| Hauptseite > Publikationsdatenbank > From Atoms to Neuronal Spikes: A Multiscale Simulation Framework > print |
| 001 | 1052363 | ||
| 005 | 20260203123506.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.jctc.5c01793 |2 doi |
| 024 | 7 | _ | |a 1549-9618 |2 ISSN |
| 024 | 7 | _ | |a 1549-9626 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00962 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00962 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Damjanovic, Ana |0 0000-0001-7635-2705 |b 0 |e Corresponding author |
| 245 | _ | _ | |a From Atoms to Neuronal Spikes: A Multiscale Simulation Framework |
| 260 | _ | _ | |a Washington, DC |c 2026 |b [Verlag nicht ermittelbar] |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769593472_12284 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Understanding how molecular events in ion channelsimpact neuronal excitability, as derived from the calculation of thetime course of the membrane potentials, can help elucidate themechanisms of neurological disease-linked mutations and supportneuroactive drug design. Here, we propose a multiscale simulationapproach which couples molecular simulations with neuronalsimulations to predict the variations in membrane potential andneural spikes. We illustrate this through two examples. First,molecular dynamics simulations predict changes in current andconductance through the AMPAR neuroreceptor when comparingthe wild-type protein with certain disease-associated variants. Theresults of these simulations inform morphologically detailed modelsof cortical pyramidal neurons, which are simulated using the Arborframework to determine neural spike activity. Based on these multiscale simulations, we suggest that disease associated AMPARvariants may significantly impact neuronal excitability. In the second example, the Arbor model is coupled with coarse-grainedMonte Carlo gating simulations of voltage-gated (K+ and Na+) channels. The predicted current from these ion channels altered themembrane potential and, in turn, the excitation state of the neuron was updated in Arbor. The resulting membrane potential wasthen fed back into the Monte Carlo simulations of the voltage-gated ion channels, resulting in a bidirectional coupling of current andmembrane potential. This allowed the transitions of the states of the ion channels to influence the membrane potentials and viceversa. Our Monte Carlo simulations also included the crucial, so far unexplored, effects of the composition of the lipid membraneembedding. We explored the influence of lipidic compositions only using the Monte Carlo simulations. Our combined approaches,which use several simplifying assumptions, predicted membrane potentials consistent with electrophysiological recordings andestablished a multiscale framework linking the atomistic perturbations to neuronal excitability |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 1 |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 2 |
| 536 | _ | _ | |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319) |0 G:(EU-Grant)101147319 |c 101147319 |f HORIZON-INFRA-2022-SERV-B-01 |x 3 |
| 536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 4 |
| 536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 5 |
| 536 | _ | _ | |a eBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516) |0 G:(EU-Grant)101058516 |c 101058516 |f HORIZON-INFRA-2021-TECH-01 |x 6 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Carnevale, Vincenzo |0 0000-0002-1918-8280 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Hater, Thorsten |0 P:(DE-Juel1)176815 |b 2 |e Corresponding author |
| 700 | 1 | _ | |a Sultan, Nauman |0 0000-0002-7790-8485 |b 3 |
| 700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 4 |
| 700 | 1 | _ | |a Diaz, Sandra |0 P:(DE-Juel1)165859 |b 5 |e Corresponding author |
| 700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acs.jctc.5c01793 |g p. acs.jctc.5c01793 |0 PERI:(DE-600)2166976-4 |n 2 |p 783-793 |t Journal of chemical theory and computation |v 22 |y 2026 |x 1549-9618 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1052363/files/from-atoms-to-neuronal-spikes-a-multiscale-simulation-framework-1.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1052363 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176815 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145921 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)165859 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)145614 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 2 |
| 914 | 1 | _ | |y 2026 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |2 APC |0 PC:(DE-HGF)0122 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2025-11-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-11-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-11-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-11-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-11-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-11-07 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2022 |d 2025-11-07 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|