001052666 001__ 1052666 001052666 005__ 20260127203443.0 001052666 0247_ $$2doi$$a10.1007/s00382-025-07880-9 001052666 0247_ $$2ISSN$$a0930-7575 001052666 0247_ $$2ISSN$$a1432-0894 001052666 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01038 001052666 037__ $$aFZJ-2026-01038 001052666 082__ $$a550 001052666 1001_ $$0P:(DE-HGF)0$$aRiechers, Keno$$b0 001052666 245__ $$aDiscontinuous stochastic forcing in Greenland ice core data 001052666 260__ $$aHeidelberg$$bSpringer$$c2025 001052666 3367_ $$2DRIVER$$aarticle 001052666 3367_ $$2DataCite$$aOutput Types/Journal article 001052666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769499346_24660 001052666 3367_ $$2BibTeX$$aARTICLE 001052666 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001052666 3367_ $$00$$2EndNote$$aJournal Article 001052666 520__ $$aPaleoclimate proxy records from Greenland ice cores, archiving e.g. d18O as a proxy for surface temperature, show that sudden climatic shifts called Dansgaard–Oeschger events (DO) occurred repeatedly during the last glacial interval. They comprised substantial warming of the Arctic region from cold to milder conditions. Concomitant abrupt changes in the dust concentrations of the same ice cores suggest that sudden reorganisations of the hemispheric-scale atmospheric circulation have accompanied the warming events. Genuine bistability of the North Atlantic climate system is commonly hypothesised to explain the existence of stadial (cold) and interstadial (milder) periods in Greenland. However, the physical mechanisms that drove abrupt transitions from the stadial to the interstadial state, and more gradual yet still abrupt reverse transitions, remain debated. Here, we conduct a one-dimensional data-driven analysis of the Greenland temperature and atmospheric circulation proxies under the purview of stochastic processes. We take the Kramers–Moyal equation to estimate each proxy’s drift and diffusion terms within a Markovian model framework. We then assess noise contributions beyond Gaussian white noise. The resulting stochastic differential equation (SDE) models feature a monostable drift for the Greenland temperature proxy and a bistable one for the atmospheric circulation proxy. Indicators of discontinuity in stochastic processes suggest to include higher-order terms of the Kramers–Moyal equation when modelling the Greenland temperature proxy’s evolution. This constitutes a qualitative difference in the characteristics of the two time series, which should be further investigated from the standpoint of climate dynamics. 001052666 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0 001052666 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1 001052666 536__ $$0G:(DE-Ds200)HGF-ZT-I-0029$$aHGF-ZT-I-0029 - Helmholtz UQ: Uncertainty Quantification - from data to reliable knowledge (HGF-ZT-I-0029)$$cHGF-ZT-I-0029$$x2 001052666 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001052666 7001_ $$0P:(DE-HGF)0$$aMorr, Andreas$$b1$$eCorresponding author 001052666 7001_ $$0P:(DE-HGF)0$$aLehnertz, Klaus$$b2 001052666 7001_ $$0P:(DE-HGF)0$$aLind, Pedro G.$$b3 001052666 7001_ $$0P:(DE-HGF)0$$aBoers, Niklas$$b4 001052666 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b5 001052666 7001_ $$0P:(DE-HGF)0$$aGorjão, Leonardo Rydin$$b6 001052666 773__ $$0PERI:(DE-600)1471747-5$$a10.1007/s00382-025-07880-9$$gVol. 63, no. 12, p. 465$$n12$$p465$$tClimate dynamics$$v63$$x0930-7575$$y2025 001052666 8564_ $$uhttps://juser.fz-juelich.de/record/1052666/files/s00382-025-07880-9.pdf$$yOpenAccess 001052666 909CO $$ooai:juser.fz-juelich.de:1052666$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001052666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b5$$kFZJ 001052666 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0 001052666 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27 001052666 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001052666 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-27$$wger 001052666 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001052666 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM DYNAM : 2022$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27 001052666 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27 001052666 920__ $$lno 001052666 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0 001052666 980__ $$ajournal 001052666 980__ $$aVDB 001052666 980__ $$aUNRESTRICTED 001052666 980__ $$aI:(DE-Juel1)ICE-1-20170217 001052666 9801_ $$aFullTexts