001052363 001__ 1052363
001052363 005__ 20260203123506.0
001052363 0247_ $$2doi$$a10.1021/acs.jctc.5c01793
001052363 0247_ $$2ISSN$$a1549-9618
001052363 0247_ $$2ISSN$$a1549-9626
001052363 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00962
001052363 037__ $$aFZJ-2026-00962
001052363 082__ $$a610
001052363 1001_ $$00000-0001-7635-2705$$aDamjanovic, Ana$$b0$$eCorresponding author
001052363 245__ $$aFrom Atoms to Neuronal Spikes: A Multiscale Simulation Framework
001052363 260__ $$aWashington, DC$$b[Verlag nicht ermittelbar]$$c2026
001052363 3367_ $$2DRIVER$$aarticle
001052363 3367_ $$2DataCite$$aOutput Types/Journal article
001052363 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769593472_12284
001052363 3367_ $$2BibTeX$$aARTICLE
001052363 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052363 3367_ $$00$$2EndNote$$aJournal Article
001052363 520__ $$aUnderstanding how molecular events in ion channelsimpact neuronal excitability, as derived from the calculation of thetime course of the membrane potentials, can help elucidate themechanisms of neurological disease-linked mutations and supportneuroactive drug design. Here, we propose a multiscale simulationapproach which couples molecular simulations with neuronalsimulations to predict the variations in membrane potential andneural spikes. We illustrate this through two examples. First,molecular dynamics simulations predict changes in current andconductance through the AMPAR neuroreceptor when comparingthe wild-type protein with certain disease-associated variants. Theresults of these simulations inform morphologically detailed modelsof cortical pyramidal neurons, which are simulated using the Arborframework to determine neural spike activity. Based on these multiscale simulations, we suggest that disease associated AMPARvariants may significantly impact neuronal excitability. In the second example, the Arbor model is coupled with coarse-grainedMonte Carlo gating simulations of voltage-gated (K+ and Na+) channels. The predicted current from these ion channels altered themembrane potential and, in turn, the excitation state of the neuron was updated in Arbor. The resulting membrane potential wasthen fed back into the Monte Carlo simulations of the voltage-gated ion channels, resulting in a bidirectional coupling of current andmembrane potential. This allowed the transitions of the states of the ion channels to influence the membrane potentials and viceversa. Our Monte Carlo simulations also included the crucial, so far unexplored, effects of the composition of the lipid membraneembedding. We explored the influence of lipidic compositions only using the Monte Carlo simulations. Our combined approaches,which use several simplifying assumptions, predicted membrane potentials consistent with electrophysiological recordings andestablished a multiscale framework linking the atomistic perturbations to neuronal excitability
001052363 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052363 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001052363 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001052363 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001052363 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
001052363 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
001052363 536__ $$0G:(EU-Grant)101058516$$aeBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516)$$c101058516$$fHORIZON-INFRA-2021-TECH-01$$x6
001052363 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001052363 7001_ $$00000-0002-1918-8280$$aCarnevale, Vincenzo$$b1$$eCorresponding author
001052363 7001_ $$0P:(DE-Juel1)176815$$aHater, Thorsten$$b2$$eCorresponding author
001052363 7001_ $$00000-0002-7790-8485$$aSultan, Nauman$$b3
001052363 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b4
001052363 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b5$$eCorresponding author
001052363 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b6$$eCorresponding author
001052363 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.5c01793$$gp. acs.jctc.5c01793$$n2$$p783-793$$tJournal of chemical theory and computation$$v22$$x1549-9618$$y2026
001052363 8564_ $$uhttps://juser.fz-juelich.de/record/1052363/files/from-atoms-to-neuronal-spikes-a-multiscale-simulation-framework-1.pdf$$yOpenAccess
001052363 8767_ $$d2026-01-14$$eHybrid-OA$$jPublish and Read$$zFZJ-2026-00347
001052363 909CO $$ooai:juser.fz-juelich.de:1052363$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001052363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176815$$aForschungszentrum Jülich$$b2$$kFZJ
001052363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b4$$kFZJ
001052363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b5$$kFZJ
001052363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b6$$kFZJ
001052363 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052363 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001052363 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001052363 9141_ $$y2026
001052363 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001052363 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001052363 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001052363 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001052363 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001052363 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001052363 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052363 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001052363 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-07
001052363 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2025-11-07
001052363 920__ $$lyes
001052363 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052363 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001052363 9801_ $$aFullTexts
001052363 980__ $$ajournal
001052363 980__ $$aVDB
001052363 980__ $$aUNRESTRICTED
001052363 980__ $$aI:(DE-Juel1)JSC-20090406
001052363 980__ $$aI:(DE-Juel1)INM-9-20140121
001052363 980__ $$aAPC