
Hybrid Inference Optimization for AI-Enhanced Turbulent
Boundary Layer Simulation on Heterogeneous Systems

Fabian Orland
orland@itc.rwth-aachen.de
RWTH Aachen University

High Performance Computing
Aachen, Germany

Tom Hilgers
tom.hilgers@rwth-aachen.de
RWTH Aachen University

Aachen, Germany

Fabian Hübenthal
f.huebenthal@aia.rwth-aachen.de

RWTH Aachen University
Chair of Fluid Mechanics and
Institute of Aerodynamics

Aachen, Germany

Rakesh Sarma
r.sarma@fz-juelich.de

Forschungszentrum Jülich GmbH
Jülich Supercomputing Centre

Jülich, Germany

Andreas Lintermann
a.lintermann@fz-juelich.de

Forschungszentrum Jülich GmbH
Jülich Supercomputing Centre

Jülich, Germany

Christian Terboven
terboven@itc.rwth-aachen.de
RWTH Aachen University

High Performance Computing
Aachen, Germany

Abstract
Active drag reduction (ADR) using spanwise traveling surface
waves is a promising approach to reduce drag of airplanes by ma-
nipulating the turbulent boundary layer (TBL) around an airfoil,
which directly translates into power savings and lower emission of
greenhouse gases harming the environment. However, no analytical
solution is known to determine the optimal actuation parameters
of these surface waves based on given flow conditions. Data-driven
deep learning (DL) techniques from artificial intelligence (AI) are
a promising alternative approach, but their training requires a
huge amount of high-fidelity data from computationally expen-
sive computational fluid dynamics (CFD) simulations. Previous
works proposed a TBL-Transformer architecture for the expensive
time-marching of turbulent flow fields and coupled it with a finite
volume solver from the multi-physics PDE solver framework m-
AIA to accelerate the generation of TBL data. To accelerate the
computationally expensive inference of the TBL-Transformer, the
AIxeleratorService library was used to offload the inference task to
GPUs. While this approach significantly accelerates the inference
task, it leaves the CPU resources allocated by the solver unutilized
during inference. To fully exploit modern heterogeneous computer
systems, we introduce a hybrid inference method based on a hybrid
work distribution model and implement it into the AIxeleratorSer-
vice library. Moreover, we present a formal model to derive the
optimal hybrid work distribution. To evaluate the computational
performance and scalability of hybrid inference, we benchmark
the coupled m-AIA solver from previous work on a heterogeneous
HPC system comprising Intel Sapphire Rapids CPUs and NVIDIA
H100 GPUs. Our results show that hybrid inference achieves a per-
formance speedup, that grows as the ratio of allocated CPU cores
to GPU devices increases. We further demonstrate that the runtime

SCA/HPCAsiaWS 2026, Osaka, Japan
© 2026 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SCA/HPCAsia 2026
Workshops: Supercomputing Asia and International Conference on High Performance
Computing in Asia Pacific Region Workshops (SCA/HPCAsiaWS 2026), January 26–29,
2026, Osaka, Japan, https://doi.org/10.1145/3784828.3785255.

improvement by hybrid inference also increases the energy effi-
ciency of the coupled solver application. Finally, we highlight that
the theoretical hybrid work distribution derived from our formal
model yields near optimal results in practice.

CCS Concepts
• Computing methodologies → Artificial intelligence; Ma-
chine learning; Massively parallel algorithms; • Computer
systems organization→ Heterogeneous (hybrid) systems; •
Applied computing→ Aerospace; Engineering.

Keywords
CFD, TBL, ADR, AI, ML, DL, Transformer, hybrid inference, energy
efficiency, AIxeleratorService
ACM Reference Format:
Fabian Orland, Tom Hilgers, Fabian Hübenthal, Rakesh Sarma, Andreas
Lintermann, and Christian Terboven. 2026. Hybrid Inference Optimization
for AI-Enhanced Turbulent Boundary Layer Simulation on Heterogeneous
Systems. In SCA/HPCAsia 2026 Workshops: Supercomputing Asia and Inter-
national Conference on High Performance Computing in Asia Pacific Region
Workshops (SCA/HPCAsiaWS 2026), January 26–29, 2026, Osaka, Japan.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3784828.3785255

1 Introduction
The CO2 emissions from the aviation sector are a significant con-
tributor to the greenhouse effect, which is the main driver of today’s
global climate change. Thus, research in aerospace engineering is
investigating techniques to reduce an airplane’s energy consump-
tion. One promising approach is ADR using spanwise traveling
surface waves to manipulate the near-wall TBL around an airfoil,
which has been shown to result in significant drag reductions of up
to -31% and net power savings of up to -10% [2]. In this approach a
surface wave is parameterized by its wavelength 𝜆, amplitude 𝐴,
and time-period 𝑇 . Given the flow conditions characterized by the
Reynolds number 𝑅𝑒 , the Mach number𝑀 , and the angle of attack
𝛼 , the challenging problem is to find the best actuation parame-
ters 𝜆∗, 𝐴∗, 𝑇 ∗ that minimize the drag experienced by the airfoil.
While a comprehensive analysis of this highly complex parame-
ter space was done by Albers [1], no analytical solution of the

https://orcid.org/0000-0002-8681-2661
https://orcid.org/0000-0002-7501-3936
https://orcid.org/0009-0000-7159-8220
https://orcid.org/0000-0002-7069-4082
https://orcid.org/0000-0003-3321-6599
https://orcid.org/0000-0003-2284-2957
https://doi.org/10.1145/3784828.3785255
https://doi.org/10.1145/3784828.3785255


SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

problem 𝑓ADR : R3 → R3, (𝑅𝑒,𝑀, 𝛼) ↦→ (𝜆∗,𝑇 ∗, 𝐴∗) is known. A
promising approach to solve the ADR problem may be to utilize
universal function approximation methods from AI, in particu-
lar from DL, and train a deep neural network to learn a function
𝑓 AIADR ≈ 𝑓ADR. Training a DL model requires a huge amount of high-
fidelity data that samples the complex parameter space of flow
conditions and actuation parameters. Due to the turbulent nature
of the boundary layer under investigation, the generation of train-
ing data necessitates direct numerical simulations (DNSs), which
often leads to infeasible computational requirements for realistic
scenarios due to fine mesh resolution requirements to capture the
wide range of turbulent scales. Previous work by Sarma et al. [27]
proposed a method to speed up the time-marching of turbulent
flow fields by coupling a Transformer architecture with a CFD
solver. The Transformer architecture was successfully employed
before by Wu et al. [30] to forecast time series of influenza-like
illness. During a numerical TBL simulation, a CFD solver generates
a time series (𝑈 𝑡 )𝑡𝑛𝑡=0 = (𝑈 0,𝑈 1, . . . ,𝑈 𝑡𝑛−1,𝑈 𝑡𝑛 ), where 𝑈 𝑡 ∈ R3

is the three-dimensional velocity field at a discrete point in time
𝑡 ∈ {0, 1, . . . , 𝑡𝑛} and each 𝑈 𝑡+1 = 𝑈 𝑡 + 𝜕𝑈 𝑡

𝜕𝑡 Δ𝑡 is obtained from
𝑈 𝑡 by integrating the solution of the Navier-Stokes momentum
equation. Sarma et al. [27] adapted the Transformer architecture
by Wu et al. [30] to predict the time-marching of turbulent flow
fields in TBL simulations by transforming an input sequence of
turbulent flow fields (𝑈 𝑡−𝑚, . . . ,𝑈 𝑡−1,𝑈 𝑡 ) into an output sequence
of time-marched fields (𝑈 𝑡+1,𝑈 𝑡+2, . . . ,𝑈 𝑡+𝑛).

In recent years, the development of AI-enhanced simulations by
coupling CFD solvers with trained DL models has gained a lot of
traction in many engineering applications dealing with turbulent or
reactive flows. In these applications, DL models are used to predict
interpolation weights for convective fluxes in finite volume meth-
ods [15], to speedup iterative methods solving the Poisson equation
by predicting good initial guesses [12], or as closure models in large
eddy simulation (LES) predicting different subfilter-scale quanti-
ties [4–6, 9, 16, 21, 31]. AI-enhanced simulation poses a computa-
tional challenge because many CFD solvers have been optimized
over decades for central processing unit (CPU) architectures but
the inference of a DL model mainly consists of matrix operations,
that can be significantly accelerated by current GPU architectures.
Driven by this increasing demand for deploying trained DL models
into CFD solvers, different software packages have been developed
including SmartSim [25], NNPred [19], PhyDLL [28], and the AIxel-
eratorService [24]. While these coupling libraries differ in the level
of abstraction provided to theirs users, all of them, except NNPred,
support offloading the inference task to graphics processing units
(GPUs). However, if the coupled simulation application does not
offer the potential to overlap the inference task with other com-
putations, the allocated CPU cores are idle, which constitutes an
inefficient resource utilization of the heterogeneous hardware.

Since the inference task is highly data-parallel, it offers the po-
tential for a hybrid worksharing approach involving CPUs and
GPUs cooperatively. Hybrid worksharing is not a new concept
and was, for example, applied successfully by Luk et al. [20] in
2009, where the workload of different computation kernels was
adaptively mapped between CPUs and GPUs. For DL workloads,
however, hybrid approaches are still not broadly established. Some

recent hybrid approaches focus on optimizing the training of graph
neural networks [18, 32] or large models in general [26], but hybrid
inference approaches are often only considered for mobile or edge
devices [14, 17].

In this work, we propose a hybrid inference method to optimize
the heterogeneous hardware utilization of AI-enhanced simula-
tions. We demonstrate its applicability to productive applications
by the example of the finite volume solver from the multi-physics
PDE solver framework m-AIA, that was recently coupled with the
TBL-Transformer of Sarma et al. [27] using the AIxeleratorService
library [24] by Hilgers et al. [11]. We define a formal parameterized
hybrid work distribution model adapted from Luk et al. [20] and
derive the optimal hybrid work distribution ratio between CPUs
and GPUs. Moreover, we extend the publicly available AIxelera-
torService library with a general hybrid inference implementation
based on our proposed hybrid work distribution model.

This paper is structured as follows: Section 2 describes the deploy-
ment of the TBL-Transformer [27] into the m-AIA solver framework
and the resulting coupled workflow to accelerate the inference task
on GPUs by using the AIxeleratorService embedded into a general
machine learning (ML)-module as proposed by Orland et al. [24].
Section 3 introduces our proposed hybrid work distribution model
for the inference task and elaborates on the implementation of this
model into the AIxeleratorService library. Section 4 evaluates the
proposed hybrid inference method with the coupled m-AIA solver.
We demonstrate that both speedup and energy efficiency improve
as the ratio of allocated CPU cores to GPU devices increases. More-
over, we evaluate the accuracy of the optimal CPU fractions derived
from our formal hybrid work distribution model compared to the
real observed optima. Finally, Section 5 discusses future work and
Section 6 summarizes our conclusions.

2 Transformer-Enhanced TBL Simulation
In this work we use the finite volume solver on structured grids
(FVStructuredSolver) of the multi-physics PDE solver framework
m-AIA [22], that was recently coupled by Hilgers et al. [11] with
the TBL-Transformer model trained by Sarma et al. [27] to speed up
the generation of actuated TBL data. Since the setup of the coupled
solver is an important foundation for this work, we first summarize
the deployment of the TBL-Transformer into the m-AIA solver and
then elaborate on the acceleration of the inference task using the
AIxeleratorService library [23].

2.1 TBL-Transformer Deployment into m-AIA
Since the TBL-Transformer was trained on simulation snapshots
with a temporal resolution of Δ𝜏 = 24 time steps [27], it is ideally
inferred once every (𝑚 − 1)Δ𝜏 time steps of the coupled simulation,
where𝑚 denotes the context window size, for physical consistency.
To maintain a feasible hidden dimension 𝑑model [29] of the TBL-
Transformer’s embedding space and to control the computational
cost, the model was trained on individual cubic subdomains as input
rather than the full velocity field. This means the full velocity field
is mathematically decomposed according to

𝑓decomp : R𝑛𝑥 ×𝑛𝑦×𝑛𝑧×3 → R3×𝑛𝑐×𝑑3
𝑐 ,𝑈 𝑡 ↦→ 𝑈 𝑡

=
((𝑢𝑡1, . . . , 𝑢𝑡𝑛𝑐 ), (𝑣𝑡1, . . . , 𝑣𝑡𝑛𝑐 ), (𝑤̂𝑡

1, . . . , 𝑤̂
𝑡
𝑛𝑐 )

)
, (1)



Hybrid Inference for AI-Enhanced TBL Simulation on Heterogeneous Systems SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan

m-AIA
FVStructuredSolver

𝑐𝑡+𝑛Δ𝜏
𝑑,𝑥

= 2𝐹𝑥
𝜌∞𝑢2∞

𝑓TBL-TR

𝑓decomp

𝑓recon

𝑈 𝑡−(𝑚−1)Δ𝜏
...
𝑈 𝑡

𝑈 𝑡−(𝑚−1)Δ𝜏 . . . 𝑈 𝑡

𝑈̃ 𝑡+𝑛Δ𝜏

𝑈 𝑡+𝑛Δ𝜏
1

Figure 1: Deployment of the TBL-Transformer model into
the FVStructuredSolver of the m-AIA solver framework.

where each 𝑢𝑡𝑖 , 𝑣
𝑡
𝑖 , 𝑤̂

𝑡
𝑖 ∈ R𝑑3

𝑐 , 𝑖 ∈ {1, . . . , 𝑛𝑐 } is a cubic subdomain
of size 𝑑𝑐 × 𝑑𝑐 × 𝑑𝑐 of one scalar velocity component and 𝑛𝑐 =⌈
𝑛𝑥
𝑑𝑐

⌉
·
⌈
𝑛𝑦
𝑑𝑐

⌉
·
⌈
𝑛𝑧
𝑑𝑐

⌉
is the resulting total number of subdomains. The

inverse transformation that reconstructs the full velocity field from
a decomposed set of cubic subdomains is denoted by 𝑓recon = 𝑓 −1

decomp.
Consequently, the time-marching for a forecasting window size 𝑛
learned by the TBL-Transformer based on a context window size
𝑚 is defined as:

𝑓TBL-TR :
(
R𝑚×3×𝑑3

𝑐 ,R𝑛×3×𝑑3
𝑐

)
→ R𝑛×3×𝑑3

𝑐 ,

((𝑐𝑡−𝑚+1, . . . , 𝑐𝑡 ), (𝑐𝑡 , . . . , 𝑐𝑡+𝑛−1)) ↦→ (𝑐𝑡+1, . . . , 𝑐𝑡+𝑛), (2)

where 𝑐𝑡𝑖 ∈ {𝑢𝑡𝑖 , 𝑣𝑡𝑖 , 𝑤̂𝑡
𝑖 }𝑛𝑐𝑖=1 is an arbitrary cubic subdomain at time

instance 𝑡 , (𝑐𝑡−𝑚+1, . . . , 𝑐𝑡 ) is the input sequence for the encoder,
and (𝑐𝑡 , . . . , 𝑐𝑡+𝑛−1) is the target sequence input for the decoder.

The resulting workflow of the simulation coupled with the TBL-
Transformer is illustrated in Figure 1. Three different types of
time steps need to be distinguished as defined by Hilgers et al.
[11]: i) regular solver step, ii) coupling step, and iii) inference
step. In a regular solver step, the TBL-Transformer is not used
and the usual finite volume method solution of the governing
equations is advanced in time using the Runge-Kutta method.
In a coupling step, the solver decomposes the velocity field ac-
cording to the definition of 𝑓decomp in Equation (1) in preparation
for a future inference step. In an inference step, the whole cou-
pling loop, shown in Figure 1 is executed. Suppose at time step
𝑡 of the coupled simulation, the TBL-Transformer should be in-
ferred. This means at the previous time steps (𝑡 − 𝑘Δ𝜏)𝑚

𝑘=1, the
solver already needs to decompose the velocity field into cubic
subdomains 𝑈 𝑡−𝑘Δ𝜏 = 𝑓decomp (𝑈 𝑡−𝑘Δ𝜏 ) and keep them stored until
time step 𝑡 is reached. At time step 𝑡 , the current velocity field
is also decomposed into cubic subdomains 𝑈 𝑡 = 𝑓decomp (𝑈 𝑡 ) first,
but then the whole coupling loop can be executed. Since all re-
quired inputs for the TBL-Transformer are available, the model
is inferred 𝑛-times autoregressively on batches of time series of
individual cubic subdomains yielding the full decomposed velocity
field 𝑈̃ 𝑡+𝑛Δ𝜏 = 𝑓TBL-TR

(
(𝑈 𝑡−(𝑚−1)Δ𝜏 , . . . ,𝑈 𝑡 ), 𝑈̃ 𝑡+(𝑛−1)Δ𝜏

)
. Subse-

quently, the time-marched velocity field𝑈 𝑡+𝑛Δ𝜏 = 𝑓recon (𝑈̃ 𝑡+𝑛Δ𝜏 ) is
reconstructed. The Runge-Kutta time integration step is skipped
and the internal variables to keep track of the simulated physical

time are incremented manually by 𝑛Δ𝜏Δ𝑡 , where Δ𝑡 is the time step
size of the solver constrained by the CFL condition [8]. Finally the
solver computes the new streamwise drag coefficient 𝑐𝑡+𝑛Δ𝜏

𝑑,𝑥
based

on the time-marched velocity field. Further information regarding
the computation of the drag coefficient and related physical analysis
can be found in [2].

2.2 Accelerating the TBL-Transformer
Inference on GPUs

While the m-AIA solver is an MPI-parallel program running on
CPUs, the inference of the trained TBL-Transformer is computa-
tionally expensive and suitable to be accelerated by GPUs since
it involves many matrix operations. To achieve GPU acceleration
of the inference task in this work, we build upon the implementa-
tion of the coupled m-AIA solver by Hilgers et al. [11], in which
the Fortran-based ML-module developed by Orland et al. [24] was
extended and partially ported to C++ for easier integration into
the C++-based m-AIA framework. Using this modular coupling ap-
proach also enables separation of concerns allowing the actual
FVStructuredSolver code to stay mostly intact. The main logic
and computations of the coupling workflow described in Section 2.1
are encapsulated in the ported ML-module. Only a few lines were
added to the solver code implementing the interaction with the ML-
module. The interaction between the solver and our ML-module
implementation is illustrated by the sequence diagram shown in Fig-
ure 2. A new class MLCouplingMAIA was derived from the abstract
class MLCoupling, formerly ml_coupling_t in Fortran. The ab-
stract parent class MLCoupling exposes a single method ml_step()
to the solver to initiate the 3-step coupling workflow comprising
preprocess_input, inference, and postprocess_output. The
child class MLCouplingMAIA provides concrete implementations
for these abstract methods. Moreover, it manages internal memory
buffers representing an input tensor Tin ∈ R3𝑛𝑐×𝑚×𝑑3

𝑐 and an output
tensor Tout ∈ R3𝑛𝑐×𝑛×𝑑3

𝑐 for the inference of the TBL-Transformer.
The preprocess_input method implements the decomposition of
the given full velocity field𝑈 𝑡 into the cubic subdomains according
to the definition of 𝑓decomp in Equation (1) by filling the correct
indices of the input tensor Tin.

The MLCouplingMAIA class also implements the logic to distin-
guish between the three different types of time steps. In the coupling
or inference step, the m-AIA solver calls ml_step() and provides
a memory pointer to the velocity field. In a regular solver step,
no further computations are performed by the MLCouplingMAIA
class. In a coupling step, only the preprocess_input method is
called inside the MLCouplingMAIA class. In an inference step, the
MLCouplingMAIA class knows, that the input tensor Tin has been
completely filled, and therefore calls into the inference method.

The implementation of the inference method follows the pop-
ular strategy design pattern [10] and is encapsulated in a general,
modular MLCouplingStrategyAix class. This class was omitted
from Figure 2 for visual clarity as it is essentially a wrapper around
our AIxeleratorService library1 and the concept is very similar to
our previous work [24]. For this work, it is important to highlight
the steps performed inside the AIxeleratorService library. First the

1https://github.com/RWTH-HPC/AIxeleratorService

https://github.com/RWTH-HPC/AIxeleratorService


SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

m-AIA MLCouplingMAIA AIxeleratorService

ml_step()

𝑈 𝑡 = preprocess_input(𝑈 𝑡)

inference() gatherInputData()

T Aix
out = forward(T Aix

in )

𝑈 𝑡+𝑛Δ𝜏 = postprocess_output(𝑈̃ 𝑡+𝑛Δ𝜏) scatterOutputData()

𝑈 𝑡

Tin = [𝑈 𝑡−(𝑚−1)Δ𝜏, . . . ,𝑈 𝑡]

T𝑜𝑢𝑡 = [𝑈̃ 𝑡+Δ𝜏, . . . , 𝑈̃ 𝑡+𝑛Δ𝜏]
𝑈 𝑡+𝑛Δ𝜏

1

Figure 2: Sequence diagram illustrating the implemented modular coupling workflow from Orland et al. [24].

AIxeleratorService gathers the input tensors Tin from all m-AIA
solver processes via MPI and concatenates them along the first di-
mension. This means, the AIxeleratorService internally deals with
a huge tensor TAix

in ∈ R3𝑁𝑐×𝑚×𝑑3
𝑐 , where 𝑁𝑐 =

∑𝑁𝑝

𝑝=0 𝑛𝑐,𝑝 is the total
number of cubic subdomains aggregated over all solver processes
𝑝 ∈ {0, . . . , 𝑁𝑝 }. The gathered tensor is then moved to the GPU and
the inference of the TBL-Transformer is performed using PyTorch’s
C++API from libtorch. To enable inference of the TBL-Transformer
in C++we used the TorchScript JIT compiler to create a compiled ver-
sion of the TBL-Transformer’s run_encoder_decoder_inference
Python function, that is available in the public AI4HPC repository2.
After the forward pass through the TBL-Transformer is performed
on the GPU, the predicted time-marched cubic subdomains are
scattered back to their corresponding solver process. Inside the
postprocess_output method of the MLCouplingMAIA class, the
full velocity field is reconstructed, according to the definition of
𝑓recon = 𝑓 −1

decomp, and passed back to the solver process.

3 Hybrid Inference Optimization
The inference of the TBL-Transformer is a highly data-parallel task
since the TBL-Transformer learned the time-marching of an indi-
vidual cubic subdomain, see Equation (2). In deep learning it is a
common practice to train and infer neural networks on batches of
data samples according to a defined batch size because the compu-
tations inside a neural network then become efficient matrix-matrix
operations. Offloading the inference task to GPUs as described in
Section 2.2 introduces a load imbalance between CPU and GPU
resources, as all samples are inferred by the GPUs. In this work,
the coupled simulation creates a huge number of constant sized
samples. This opens the possibility for a hybrid inference scheme,
that distributes the number of data samples to be inferred between
CPU and GPU resources to optimize the utilization of the allocated
heterogeneous hardware. In this section, we first highlight the load
balance problem introduced by offloading the inference of the TBL-
Transformer to GPUs. Secondly, we define a formal hybrid work
distribution model to formulate and solve an optimization problem
to find the optimal work distribution resulting in the most balanced
execution times between CPU and GPU resources. Finally, we de-
scribe our general hybrid inference extension implemented into

2https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Cases/
src/networks.py

the AIxeleratorService library based on the formal hybrid work
distribution model.

3.1 Load Imbalance of the GPU-Offloaded
TBL-TR Inference

The internal distributionStrategy component of the AIxeler-
atorService library implements a distributed client-server archi-
tecture [24], which partitions the MPI_COMM_WORLD communicator
into one workgroup subcommunicator per allocated GPU device in
a (heterogeneous) HPC job. Inside each workgroup one MPI pro-
cess running on a GPU node acts as a designated server while all
remaining processes become clients. Each server process is respon-
sible to gather the preprocessed input data for the TBL-Transformer
from the clients within its workgroup communicator, offload the
inference of the TBL-Transformer to the GPU via libtorch’s C++

API, and finally scatter the resulting predictions of the model back
to the client processes. This distributed client-server architecture
inherently leads to a load imbalance between clients and servers.
Figure 3 shows a trace of one exemplary ml_step execution dur-
ing an inference step highlighting the load imbalance problem. In
this example the coupled m-AIA solver was executed on a single
GPU node of the CLAIX-2023 cluster with 1 GPU device and 96
CPU cores allocated. The whole ml_step takes approximately 7.68
seconds. The pre-processing routines at the beginning and the post-
processing routines at the end of the ml_step are barely visible.
The gatherInputData step is highlighted by the orange colored
trace events. Most of the time is spent for the inference of the
TBL-Transformer, which is managed by process 0 as a server and
indicated by the dark green bar in the timeline of this example. The
remaining 95 processes are clients and only 9 of them are visualized
in the trace for visual clarity as they all execute the same code. The
clients waiting inside the MPI_Scatterv collective are effectively
unutilized during this time frame, which constitutes inefficient us-
age of the allocated heterogeneous hardware resources. To reduce
the time to solution, we propose a hybrid inference scheme, which
also involves the CPU cores of the client processes.

3.2 Hybrid Work Distribution Model
The challenging part of the hybrid inference scheme is to split
the total number of samples to be inferred by the CPU and GPU
resources respectively. In this work, the total number of samples

https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Cases/src/networks.py
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai4hpc/ai4hpc/-/blob/master/Cases/src/networks.py


Hybrid Inference for AI-Enhanced TBL Simulation on Heterogeneous Systems SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan

Figure 3: Vampir trace visualization of one exemplary ml_step execution highlighting the load imbalance between CPU and GPU
during offloaded TBL-Transformer inference. The client processes 1 to 95 execute the same code, but only 9 of them are shown
in the timeline. The pre- and post-processing is barely visible at the beginning and end of the trace. The gatherInputData() and
scatterOutputData() step is highlighted in orange and red, respectively. The GPU-accelerated inference of the TBL-Transformer
is highlighted in dark green on server process 0 taking more than 7 seconds of runtime.

depends on the resolution of the discrete computational grid. The
decomposition of the full velocity field on a discrete grid with
𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 = 732 × 131 × 250 cells according to Equation (1)
results in a total number of 𝑁total = 3 × 𝑛𝑐 = 3 × 𝑛𝑥

𝑑𝑐
× 𝑛𝑦

𝑑𝑐
×

𝑛𝑧
𝑑𝑐

≈ 140467 samples. Note that this does not consider any domain
decomposition among MPI processes in a parallel execution of
the solver. In a parallel solver execution the decomposition into
cubic subdomains for the TBL-Transformer is performed by each
process locally. If in any spatial dimension the length of the local
domains is not perfectly divisible by the cube length 𝑑𝑐 additional
cubes compared to the non-parallel case are created. Thus, the
total number of samples may increase in a parallel execution. To
distribute the total number of samples between CPU and GPU
resources, we introduce a parameter 𝛼 ∈ R, 0 ≤ 𝛼 ≤ 1 to control
the fraction of all samples that get assigned to the CPU resources.
This yields the parameterized hybrid work distribution

𝑁total = 𝑁CPU + 𝑁GPU = 𝛼𝑁total + (1 − 𝛼)𝑁total, (3)

where 𝑁CPU = 𝛼𝑁total, 𝑁GPU = (1 − 𝛼)𝑁total denote the number of
samples assigned to the CPU and GPU resources, respectively. The
hybrid optimization problem is now to find 𝛼∗ such that all CPU
cores and GPU devices finish processing their assigned workload
at the same time. To solve this problem, a formalization of the
resulting runtime depending on the number of assigned samples
for CPU cores and GPU devices is required. The runtime of the
whole ml_step() can be defined as

𝑇ml_step (𝑁total) =𝑇pre (𝑁total) +𝑇inf (𝑁total) +𝑇post (𝑁total) (4)

where 𝑇pre, 𝑇post denote the runtime of the preprocess_input()
and postprocess_output() calls. It should be noted that the gath-
ering and scattering of the input and output data for the TBL-
Transformer is only required for the 𝑁GPU samples inferred by the
GPU resources. The 𝑁CPU samples for the CPU resources can be
directly inferred by each solver process locally on the CPU core
it is running on without requiring any communication. Thus, the
runtime of the hybrid inference() call is defined as

𝑇inf (𝑁total) = max
{
𝑇CPU
inf (𝑁CPU) =𝑇CPU

fwd (𝑁CPU)
𝑇GPU
inf (𝑁GPU) =𝑇GPU

fwd (𝑁GPU) +𝑇OH (𝑁GPU),
(5)

where 𝑇CPU
inf (𝑁CPU) denotes the runtime of inferring 𝑁CPU samples

on the CPU resources and 𝑇GPU
inf (𝑁GPU) denotes the runtime of

inferring 𝑁GPU samples on the GPU resources. The time of the
forward() pass through the TBL-Transformer on CPU and GPU
resources is denoted by𝑇CPU

fwd and𝑇GPU
fwd , respectively. In case of GPU

inference, the communication overhead is summarized by

𝑇OH (𝑁GPU) =𝑇MPIG (𝑁GPU) +𝑇H2D (𝑁GPU)
+𝑇D2H (𝑁GPU) +𝑇MPIS (𝑁GPU), (6)

where 𝑇MPIG and 𝑇MPIS denote the runtime of gatherInputData()
and scatterOutputData(), respectively. Similarly, the time spent
to transfer the gathered input data from the host to the device is
denoted by𝑇H2D and the time to move the predicted output from the
device back to the host is denoted by𝑇D2H, respectively. As both the
CPU and the GPU resources infer their assigned number of sam-
ples in parallel, the resulting hybrid inference runtime 𝑇inf (𝑁total)
is constrained by the maximum of 𝑇CPU

inf (𝑁CPU) and 𝑇GPU
inf (𝑁GPU).

Based on this formulation, the optimization problem to find the
optimal CPU fraction 𝛼∗ becomes

𝛼∗ = argmin
0≤𝛼≤1

𝑇ml_step (𝑁total) . (7)

It should be noted, that the pre- and post-processing is always
done by each solver process locally on its allocated CPU core, so it
does not depend on 𝛼 . Minimizing Equation (7) means minimizing
𝑇ml_step (𝑁total) given by Equation (4). The maximum operator in
the term 𝑇inf (𝑁total), see Equation (5), becomes minimal iff

𝑇CPU
inf (𝑁CPU) =𝑇GPU

inf (𝑁GPU) . (8)

This means to find 𝛼∗, minimizing𝑇𝛼
ml_step (𝑁total) from Equation (4),

one needs to solve

𝑇CPU
fwd (𝑁CPU) =𝑇GPU

fwd (𝑁GPU) +𝑇OH (𝑁GPU). (9)

Since this is a single equation, that needs to be solved for a single
variable 𝛼∗, a unique solution exists. Applying the definition of the
hybrid work distribution from Equation (3) yields

𝑇CPU
fwd (𝛼𝑁total) =𝑇GPU

fwd ((1 − 𝛼)𝑁total) +𝑇OH ((1 − 𝛼)𝑁total). (10)

To be able to solve this equation for 𝛼 we assume that all three
terms obey ideal strong scaling such that for any scalar 𝛾 ∈ R the



SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

following relations hold:

𝑇CPU
fwd (𝛾𝑁total) = 𝛾𝑇CPU

fwd (𝑁total),
𝑇GPU
fwd (𝛾𝑁total) = 𝛾𝑇GPU

fwd (𝑁total),
𝑇OH (𝛾𝑁total) = 𝛾𝑇OH (𝑁total). (11)

For the computational terms𝑇CPU
fwd and𝑇GPU

fwd this assumption should
be reasonable as the computational work per cubic subdomain
sample is constant and the most expensive operations inside a
deep Transformer are matrix-matrix multiplications, which are
compute-bound. A single cubic sub-domain sample contains𝑚 ×
𝑑3
𝑐 = 5×83 = 2560 single-precision floating point elements requiring
approximately 10 KB of memory. Even at the largest scale of solver
processes used in this work, each process holds hundreds of those
samples. This means the message sizes communicated via MPI or
PCIe are large enough, such that also the overhead terms should
scale asymptotically linear [13]. Applying these assumptions from
Equation (11) to Equation (10) yields

𝛼𝑇CPU
fwd (𝑁total) = (1 − 𝛼)𝑇GPU

fwd (𝑁total) + (1 − 𝛼)𝑇OH (𝑁total), (12)

which can be rearranged and finally solved for 𝛼∗ yielding

𝛼∗ =
𝑇GPU
fwd (𝑁total) +𝑇OH (𝑁total)

𝑇CPU
fwd (𝑁total) +𝑇GPU

fwd (𝑁total) +𝑇OH (𝑁total)
. (13)

Based on the optimal CPU fraction 𝛼∗ we can also define the ex-
pected speedup of using hybrid inference compared to the naive
fully GPU-offloaded inference with 𝛼 = 0 as

𝑆𝛼∗ =
𝑇𝛼=0
ml_step (𝑁total)

𝑇𝛼=𝛼∗
ml_step (𝑁total)

=
𝑇pp (𝑁total) +𝑇GPU

fwd (𝑁total) +𝑇OH (𝑁total)
𝑇pp (𝑁total) + (1 − 𝛼∗)𝑇GPU

fwd (𝑁total) + (1 − 𝛼∗)𝑇OH (𝑁total)
,

(14)

where 𝑇𝛼
ml_step (𝑁total) denotes the evaluation of Equation (4) for a

chosen 𝛼 and 𝑇pp (𝑁total) =𝑇pre (𝑁total) +𝑇post (𝑁total) for brevity.
As a result, the practical evaluation of the optimal CPU frac-

tion 𝛼∗ and the related speedup requires two executions of the
coupled solver on the same allocated heterogeneous hardware con-
figuration. In one execution, the TBL-Transformer inference is
performed purely on the CPU resources by setting 𝛼 = 1 to deter-
mine𝑇CPU

fwd (𝑁total),𝑇pre (𝑁total), and𝑇post (𝑁total) from profiling. In a
second execution, the inference is then performed purely on the
allocated GPU resources by setting 𝛼 = 0 to determine𝑇GPU

fwd (𝑁total)
and 𝑇OH (𝑁total) from profiling.

3.3 AIxeleratorService Extension
The modular software architecture of the AIxeleratorService, devel-
oped in previous work by Orland et al. [24], based on the strategy
design pattern [10] allows to extend the library with a hybrid in-
ference approach as described in Section 3.2. Each process of the
coupled CFD solver creates an instance of an AIxeleratorService
object during runtime. Each of these objects stores a unique pointer
to the internal InferenceStrategy class, that encapsulates the
inference of a given input tensor through a given deep learning
model on a specified device meaning CPU or GPU. If GPUs are allo-
cated in a parallel job executing the coupled simulation, only those

processes, that get internally designated as server processes, in-
stantiate this unique pointer with a concrete InferenceStrategy
object currently. To enable the hybrid inference scheme described in
Section 3.2, we modified the code to also allow every client process
to instantiate a concrete InferenceStrategy object.

The implementation of the hybrid work distribution defined
in Equation (3) is more challenging. First we introduced a param-
eter host_fraction, that users can specify when initializing an
AIxeleratorService object in their application, to define the CPU
fraction 𝛼 . The internal communication mechanism of the AIxel-
eratorService library allows to gather data from the client ranks
to the server ranks within a work group sub-communicator. Thus,
we decided to implement the hybrid work split at the granularity
of individual work groups. Each work group contains a number
of MPI processes 𝑁ranks = 𝑁S + 𝑁C, where 𝑁S denotes the number
of servers and 𝑁C denotes the number of clients. Since there is
always a single server, this implies 𝑁C = 𝑁ranks − 1. Further, let 𝑁𝑝

denote the number of samples of process with rank 𝑝 . The hybrid
work distribution depending on 𝛼 is determined within each work
group during initialization of the AIxeleratorService library by each
server process using Algorithm 1. First the server computes the

Algorithm 1HybridWork Split per AIxeleratorService Workgroup
Require: number of ranks 𝑁ranks, number of clients 𝑁C = 𝑁ranks −

𝑁S, samples of process p 𝑁p, CPU fraction 𝛼

1: 𝑁total =
∑𝑁C

𝑝=0 𝑁𝑝

2: 𝑁CPU = ⌊𝛼𝑁total⌋
3: 𝑁CPU = 𝑁CPU/𝑁C
4: for p = 1 to 𝑁C do
5: 𝑁CPU,𝑝 = min(𝑁𝑝 , 𝑁CPU)
6: end for
7: if 𝑁CPU mod 𝑁C = 𝑁R ∧ 𝑁R > 0 then
8: for p = 1 to 𝑁R do
9: 𝑁CPU,𝑝+ = 1
10: end for
11: end if
12: 𝑁CPU,0 = 0 ∧ 𝑁GPU,0 = 𝑁0
13: for p = 1 to 𝑁C do
14: 𝑁GPU,𝑝 = 𝑁𝑝 − 𝑁CPU,𝑝
15: end for
16: return Hybrid work distribution (𝑁CPU,𝑝 , 𝑁GPU,𝑝 ) per process

𝑝 .

total number of samples 𝑁total across all processes within the work
group (line 1). Then it determines the number of samples 𝑁CPU,
that should be inferred on CPU resources by all client processes
based on the CPU fraction 𝛼 (line 2). These samples need to be
distributed equally among all client processes, so that each client
should get 𝑁CPU samples (line 3). If the simulation domain is not
equally divisible among the solver processes, the resulting number
of cubic subdomain samples 𝑁𝑝 per process 𝑝 also varies across
processes. In those cases it may happen that the number of samples
𝑁𝑝 is smaller than the average of number of samples 𝑁CPU, that
should be inferred by each client in the hybrid setting. Since the
internal communication mechanism of the AIxeleratorService li-
brary only allows to gather samples from the clients to the server



Hybrid Inference for AI-Enhanced TBL Simulation on Heterogeneous Systems SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan

but not vice versa and also not between clients, the server can only
assign 𝑁CPU,𝑝 = min(𝑁𝑝 , 𝑁CPU) samples to process 𝑝 for hybrid
inference (line 5). Moreover, if 𝑁CPU cannot be equally divided
among all clients, some remainder samples 𝑁R < 𝑁C may be left
over (line 7). In this case, the server assigns the remaining samples
in a round robin fashion among the clients (line 9). Since the server
process (𝑝 = 0) itself is responsible to perform the inference of the
gathered samples on the GPU via a blocking libtorch C++API, all
samples of the server process need to be defined for GPU inference
by setting 𝑁CPU,0 = 0 ∧ 𝑁GPU,0 = 𝑁0 (line 12). Finally, the server
needs to determine how many samples 𝑁GPU,𝑝 each client process
will send to the server during the gatherInputData() step, see
Figure 2. Theoretically, it should be possible to also involve the
server processes to perform part of the inference on their allocated
CPU core. However, this requires an asynchronous launch of the
GPU inference, which we have not investigated further yet because
we already expect a significant performance improvement from
involving the client processes in the hybrid inference approach.

4 Results
To demonstrate the applicability to real world applications, we
evaluate the computational performance of our hybrid inference
approach introduced in Section 3 with the coupled m-AIA + TBL-
Tranformer solver on the TBL case. First we describe the heteroge-
neous hardware architecture used to perform our experiments with
the coupled solver. Second, we analyze the relationship between the
CPU fraction 𝛼 and the resulting runtime of the ml_step on two
exemplary resource allocations using 1 and 4 GPU devices, respec-
tively. Next, we also demonstrate strong scalability of our hybrid
inference approach with increasing CPU resources and identify
the observed real optimal CPU fraction 𝛼 . After that, we highlight
that runtime reductions of the ml_step also result in correspond-
ing reductions of the energy consumed for the simulation. Finally,
we evaluate the accuracy of our hybrid work distribution model
explained in Section 3.2 by comparing the theoretical optimum 𝛼∗

to the observed real optimum 𝛼 .

4.1 Experimental Setup
In this section, we first describe the heterogeneous hardware setup,
that was used to run the coupled m-AIA solver. Second, we describe
the configuration of the coupled m-AIA solver with respect to the
hyper-parameters of the TBL-Transformer.

4.1.1 Heterogeneous Hardware Setup. All experiments were con-
ducted on the CLAIX-2023 cluster at RWTH Aachen University,
which consists of two segments. The traditional HPC segment con-
sists of compute nodes equipped with two Intel Xeon 8468 Sapphire
Rapids CPUs and a total of 96 cores. Three different memory con-
figurations are available: i) 256 GB, ii) 512 GB, and iii) 1024 GB.
The Machine Learning (ML) segment provides compute nodes with
the same CPU configuration, that are additionally equipped with 4
Nvidia H100 GPUs. These nodes always provide 512 GB of main
memory and 96 GB of HBM2e on each GPU device. The nodes from
both segments are interconnected via a single Nvidia/Mellanox
NDR InfiniBand fat-tree network. Communication between nodes
is routed through at most two switches and the unidirectional com-
munication bandwidth is 25 GB/s. The single node experiments

in this work were executed on CPU nodes with 512 GB of main
memory. For experiments involving two or more CPU nodes 256
GB of main memory per node were sufficient to instantiate a copy
of the TBL-Transformer in each process. In all cases heterogeneous
hardware resources were allocated via a heterogeneous SLURM
job, that allocates one GPU node from the ML segment and up to
𝑋 ∈ {0, 1, 3, 7} CPU nodes from the HPC segment such that the total
number of compute nodes ranges from 1 to 8. While the number
of allocated GPU devices was varied, always all CPU cores were
allocated on each node.

4.1.2 Coupled Simulation Setup. The m-AIA solver coupled with
the TBL-Transformer was executed for 3000 time steps in total.
Every 5 time steps an inference of the TBL-Transformer, using the
previous𝑚 = 5 time steps as input, is performed that advances the
velocity fields𝑛 = 2 times by Δ𝜏/2 = 12 time steps each. This means,
the inference step triggered by calling the ml_step() method is
executed 103 times in total. In a real simulation run, where the TBL-
Transformer should be used consistent with its training, which
implies a context windows size𝑚 = 3 and a forecasting window
size 𝑛 = 2. In such a case the inference would be executed once
every 24(𝑚 − 1) = 48 time steps and the physical time would be
advanced by 24𝑛 = 48 time steps as explained in Section 2.1. Since
the focus of this work is to evaluate the computational performance
of the hybrid inference approach, these parameters were chosen
to keep the required core-hours for performing these experiments
reasonable. A physical evaluation of the TBL-Transformer using the
correct time stepping scheme according to training can be found in
previous work by Hilgers et al. [11].

4.2 Hybrid Work Split Evaluation
Figure 4 shows the effect of the CPU fraction 𝛼 on the resulting run-
time of the ml_step() call. In both cases the m-AIA solver coupled
with the TBL-Transformer was executed on 2 nodes comprising
1 GPU node and 1 CPU node. The left plot shows the results if
only one of the four available GPU devices on the GPU node are
allocated. In the right plot all four GPU devices were allocated. The
horizontal axis samples the range of possible values for the CPU
fraction 𝛼 ∈ [0, 1] in steps of 10%. Around the real optimal CPU
fraction 𝛼 additional samples with a granularity of 1% steps were
added. The vertical axis represents the maximum absolute runtime
over all processes in seconds for different parts of the ml_step
execution. The red line indicates the runtime of the whole ml_step
function. The blue line and the orange line indicate the time to
infer 𝑁CPU samples on the CPU resources and 𝑁GPU samples on
the GPU resources, which corresponds to the terms 𝑇CPU

fwd (𝑁CPU)
and𝑇GPU

fwd (𝑁GPU) introduced in Section 3.2. Similarly, the green line
shows the measured overhead denoted by 𝑇OH (𝑁GPU).

Both plots verify our assumption made in Equation (11) that the
time to perform a forward pass through the TBL-Transformer scales
linearly with the number of samples to be inferred for both the
CPU as well as the GPU resources. Especially the GPU resources
follow this trend closely while for the CPU resources a few outliers
can be observed. For example, in the left plot the runtime of the
CPU inference at 𝛼 = 0.4 is higher than expected. In the right
plot, the outliers for the CPU inference are less pronounced but
a change in slope can be noticed for 𝛼 > 0.1. However, for the



SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CPU Fraction

0

200

400

600

800

1000

1200

1400

Ru
nt

im
e 

(s
)

Hybrid Inference Worksplit vs ML Runtime
CPU Inference
GPU Inference
Overhead
ML_Step

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CPU Fraction

0

200

400

600

800

1000

1200

1400

Ru
nt

im
e 

(s
)

Hybrid Inference Worksplit vs ML Runtime
CPU Inference
GPU Inference
Overhead
ML_Step

Figure 4: Work split evaluation on 2 nodes (1 GPU + 1 CPU node) with 1 GPU device (left) and 4 GPU devices (right) allocated.

overhead term our assumption cannot be verified. By increasing
the CPU fraction 𝛼 we would expect the overhead to go down
as less samples need to be communicated from the clients to the
servers and from the servers’ CPU cores to the GPU devices. Instead
the observed overhead increases approximately linearly between
𝛼 = 0 and 𝛼 = 0.36 and between 𝛼 = 0.6 and 𝛼 = 0.9. However,
the overhead only accounts for at most 17% of the whole ml_step
execution such that we still expect useful results from our modeling
approach.

Most importantly, both plots highlight that there is indeed an
optimal CPU fraction 𝛼 . In the left plot, where 1 GPU device was
allocated, the observed optimal CPU fraction is 𝛼 = 0.37. At this
point the hybrid inference approach results in 503 seconds runtime
for the whole ml_step. Compared to the naive GPU offloading at
𝛼 = 0, for which a runtime of 719 seconds is observed, the hybrid
inference approach yields a speedup of 1.43x. In the right plot, where
4 GPU devices were allocated, the observed optimal CPU fraction
is 𝛼 = 0.13. At 𝛼 = 0 the ml_step runtime is approximately 195
secondswhile the runtime at the optimum𝛼 = 0.13 is approximately
186 seconds yielding a speedup of 1.05x. In this case the observable
speedup by hybrid inference is much smaller, because the ratio of
CPU cores to GPU devices is four times lower compared to the
left plot. As four Nvidia H100 GPU devices are significantly more
powerful than 92 CPU cores, it is expected that the benefit of hybrid
inference becomes less significant.

4.3 Scalability & Speedup
The previous results shown in Figure 4 indicate that the speedup
gained by our hybrid inference approach depends on the ratio be-
tween allocated CPU cores and GPU devices. Higher ratios of CPU
cores per allocated GPU device are supposed to result in a higher
speedup. Thus, we scaled the coupled m-AIA solver from 1 node
to 2, 4, and 8 nodes. This experiment should not be considered a
strong scaling experiment in the sense of Amdahl’s law [3], be-
cause the total number of cubic subdomain samples to be inferred
increases with an increasing number of processes due to different
simulation domain decomposition. For example, using 8 nodes the
total number of samples is 7% higher compared to using 1 node.
This means, by doubling the number of nodes we do not expect

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CPU Fraction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

1 GPU Cases
Nodes

1
2
4
8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CPU Fraction

0.0

0.5

1.0

1.5

Sp
ee

du
p

4 GPU Cases
Nodes

1
2
4
8

Figure 5: Scalability of hybrid inference on 1 to 8 nodes with
1 GPU device (top) and 4 GPU devices (bottom) allocated.

a two-fold speedup. Instead we want to highlight, that for each
individual scale our proposed hybrid inference approach yields a
speedup.

The results of this scalability experiment are shown in Figure 5. In
all cases the spectrum of possible CPU fractions 𝛼 on the horizontal
axis was sampled as done in Figure 4 to find the optimum 𝛼 . The
reported speedup on the vertical axis is again defined as the runtime
of the ml_step() using fully GPU offloaded inference with 𝛼 = 0
compared to the runtime of the ml_step() using hybrid inference
with 𝛼 > 0, i.e. 𝑇𝛼=0

ml_step/𝑇 𝛼̃
ml_step.



Hybrid Inference for AI-Enhanced TBL Simulation on Heterogeneous Systems SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan

The top plot shows the speedups, that are obtained when 1 GPU
device is allocated. In case of 1 node execution the optimal hybrid
work split is 𝛼 = 0.2 yielding a speedup of 1.22x. Using 2 nodes,
the optimum is at 𝛼 = 0.37 with a speedup of 1.43x, as reported in
Section 4.2. On 4 nodes, the observed optimal hybrid work split is
𝛼 = 0.54 yielding a speedup of 1.938x, which is slightly higher than
the speedup of 1.934x obtained at 𝛼 = 0.53. So the true optimum 𝛼
is in between these two values. For the measurements with 8 nodes,
the optimum is found at 𝛼 = 0.74 yielding a speedup of 3.12x. The
bottom plot illustrates the case with 4 GPU devices allocated. For 1,
2, 4, and 8 nodes the observed optima 𝛼 are 0.06, 0.13, 0.22, and 0.35
yielding speedups of 1.05x, 1.05x, 1.17x, and 1.43x, respectively.

In summary, the trend that higher ratios of CPU cores to GPU
devices result in higher optimal CPU fractions and yield higher
speedups can be verified. One might hypothesize that doubling the
number of CPU cores should also shift the optimal CPU fraction
by a factor of two. Since in this work the inference workload does
not stay constant with increasing number of processors, this trend
cannot be verified. Further investigation with a synthetic bench-
mark that ensures a constant workload over increasing processor
counts could clarify this hypothesis.

4.4 Energy Efficiency
Energy efficiency has become an important research aspect due
to the high energy demand of HPC-clusters and the rising energy
prices driven by a growing energy demand worldwide. As demon-
strated in Section 4.3 our hybrid inference approach results gener-
ally in reduced execution times of the ml_step(). Moreover, the
total amount of computational work, i.e. the number of samples
inferred by the TBL-Transformer, does not change for a fixed hard-
ware allocation. As a result, we expect the hybrid execution to be
more energy efficient because the same amount of work is per-
formed by the same amount of hardware in less time.

Users of the CLAIX-2023 cluster have access to a performance
monitoring3 of their jobs. For each job running on the cluster, the
monitoring system reads hardware performance counters once
everyminute. The energy consumption of the CPU cores andDRAM
modules is measured via Intel’s Running Average Power Limit
(RAPL) counters [7]. For each GPU device the energy consumption
is queried via the NVIDIA Management Library (NVML)4. In both
cases the counters provide energy values integrated over time, such
that no energy information is lost between two sampling points of
the performance monitoring system.

Figure 6 illustrates the total energy consumed by different cou-
pled m-AIA solver runs using the same hardware configurations,
that were also used to assess scalability. For a fixed hardware con-
figuration, let 𝐸𝛼 denote the total energy consumed by the coupled
solver if the inference is executed using the CPU fraction 𝛼 . We
denote the absolute energy saved by using hybrid inference with
the empirically optimal 𝛼 compared to full GPU-offloaded infer-
ence and full CPU-based inference by Δ𝐸𝛼=0 = 𝐸𝛼=0 − 𝐸𝛼=𝛼̃ and
Δ𝐸𝛼=1 = 𝐸𝛼=1 − 𝐸𝛼=𝛼̃ , respectively.

3https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/
3a11a76fdf30476bb4b1a8b30661dab3/
4https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group_
_nvmlDeviceQueries_1g732ab899b5bd18ac4bfb93c02de4900a

8 Nodes 
1 GPU

1 Node 
4 GPUs

2 Nodes 
4 GPUs

4 Nodes 
4 GPUs

Case (Nodes - GPUs)

0

250

500

750

1000

1250

1500

To
ta

l E
ne

rg
y 

(W
h)

Energy Consumption per Case and Worksplit
GPU-only
CPU-only
Optimal Worksplit

Figure 6: Energy consumption of hybrid inference with opti-
mal 𝛼 versus 𝛼 = 0 and 𝛼 = 1.

Nodes GPUs Δ𝐸𝛼=0 [Wh] Δ𝐸𝛼=1 [Wh]
8 1 906.50 (62.1%) 64.52 (10.5%)
1 4 28.16 (6.6%) 90.80 (18.6%)
2 4 19.23 (7.4%) 307.99 (56.0%)
4 4 50.57 (15.7%) 239.90 (46.9%)

Table 1: Energy savings of hybrid inference with optimal 𝛼
versus 𝛼 = 0 and 𝛼 = 1.

These energy savings are shown in Table 1. Due to technical
problems, the monitoring system was missing energy measure-
ments from the GPUs in half of the coupled solver runs. However,
in all complete cases a reduction in energy consumption can be
noted. Especially, in the case of 8 nodes and 1 GPU the most energy
can be saved. In this case the fully GPU-offloaded inference with
𝛼 = 0 consumed approximately 1459 Wh. Compared to the other
runs, the energy consumption appears exceptionally high. However,
on the CLAIX-2023 cluster, the CPUs are configured to not clock
down. Consequently, while the GPU performs the inference of all
input samples and the clients wait inside the scatter collective, their
corresponding CPU cores still run at maximum frequency, which
consumes a significant amount of energy due to high number of
CPU cores allocated in this run. In contrast the optimal hybrid run
only consumed approximately 552 Wh. This means the hybrid run
required approximately 907 Wh less energy, which is a relative en-
ergy saving of approximately 68%. In case of 4 GPUs allocated, the
energy saved by hybrid inference is much lower but still significant
and ranges from 6.6% on 1 node up to 15.7% on 4 nodes. Compared
to the CPU-only runs with 𝛼 = 1 the hybrid inference with 𝛼 = 𝛼
also saves between 10.5% and 56.0% of energy. It should be noted
that these runs were performed exclusively on CPU nodes from
the HPC-segment of CLAIX-2023 because no GPU is needed such
that also no idle energy consumption of the GPUs is included in the
data. Moreover, the resulting energy saving Δ𝐸𝛼=0 correlates well
with the yielded speedups discussed in Section 4.3. For example
the optimal hybrid run on 4 nodes with 4 GPUs allocated yielded a
speedup of 1.17x and required 15.7% less energy. In summary, we
can conclude that the speedup obtained by our proposed hybrid
inference approach also results in a proportionally more energy
efficient execution of the coupled solver.

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/3a11a76fdf30476bb4b1a8b30661dab3/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/3a11a76fdf30476bb4b1a8b30661dab3/
https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries_1g732ab899b5bd18ac4bfb93c02de4900a
https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries_1g732ab899b5bd18ac4bfb93c02de4900a


SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

1 Node 
1 GPU

2 Nodes 
1 GPU

4 Nodes 
1 GPU

8 Nodes 
1 GPU

1 Node 
4 GPUs

2 Nodes 
4 GPUs

4 Nodes 
4 GPUs

8 Nodes 
4 GPUs

Case (Nodes - GPUs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CP
U 

Fr
ac

tio
n

Theoretical vs Real Optimal CPU Fraction per Case
Theoretical Fraction
Real Fraction

Figure 7: Comparison of the theoretical optimum to the ob-
served real optimum for CPU fraction.

4.5 Performance Model Accuracy
So far we have analyzed the advantages of our hybrid inference
approach based on an empirically found optimal CPU fraction 𝛼 .
Since the optimal CPU fraction depends on the given deep learning
model and heterogeneous hardware allocation, it is infeasible to
always evaluate the whole spectrum 0 ≤ 𝛼 ≤ 1 to empirically find
an optimal 𝛼 in practice. In Section 3.2 we derived a formal model to
determine the optimal 𝛼∗ analytically. In this section, we evaluate
the accuracy of this model by comparing the theoretical optimal
𝛼∗ with the empirically found optimal 𝛼 .

For the different heterogeneous hardware configurations inves-
tigated in this work, Figure 7 shows the comparison of the the-
oretically determined optimal CPU fraction 𝛼∗ compared to the
empirically found optimal CPU fraction 𝛼 and Figure 8 shows the
related theoretical speedup 𝑆𝛼∗ , see Equation (14), compared to the
empirically found actual speedup on the right. Determining the
theoretical optimal CPU fraction 𝛼∗ requires the term 𝑇CPU

fwd (𝑁total)
from profiling, see Equation (13). Due to the technical limitation
of the AIxeleratorService library, that only allows clients and not
servers to perform hybrid inference on their allocated CPU core,
this term needs modification. In this work, a normalized term
𝑇CPU
fwd (𝑁total) = 𝑁ranks

𝑁C
𝑇CPU
fwd (𝑁total), that scales the profiled runtime

according to the number of clients 𝑁C and total number of solver
processes 𝑁ranks, was used to determine 𝛼∗.

In most cases our hybrid model derived in Section 3.2 overes-
timates the optimal CPU fraction 𝛼∗ compared to the empirically
found optimum 𝛼 . In the 4 and 8 node cases with 1 GPU, the real
optima 𝛼 = 0.54 and 𝛼 = 0.74 are underestimated by the theoretical
𝛼∗ = 0.526 and 𝛼∗ = 0.712 respectively. Over all cases the highest
absolute error is 0.04 for the 1 node with 1 GPU case and the lowest
absolute error is 0.008 for the case with 4 nodes and 4 GPUs.

The speedup is generally overestimated by our theoretical model,
because our assumptions from Equation (11) regarding the overhead
term do not hold in reality, see Section 4.2. The lowest absolute
error of 0.04x occurs in the case with 1 node and 4 GPUs while
the highest absolute error of 0.35x occurs in the case with 8 nodes
and 1 GPU, respectively. In relative terms the error in the predicted
speedup ranges from 3.7% up to 13.2%.

1 Node 
1 GPU

2 Nodes 
1 GPU

4 Nodes 
1 GPU

8 Nodes 
1 GPU

1 Node 
4 GPUs

2 Nodes 
4 GPUs

4 Nodes 
4 GPUs

8 Nodes 
4 GPUs

Case (Nodes - GPUs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Real vs Expected Speedup per Case
Theoretical Speedup
Real Speedup

Figure 8: Comparison of the theoretical optimum to the ob-
served real optimum for speedup.

In practice the accuracy of the theoretical optimal CPU fraction
𝛼∗ is the important one, as users of the AIxeleratorService library
need to provide an accurate estimate of this value to profit from
the hybrid inference approach and avoid extensive manual tuning.
In most cases the predicted optimal CPU fraction 𝛼∗ is only off by
0.01 or 0.02. Especially in cases with a lot of potential for hybrid
inference due to a high ratio of CPU cores per allocated GPU device,
the actual optimal CPU fraction𝛼 does not need to be hit exactly. For
example in the 8 node and 4 GPU case the whole range 0.3 ≤ 𝛼 ≤ 0.4
around the optimal fraction 𝛼 = 0.35 still yields a speedup of at
least 1.25x compared to the naive GPU-offloaded execution, see
Figure 5. Thus, we claim that our theoretical performance model to
derive a near optimal work split fraction 𝛼∗ is accurate enough for
practical real world applications.

5 Future Work
Future work is dedicated towards improving the accuracy and prac-
tical usability of the theoretical model. We suspect, that the real
optimal CPU fraction 𝛼 can be found fully automated within the
AIxeleratorService library by the following iterative procedure. Let
𝛼𝑘 denote the CPU fraction, that was chosen for the 𝑘-th invo-
cation of the hybrid inference call. If 0 < 𝛼𝑘 < 1, the runtime
terms 𝑇CPU

fwd (𝑁CPU), 𝑇GPU
fwd (𝑁GPU), and 𝑇OH (𝑁GPU) could be mea-

sured within the AIxeleratorService library to derive
𝑇CPU
fwd (𝑁total) =𝑇CPU

fwd (𝑁CPU)/𝛼𝑘 (15)

𝑇GPU
fwd (𝑁total) =𝑇GPU

fwd (𝑁GPU)/(1 − 𝛼𝑘 ) (16)
𝑇OH (𝑁total) =𝑇OH (𝑁GPU)/(1 − 𝛼𝑘 ) (17)

based on Equation (11) yielding a current estimate 𝛼∗
𝑘
according to

Equation (13). For the next hybrid inference invocation 𝑘 + 1, the
previous estimate 𝛼∗

𝑘
can be used to update 𝛼𝑘+1 = 𝛼𝑘 +Δ𝛼𝑘 , where

Δ𝛼𝑘 = 𝛼∗
𝑘
−𝛼𝑘 in the simplest case. Preliminary results indicate, that

this iterative update procedure might converge to the real optimum
𝛼 . Table 2 shows the derived 𝛼∗

𝑘
values for each individual sample

𝛼𝑘 obtained from executing the coupled solver on 8 nodes with
4 GPUs allocated, see Figure 5. In this case the observed optimal
CPU fraction was 𝛼 = 0.35, see Figure 5. One may recognize, that
the closer 𝛼𝑘 gets to 𝛼 , the closer the estimate 𝛼∗

𝑘
gets to 𝛼 as well.



Hybrid Inference for AI-Enhanced TBL Simulation on Heterogeneous Systems SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan

𝛼𝑘 𝛼∗
𝑘

𝛼𝑘 𝛼∗
𝑘

𝛼𝑘 𝛼∗
𝑘

0.10 0.1820 0.34 0.3473 0.4 0.3443
0.20 0.2887 0.35 0.3473 0.5 0.3474
0.30 0.3228 0.36 0.3413 0.6 0.3460
0.31 0.3319 0.37 0.3435 0.7 0.3601
0.32 0.3345 0.38 0.3534 0.8 0.3816
0.33 0.3473 0.39 0.3452 0.9 0.4158

Table 2: Theoretical optimal CPU fraction 𝛼∗ evaluated on
single samples from the 8 node 4 GPU case.

In this example, the iterative update rule starting with 𝛼0 = 0.10
converges to a fixpoint already after 6 iterations:

(𝛼0 = 0.10, 𝛼∗
0 = 0.1820 ≈ 0.20)

→(𝛼1 = 0.20, 𝛼∗
1 = 0.2887 ≈ 0.30)

→(𝛼2 = 0.30, 𝛼∗
2 = 0.3228 ≈ 0.32)

→(𝛼3 = 0.32, 𝛼∗
3 = 0.3345 ≈ 0.33)

→(𝛼4 = 0.33, 𝛼∗
4 = 0.3473 ≈ 0.35)

→(𝛼5 = 0.35, 𝛼∗
5 = 0.3473 ≈ 0.35)

→(𝛼6 = 0.35, 𝛼∗
6 = 0.3473 ≈ 0.35).

These results encourage further investigation to find the best update
rule yielding the fastest convergence up to a small tolerance to
fully eliminate the current user’s burden and improve the practical
usability of hybrid inference.

6 Conclusions
In this work we optimized the computationally expensive infer-
ence of a Transformer model, that was previously coupled with the
highly parallel finite-volume solver on structured grids from the
multi-physics PDE solver framework m-AIA using the open-source
AIxleratorService library, to accelerate the costly time-marching
of turbulent flow fields in a turbulent boundary layer simulation
case. In this workflow, we identified a load imbalance between
the allocated heterogeneous GPU and CPU resources caused by
offloading of all data samples to the GPU. We proposed a hybrid
inference approach, that splits the work between the available GPU
and CPU resources to circumvent this issue and optimize the uti-
lization of the allocated heterogeneous hardware, and derived an
analytical model to determine the optimal hybrid work distribution.
The proposed hybrid inference scheme was implemented into the
AIxeleratorService library. The AIxeleratorService5 library, the par-
tially ported C++-ML-Module6, and the coupled m-AIA solver code
are publicly available on GitHub7.

The applicability of our proposed hybrid inference approach
to productive real-world application cases and its scalability was
demonstrated by the example of the coupled m-AIA solver. The
speedup yielded by our hybrid inference approach was found to
depend on the ratio of allocated CPU cores to GPU devices and
the highest investigated ratio of 768 CPU cores to 1 GPU device
resulted in a speedup of more than 3x. Even in cases with the

5https://github.com/RWTH-HPC/AIxeleratorService/tree/MMCP_2026
6https://github.com/RWTH-HPC/CPP-ML-Interface
7https://github.com/RWTH-HPC/MMCP_2026_Artifact_Hybrid_Inference

smallest possible ratio of 24 CPU cores per 1 GPU device on the
given heterogeneous cluster architecture, a speedup of 1.05x was
achieved. Of course the actual numbers might differ on different
hardware, but we suspect the general trend to hold independent of
the actual hardware as the hybrid work split depends mostly on the
achieved inference performance of the employed heterogeneous
hardware. Moreover, a reduction in energy consumption was found
to directly correlate with the runtime reduction by our hybrid
inference approach rendering the hybrid execution more energy
efficient because a constant amount of worked is inferred in less
runtime. Considering that highly parallel CFD simulation cases are
potential candidates to target upcoming exascale supercomputers,
even small reductions in the order of 5% regarding runtime and
energy consumption may pay off in absolute terms for users and
operators of these systems. The theoretical optimal hybrid work
split derived by our analytical model was found to yield accurate
estimates that in the worst casemissed the real optimum by up to 4%.
In most cases, users can still expect significant near optimal runtime
improvements by using a hybrid work split, that is 1% or 2% lower
than the analytically derived optimum. To derive the analytical
estimate for their given application, users currently need to perform
only two exemplary runs of their coupled solver application. In
future work, the AIxeleratorService library may automatically find
the best hybrid work distribution iteratively during the first few
time steps of a long running simulation.

Finally, the results of this work encourage HPC users with similar
AI-enhanced CFD simulation cases to reconsider their allocation of
heterogeneous hardware resources. The results shown in Figure 5
demonstrate that in our case the same workload can be equally
solved by fully offloading the inference workload to a single GPU or
by performing the inference fully on 4 CPU nodes. In general GPUs
are an expensive and limited resource, especially on university and
national clusters like CLAIX-2023. In practice, users might reduce
the scheduling time of their jobs on HPC clusters by allocating
more CPU resources, that are plentiful available compared to GPU
resources. Moreover, if GPUs cannot be utilized for near 100% of the
runtime because the remaining CFD solver parts are still executed
on CPUs, a sensible resource usage might be to limit the allocation
to a few GPU devices compared to the number of CPU cores and
use a hybrid inference approach as demonstrated in this work.

Acknowledgments
The authors gratefully acknowledge the computing time provided
to them on the high-performance computer CLAIX-2023 at the NHR
Center RWTH Aachen University. This is funded by the German
Federal Ministry of Research, Technology and Space and the state
government of North Rhine-Westphalia. The computations for this
research were performed using computing resources under projects
rwth1859 and p0025821.

References
[1] Marian Albers. 2021. Numerical Analysis of Active Drag Reduction for Turbulent

Airfoil Flow (1. auflage ed.). Verlag Dr. Hut, München.
[2] Marian Albers, Pascal S. Meysonnat, Daniel Fernex, Richard Semaan, Bernd R.

Noack, andWolfgang Schröder. 2020. Drag Reduction and Energy Saving by Span-
wise Traveling Transversal Surface Waves for Flat Plate Flow. Flow, Turbulence
and Combustion 105, 1 (June 2020), 125–157. doi:10.1007/s10494-020-00110-8

https://github.com/RWTH-HPC/AIxeleratorService/tree/MMCP_2026
https://github.com/RWTH-HPC/CPP-ML-Interface
https://github.com/RWTH-HPC/MMCP_2026_Artifact_Hybrid_Inference
https://doi.org/10.1007/s10494-020-00110-8


SCA/HPCAsiaWS 2026, January 26–29, 2026, Osaka, Japan Orland et al.

[3] Gene M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference on - AFIPS ’67 (Spring). ACM Press, Atlantic City, New
Jersey, 483. doi:10.1145/1465482.1465560

[4] Geveen Arumapperuma, Nicola Sorace, Matthew Jansen, Oliver Bladek, Ludovico
Nista, Shreyans Sakhare, Lukas Berger, Heinz Pitsch, Temistocle Grenga, and An-
tonio Attili. 2025. Extrapolation Performance of Convolutional Neural Network-
Based Combustion Models for Large-Eddy Simulation: Influence of Reynolds
Number, Filter Kernel and Filter Size. Flow, Turbulence and Combustion (March
2025). doi:10.1007/s10494-025-00643-w

[5] Andrea Beck and Marius Kurz. 2023. Toward Discretization-Consistent Closure
Schemes for Large Eddy Simulation Using Reinforcement Learning. Physics of
Fluids 35, 12 (Dec. 2023), 125122. doi:10.1063/5.0176223

[6] Julian Bissantz, Jeremy Karpowski, Matthias Steinhausen, Yujuan Luo, Federica
Ferraro, Arne Scholtissek, Christian Hasse, and Luc Vervisch. 2023. Application of
Dense Neural Networks for Manifold-Based Modeling of Flame-Wall Interactions.
Applications in Energy and Combustion Science 13 (March 2023), 100113. doi:10.
1016/j.jaecs.2023.100113

[7] Intel Corporation. 2024. 4th Gen Intel Xeon Processor Scalable Family, Codename
Sapphire Rapids. Data Sheet Volume 1 Rev. 1.0.

[8] R. Courant, K. Friedrichs, and H. Lewy. 1928. Über die partiellen Differenzen-
gleichungen der mathematischen Physik. Math. Ann. 100, 1 (Dec. 1928), 32–74.
doi:10.1007/BF01448839

[9] Benet Eiximeno, Marcial Sanchis-Agudo, Arnau Miró, Ivette Rodriguez, Ricardo
Vinuesa, and Oriol Lehmkuhl. 2025. On Deep-Learning-Based Closures for
Algebraic Surrogate Models of Turbulent Flows. Journal of Fluid Mechanics 1020
(Oct. 2025), A36. doi:10.1017/jfm.2025.10610

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., USA.

[11] Tom Hilgers, Fabian Orland, Fabian Hübenthal, Rakesh Sarma, Andreas Linter-
mann, and Christian Terboven. 2025. Evaluating the Computational Performance
and Accuracy of a Coupled CFD Solver-ML Workflow. In 36th Parallel CFD Inter-
national Conference 2025. Merida, Yucatan, Mexico, accepted for publication.

[12] Ekhi Ajuria Illarramendi, Michaël Bauerheim, and Bénédicte Cuenot. 2022. Per-
formance and Accuracy Assessments of an Incompressible Fluid Solver Coupled
with a Deep Convolutional Neural Network. Data-Centric Engineering 3 (Jan.
2022), e2. doi:10.1017/dce.2022.2

[13] Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara. 2001. LogGPS: A Parallel
Computational Model for Synchronization Analysis. SIGPLAN Not. 36, 7 (June
2001), 133–142. doi:10.1145/568014.379592

[14] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue
Zhang. 2022. CoDL: Efficient CPU-GPU Co-Execution for Deep Learning Infer-
ence onMobile Devices. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services (MobiSys ’22). Association for Com-
puting Machinery, New York, NY, USA, 209–221. doi:10.1145/3498361.3538932

[15] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner,
and Stephan Hoyer. 2021. Machine Learning–Accelerated Computational Fluid
Dynamics. Proceedings of the National Academy of Sciences 118, 21 (May 2021),
e2101784118. doi:10.1073/pnas.2101784118

[16] Marius Kurz, Andrea Beck, and Benjamin Sanderse. 2025. Harness-
ing Equivariance: Modeling Turbulence with Graph Neural Networks.
arXiv:2504.07741 [physics] doi:10.48550/arXiv.2504.07741

[17] Nan Li, Alexandros Iosifidis, and Qi Zhang. 2022. Collaborative Edge Computing
for Distributed CNN Inference Acceleration Using Receptive Field-Based Seg-
mentation. Computer Networks 214 (Sept. 2022), 109150. doi:10.1016/j.comnet.
2022.109150

[18] Yi-Chien Lin, Gangda Deng, and Viktor Prasanna. 2024. A Unified CPU-GPU
Protocol for GNNTraining. In Proceedings of the 21st ACM International Conference
on Computing Frontiers (CF ’24). Association for Computing Machinery, New
York, NY, USA, 155–163. doi:10.1145/3649153.3649191

[19] Weishuo Liu, Ziming Song, and Jian Fang. 2023. NNPred: Deploying Neural
Networks in Computational Fluid Dynamics Codes to Facilitate Data-Driven
Modeling Studies. Computer Physics Communications 290 (Sept. 2023), 108775.
doi:10.1016/j.cpc.2023.108775

[20] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting Paral-
lelism on Heterogeneous Multiprocessors with Adaptive Mapping. In 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 45–55.

[21] Ludovico Nista. 2024. Influence of Adversarial Training on Super-Resolution
Turbulence Reconstruction. Physical Review Fluids 9, 6 (2024). doi:10.1103/
PhysRevFluids.9.064601

[22] Institute of Aerodynamics. 2024. M-AIA. Zenodo. doi:10.5281/zenodo.13350586
[23] Fabian Orland, Kim Sebastian Brose, Julian Bissantz, Federica Ferraro, Christian

Terboven, and Christian Hasse. 2022. A Case Study on Coupling OpenFOAM
with Different Machine Learning Frameworks. In 2022 IEEE/ACM International
Workshop on Artificial Intelligence and Machine Learning for Scientific Applications
(AI4S). 7–12. doi:10.1109/AI4S56813.2022.00007

[24] Fabian Orland, Ludovico Nista, Nick Kocher, Joris Vanvinckenroye, Heinz Pitsch,
and Christian Terboven. 2025. Efficient and Scalable AIxeleration of Reactive CFD
Solvers Coupled with Deep Learning Inference on Heterogeneous Architectures.
In Proceedings of the 2025 International Conference on High Performance Comput-
ing in Asia-Pacific Region Workshops (HPC Asia ’25 Workshops). Association for
Computing Machinery, New York, NY, USA, 45–57. doi:10.1145/3703001.3724386

[25] Sam Partee, Matthew Ellis, Alessandro Rigazzi, Andrew E. Shao, Scott Bachman,
Gustavo Marques, and Benjamin Robbins. 2022. Using Machine Learning at
Scale in Numerical Simulations with SmartSim: An Application to Ocean Climate
Modeling. Journal of Computational Science 62 (July 2022), 101707. doi:10.1016/j.
jocs.2022.101707

[26] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-Offload:
Democratizing Billion-Scale Model Training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[27] Rakesh Sarma, Fabian Hübenthal, Eray Inanc, and Andreas Lintermann. 2024.
Prediction of Turbulent Boundary Layer Flow Dynamics with Transformers.
Mathematics 12, 19 (Jan. 2024), 2998. doi:10.3390/math12192998

[28] Anass Serhani, Victor Xing, Dorian Dupuy, Corentin Lapeyre, and Gabriel Staffel-
bach. 2024. Graph and Convolutional Neural Network Coupling with a High-
Performance Large-Eddy Simulation Solver. Computers & Fluids 278 (June 2024),
106306. doi:10.1016/j.compfluid.2024.106306

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran
Associates, Inc.

[30] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. 2020. Deep Trans-
former Models for Time Series Forecasting: The Influenza Prevalence Case.
arXiv:2001.08317 [cs] doi:10.48550/arXiv.2001.08317

[31] Victor Xing, Corentin Lapeyre, Thomas Jaravel, and Thierry Poinsot. 2021. Gen-
eralization Capability of Convolutional Neural Networks for Progress Variable
Variance and Reaction Rate Subgrid-Scale Modeling. Energies 14, 16 (Jan. 2021),
5096. doi:10.3390/en14165096

[32] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.
2022. Distributed Hybrid CPU and GPU Training for Graph Neural Networks
on Billion-Scale Heterogeneous Graphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22). Association for
Computing Machinery, New York, NY, USA, 4582–4591. doi:10.1145/3534678.
3539177

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/s10494-025-00643-w
https://doi.org/10.1063/5.0176223
https://doi.org/10.1016/j.jaecs.2023.100113
https://doi.org/10.1016/j.jaecs.2023.100113
https://doi.org/10.1007/BF01448839
https://doi.org/10.1017/jfm.2025.10610
https://doi.org/10.1017/dce.2022.2
https://doi.org/10.1145/568014.379592
https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1073/pnas.2101784118
https://arxiv.org/abs/2504.07741
https://doi.org/10.48550/arXiv.2504.07741
https://doi.org/10.1016/j.comnet.2022.109150
https://doi.org/10.1016/j.comnet.2022.109150
https://doi.org/10.1145/3649153.3649191
https://doi.org/10.1016/j.cpc.2023.108775
https://doi.org/10.1103/PhysRevFluids.9.064601
https://doi.org/10.1103/PhysRevFluids.9.064601
https://doi.org/10.5281/zenodo.13350586
https://doi.org/10.1109/AI4S56813.2022.00007
https://doi.org/10.1145/3703001.3724386
https://doi.org/10.1016/j.jocs.2022.101707
https://doi.org/10.1016/j.jocs.2022.101707
https://doi.org/10.3390/math12192998
https://doi.org/10.1016/j.compfluid.2024.106306
https://arxiv.org/abs/2001.08317
https://doi.org/10.48550/arXiv.2001.08317
https://doi.org/10.3390/en14165096
https://doi.org/10.1145/3534678.3539177
https://doi.org/10.1145/3534678.3539177

	Abstract
	1 Introduction
	2 Transformer-Enhanced TBL Simulation
	2.1 TBL-Transformer Deployment into m-AIA
	2.2 Accelerating the TBL-Transformer Inference on GPUs

	3 Hybrid Inference Optimization
	3.1 Load Imbalance of the GPU-Offloaded TBL-TR Inference
	3.2 Hybrid Work Distribution Model
	3.3 AIxeleratorService Extension

	4 Results
	4.1 Experimental Setup
	4.2 Hybrid Work Split Evaluation
	4.3 Scalability & Speedup
	4.4 Energy Efficiency
	4.5 Performance Model Accuracy

	5 Future Work
	6 Conclusions
	Acknowledgments
	References

