra layers at end [0, 5]  
 Batch normalization (Ioffe 

& Szegedy, 2015)
True/False  

 Dropout (Srivastava et al., 
2014)

{0, 0.1, 0.2} 

 
Partially convolutional 
encoder–decoder 
network.

Decoder, Encoder layers [5, 25]  
 Downsample gap [0, 10]  
 Extra layers at end [0, 5]  
 Batch normalization True/False  
 Dropout {0, 0.1, 0.2} 
 Partially convolutional 
network, with skip 
connections as proposed by 
He et al. (2015)

Layer count [10, 100]  
 Downsample gap [1, 5]  
 Batch normalization True/False  
 Dropout {0, 0.1, 0.2} 

Table 2
XGBoost hyperparameters, best combination of parameters highlighted in
bold.
 Parameter Range  
 Maximum depth {2, 4, 6, 8, 10}  
 Minimum child weight {1, 3, 6}  
 Observation subsampling {0.2, 0.6, 0.7, 0.8, 0.9, 1.0}  
 Feature subsampling {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 1} 
 L1 regularization {0, 0.1}  
 L2 regularization {0.3, 0.5, 0.8, 1.0}  

5. Methods

5.1. Dataset generation

The measurement of 17 commercial Voltcraft lr20321 cells was con-
ducted using the Biologic SP-240 with a single channel and 3 A power 
amplifier. The single channel was multiplexed through an array of 
relays using six tiles of the setup shown in Fig.  B.10. 50 logarithmically 
spaced samples were taken ranging from 100 mHz to 100 kHz. The 
SOC, SOH and temperature parameters were varied according to Table 
A.3. The measurements were randomly distributed across cycles, so 
that all varied parameters were sampled in a uniformly at random. For 
cells that were thermally cycled and SOC cycled, ten thermal cycles 

1 UPC-A: 4064161214337.
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Table A.3
Cells in the KISS dataset.
 KISS cell Thermal cycles Temperature range [◦C] SOC cycled Min SOC Max SOC Charge rate 
 0 Y 35–55 Y 0 1 0.85 C–1 C 
 1 Y 35–55 Y 0 1 0.85 C–1 C 
 2 Y 35–55 Y 0 1 0.85 C–1 C 
 3 Y 35–55 Y 0 1 0.85 C–1 C 
 4 Y 35–55 N 0.33 0.33 0.85 C–1 C 
 5 Y 35–55 N 0.33 0.33 0.85 C–1 C 
 6 Y 35–55 N 0.66 0.66 0.85 C–1 C 
 7 Y 35–45 N 0.66 0.66 0.85 C–1 C 
 8 Y 35–45 Y 0 1 0.85 C–1 C 
 9 Y 35–45 Y 0 1 0.85 C–1 C 
 10 Y 35–45 Y 0 1 0.85 C–1 C 
 11 N 35–35 Y 0 1 0.85 C–1 C 
 12 N 35–35 Y 0 1 0.85 C–1 C 
 13 N 35–35 Y 0 1 0.85 C–1 C 
 14 N 45–45 Y 0 1 0.85 C–1 C 
 15 N 45–45 Y 0 1 0.85 C–1 C 
 16 N 45–45 Y 0 1 0.85 C–1 C 
were performed for each SOC cycle. The charge rate was 0.85 C for all 
samples, except for every 10th cycle in which 1 C was used. Charge 
rates are relative to the average capacity of the cells at the beginning 
of the test.

5.2. Model architecture selection

For our CNN model, the architecture was selected using a grid 
search along a set of hyperparameters. These candidate models were 
divided into three overarching candidate architectures and varied pa-
rameters (see Table  1):

The networks were trained on the KissA dataset and selected based 
on the 𝑅2 score obtained on the KissVal dataset. The configuration with 
50 layers, a downsample gap of 2, batch normalization set to true, and 
a dropout rate of 0.1 performed best against the KissVal dataset and 
was thus selected. The parameters were optimized using the popular 
AdamW algorithm (Loshchilov & Hutter, 2019) with a learning rate of 
5𝑒−3, a weight decay of 0.02, 𝛽1 ∶ 0.90 and 𝛽2 ∶ 0.99.

For our XGBoost model, we also performed a grid search to select 
the best hyperparameters (see Table  2):

5.3. Permutation feature importance

In the general case, PFI is determined by an arbitrary function 𝑓 ∶
𝐷 → 𝑆, where 𝐷𝑖,{0...𝑛} are 𝑛 uncorrelated features of an example 𝐷𝑖 in a 
dataset 𝐷 which contains 𝐾 examples. The sensitivity of the function 𝑓
to 𝐷{1,…,𝐾},𝑘 is estimated by observing the change in 1𝐾

∑𝐾
𝑖=0 𝑓 (𝐷𝑖) when 

features 𝐷{1,…,𝐾},𝑘 are shuffled along 𝑖 (Altmann et al., 2010; Breiman, 
2001).

In the present case, 𝑓 (𝐷) = 𝑠(𝑔(𝐷)), where 𝑔(𝐷) regression model 
learnt by the CNN, 𝑠 is the scoring function 𝑅2 and 𝐷 is our dataset 
of 𝐾 impedance spectra. However, this general approach is poorly 
applicable, because in an impedance spectrum, neighboring features 
are strongly correlated. Additionally, for a small dataset 𝐷, the current 
values for each feature 𝐷{1,…,𝐾},𝑘 may not be representative of the 
possible values for the given feature encountered in the broader case.

For these reasons we made two modifications to the established 
method of PFI: First, instead of shuffling the features 𝑘 along the 
dataset examples 𝑖 we replace 𝐷𝑘,𝑖 with a random variable {𝑍 ∈
R ∣ min(𝐷{1,…,𝐾},𝑘) ≤ 𝑍 ≤ max(𝐷{1,…,𝐾},𝑘)}. Secondly, instead of 
replacing a single feature at a time we use a sliding window of width 
𝑤 ∈ {1, 3, 5, 7, 9,…} and stride 1, where all features within the window 
are replaced by random variables. We call the examples of this thus 
modified dataset 𝐷𝑝𝑤,𝑖, see Fig.  C.11 for examples. The width of the 
window 𝑤 is then optimized such that ∣ 𝛿

𝛿𝑤
1
𝐾
∑𝐾

𝑖=0 max{𝑓 (𝐷𝑝𝑤,𝑖), 0} ∣
begins to decrease with increasing window width 𝑤. For our model and 
dataset this occurred at 𝑤 = 5. Next, 𝑠(𝑔) is computed with the window 
centered around each feature 𝑖. The result is plotted in Figs.  8 and 7.
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6. Resource availability

All code related to this article is open source under GPLv3, LGPLv3 
or MIT license, depending on the subproject.

• The code implementing the networks, training and validation can 
be found at https://github.com/EIS-KISS/TorchKissAnnPostdict.

• The code implementing the XGBoost model can be found at https:
//github.com/EIS-KISS/XGBoost.

• The code applying the shap explainer can be found at https:
//github.com/EIS-KISS/sharp_analysis.

• The code used to translate the datasets can be found at https:
//github.com/EIS-KISS/dataformaters

• The code used to handle, filter and combine the datasets can be 
found at https://github.com/EIS-KISS/KissDatasetGenerator

• The source data for the KissA and KissB datasets is available at 
https://uvos.xyz/git/uvos/CoincellHellExpiramentData.
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Fig. B.10. Measurement setup for the KISS dataset (repeated 6 times).
Fig. C.11. Examples of dataset permutation.
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Appendix A. Kiss dataset structure

See Table  A.3.

Appendix B. Measurement setup

See Fig.  B.10.

Appendix C. PFI

See Fig.  C.11.

Data availability

Data is available at https://uvos.xyz/git/uvos/CoincellHellExpiram
entData, code to the varoius utilities used is available at https://github.
com/orgs/EIS-KISS/repositories.
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