001     1052363
005     20260203123506.0
024 7 _ |a 10.1021/acs.jctc.5c01793
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00962
|2 datacite_doi
037 _ _ |a FZJ-2026-00962
082 _ _ |a 610
100 1 _ |a Damjanovic, Ana
|0 0000-0001-7635-2705
|b 0
|e Corresponding author
245 _ _ |a From Atoms to Neuronal Spikes: A Multiscale Simulation Framework
260 _ _ |a Washington, DC
|c 2026
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769593472_12284
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding how molecular events in ion channelsimpact neuronal excitability, as derived from the calculation of thetime course of the membrane potentials, can help elucidate themechanisms of neurological disease-linked mutations and supportneuroactive drug design. Here, we propose a multiscale simulationapproach which couples molecular simulations with neuronalsimulations to predict the variations in membrane potential andneural spikes. We illustrate this through two examples. First,molecular dynamics simulations predict changes in current andconductance through the AMPAR neuroreceptor when comparingthe wild-type protein with certain disease-associated variants. Theresults of these simulations inform morphologically detailed modelsof cortical pyramidal neurons, which are simulated using the Arborframework to determine neural spike activity. Based on these multiscale simulations, we suggest that disease associated AMPARvariants may significantly impact neuronal excitability. In the second example, the Arbor model is coupled with coarse-grainedMonte Carlo gating simulations of voltage-gated (K+ and Na+) channels. The predicted current from these ion channels altered themembrane potential and, in turn, the excitation state of the neuron was updated in Arbor. The resulting membrane potential wasthen fed back into the Monte Carlo simulations of the voltage-gated ion channels, resulting in a bidirectional coupling of current andmembrane potential. This allowed the transitions of the states of the ion channels to influence the membrane potentials and viceversa. Our Monte Carlo simulations also included the crucial, so far unexplored, effects of the composition of the lipid membraneembedding. We explored the influence of lipidic compositions only using the Monte Carlo simulations. Our combined approaches,which use several simplifying assumptions, predicted membrane potentials consistent with electrophysiological recordings andestablished a multiscale framework linking the atomistic perturbations to neuronal excitability
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 1
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
536 _ _ |a eBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516)
|0 G:(EU-Grant)101058516
|c 101058516
|f HORIZON-INFRA-2021-TECH-01
|x 6
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Carnevale, Vincenzo
|0 0000-0002-1918-8280
|b 1
|e Corresponding author
700 1 _ |a Hater, Thorsten
|0 P:(DE-Juel1)176815
|b 2
|e Corresponding author
700 1 _ |a Sultan, Nauman
|0 0000-0002-7790-8485
|b 3
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 4
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 5
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.jctc.5c01793
|g p. acs.jctc.5c01793
|0 PERI:(DE-600)2166976-4
|n 2
|p 783-793
|t Journal of chemical theory and computation
|v 22
|y 2026
|x 1549-9618
856 4 _ |u https://juser.fz-juelich.de/record/1052363/files/from-atoms-to-neuronal-spikes-a-multiscale-simulation-framework-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1052363
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 2
914 1 _ |y 2026
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|2 APC
|0 PC:(DE-HGF)0122
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2022
|d 2025-11-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21