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Abstract

Paleoclimate proxy records from Greenland ice cores, archiving e.g. 680 as a proxy for surface temperature, show that
sudden climatic shifts called Dansgaard—Oeschger events (DO) occurred repeatedly during the last glacial interval. They
comprised substantial warming of the Arctic region from cold to milder conditions. Concomitant abrupt changes in the
dust concentrations of the same ice cores suggest that sudden reorganisations of the hemispheric-scale atmospheric circula-
tion have accompanied the warming events. Genuine bistability of the North Atlantic climate system is commonly hypoth-
esised to explain the existence of stadial (cold) and interstadial (milder) periods in Greenland. However, the physical
mechanisms that drove abrupt transitions from the stadial to the interstadial state, and more gradual yet still abrupt reverse
transitions, remain debated. Here, we conduct a one-dimensional data-driven analysis of the Greenland temperature and
atmospheric circulation proxies under the purview of stochastic processes. We take the Kramers—Moyal equation to esti-
mate each proxy’s drift and diffusion terms within a Markovian model framework. We then assess noise contributions
beyond Gaussian white noise. The resulting stochastic differential equation (SDE) models feature a monostable drift for
the Greenland temperature proxy and a bistable one for the atmospheric circulation proxy. Indicators of discontinuity in
stochastic processes suggest to include higher-order terms of the Kramers—Moyal equation when modelling the Greenland
temperature proxy’s evolution. This constitutes a qualitative difference in the characteristics of the two time series, which
should be further investigated from the standpoint of climate dynamics.
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1 Introduction

Paleoclimate proxy records provide evidence for past
abrupt climate shifts from regional to at least hemispheric
scale (e.g. Menviel et al. 2020; Brovkin et al. 2021; Boers
et al. 2022). Long-term climate simulations suggest that
anthropogenic global warming could trigger structurally
similar transitions in several Earth system components in
the future, i.e., that these components could ‘tip’ to a quali-
tatively different state (e.g. Lenton et al. 2008, 2019; Boers
2021; Armstrong et al. 2022; Boulton et al. 2022; Wang et al.
2023). Such catastrophic shifts would have severe conse-
quences on societies and ecosystems and may even unleash
feedbacks, further increasing the global mean temperature.
However, the assessment of potentially upcoming tipping
points is challenging as the capability of modern complex
climate models to simulate climate tipping dynamics is still
limited (Valdes 2011; Liu et al. 2017; Wang et al. 2023). In
light of this, the study of past abrupt climate shifts may pro-
vide insights into the processes involved in climate tipping
events. Furthermore, past events may serve as benchmarks
for the performance of fully coupled models in simulating
the non-linear and high-dimensional dynamics that could
lead to tipping events. In this context, we reassess here two
proxy time series from the NGRIP ice core (North Green-
land Ice Core Projects members 2004), which feature pro-
nounced imprints of abrupt climatic transitions, by means of
the Kramers—Moyal equation.

Agnostic time series models, i.e., models whose dynam-
ics appear to reproduce nature but are not entirely based on
physical mechanisms, have played a major role in further-
ing the debate on climate tipping phenomena (e.g. Riechers
et al. 2023a; Boers et al. 2017; Mitsui and Crucifix 2017;
Kwasniok 2013; Lohmann and Ditlevsen 2018; Dakos et al.
2008; Bochow and Boers 2023). The ability to produce
quantitatively similar dynamical behaviour building only
on heuristic physical assumptions facilitates the statistical
analysis of tipping phenomena, employing methods of sto-
chastic analysis (Lenton et al. 2012; Morr and Boers 2024;
Morr et al. 2024). The common concept of a climate tipping
element is that of a dynamical system whose current stable
equilibrium state is prone to annihilation in a dynamic bifur-
cation (Scheffer et al. 2009; Ashwin et al. 2012; Boers et al.
2022). This typically involves the reduction of complex,
high-dimensional dynamics to just a few (if not one) sum-
mary observables that may be modelled in terms of stochas-
tic differential equations (SDEs), i.e., as random dynamical
systems. Therein, the noise term reflects the action of the
unresolved dynamics on the summary observable (Has-
selmann 1976). A common choice is to force the resolved
variables with Gaussian white noise, but this approach may
be overly simplistic in many situations. In particular, in the
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context of climate tipping points, a deviation from Gauss-
ian white noise has important implications for the detection
of early warning signals and for the probability of prema-
ture noise-induced tipping (Ditlevsen 1999; Lucarini et al.
2022; Benson et al. 2024; Kuehn ey al. 2022; Morr and
Boers 2024).

Here, we investigate the famous heavy-oxygen 68
O record from the NGRIP ice core (North Greenland Ice
Core Projects members 2004). The data shows that repeated
decadal-scale warming events of regionally up to 16 °C in
amplitude, known as Dansgaard—Oeschger events, punc-
tuated the North Atlantic climate throughout the last gla-
cial interval (Dansgaard et al. 1984; Broecker et al. 1985;
Johnsen et al. 1992; Dansgaard et al. 1993; Kindler et al.
2014). The sudden temperature increases were followed by
a phase of moderate cooling before the temperatures ulti-
mately relaxed back to colder levels in a second phase of
more abrupt cooling. The two distinct cold and mild regimes
are termed stadials and interstadials, respectively.

In line with the SDE approach outlined above, we regard
the 6'80 and dust concentration records as realisations of
one-dimensional Markov processes and estimate the cor-
responding KM coefficients (Tabar 2019). The two records
exhibit concomitant shifts, which are interpreted as sudden
adjustments of global mean temperature and reorganisa-
tions of the atmospheric circulation of at least hemispheric
scale (Fuhrer et al. 1999; Ruth et al. 2003, 2007; Schiip-
bach et al. 2018). Previous studies have motivated through
statistical means the employment of a Markovian frame-
work for these dynamics Riechers et al. (2023b); Kwas-
niok (2013). There have also been conceptual arguments
of time-scale separation that lend this framework credence
Gottwald (2021); Riechers et al. (2024). Under this model-
ling assumption, the KM coefficients are closely related to
the Fokker—Planck equation of time-evolving diffusive sys-
tems. We estimate from the data and subsequently compare
the two Kramers—Moyal expansions with respect to their
implied stochastic model structure. Specifically, we inves-
tigate whether the dynamics can each be represented by a
canonical Langevin approach or whether a discontinuous
noise component, such as Poisson jump diffusion, is needed.

This article is structured as follows: In Sec. 2 we briefly
introduce the two paleo-climatic proxies that we examine.
Subsequently, in Sec. 3, we detail the Kramers—Moyal
expansion in one dimension as the prime method to con-
struct time series models including noise and possibly dis-
continuous elements. Section 4 presents the results of this
analysis: Herein, we show the mono- and bistability of the
obtained models of the two records and discuss the need to
choose a noise model different from Gaussian white noise.
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In Sec. 5 we discuss our findings and relate them to previ-
ous work. Sec. 6 summarises our key findings and draws
conclusions.

2 Data and pre-processing

This work relies on the §'®0 and dust concentration
records obtained by the North Greenland Ice Core Project
(NGRIP) (Ruth et al. 2003; North Greenland Ice Core Proj-
ects members 2004; Gkinis et al. 2014). From 1404.75 m
to 2426.00 m of depth the joint record is provided at 5 cm
equidistant resolution. This translates to the time span from
59945 yr to 10276 yr b2k (before 2000 CE) with ~ 5 yr res-
olution for the oldest and sub-annual resolution for the most
recent part of the record (Fig. la and b). For the analysis,
the data was rescaled, binned to an equidistant time axis of
5-year resolution, detrended, and normalised (see Appendix
A for details).

The concentration of dust, i.e., the number of particles
with a diameter larger than 1 pgm per ml, is commonly
interpreted as a proxy for the state of the hemispheric atmo-
spheric circulation (e.g. Fischer et al. 2007; Ruth et al. 2007,

Schiipbach et al. 2018; Erhardt et al. 2019). In particular, the
dust storm activity and dryness over East Asian desserts, the
strength and position of the polar jet, and local precipita-
tion patterns govern the emission, transport, and deposition
of the dust, respectively (Fischer et al. 2007; Erhardt et al.
2019). Correspondingly, the substantial changes in the dust
concentrations at DO events are interpreted as large-scale
reorganisations of the Northern Hemisphere’s atmospheric
circulation. In agreement with a widespread convention,
we rescale the dust record by taking the net negative loga-
rithm (e.g. Ditlevsen 1999; Mitsui and Crucifix 2017; Boers
et al. 2017; Riechers et al. 2023a). In this form, the dust
record exhibits a high degree of correlation with the 680
record (Boers et al. 2017).

In order to reduce the influence of slow changes in the
background climate, we restricted the analysis to the period
59-27 kyr b2k and applied further detrending with respect
to a Northern Hemisphere temperature reconstruction pro-
vided by Snyder (2016) (see Fig. 1¢ and d and App. Appen-
dix A). The concentration of stable water isotopes expressed
as 6180 values in units of permil is a proxy for the site tem-
perature at the time of precipitation (Jouzel et al. 1997; Gki-
nis et al. 2014).
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Fig. 1 Trajectories of the 20-year mean of 620 (a) and accordingly
resampled dust concentrations (b) from the NGRIP ice core in Green-
land, from 122 kyr and 107 kyr to 10 kyr before 2000 CE (b2k),
respectively (Ruth et al. 2003; Rasmussen et al. 2014; Seierstad et al.
2014). The dust data is given as the negative natural logarithm of the
actual dust concentrations, in order to facilitate comparison to the 68
O data. Panels (c¢) and (d) show the same proxies but at a higher reso-
lution of 5 years (North Greenland Ice Core Projects members 2004;
Gkinis et al. 2014; Ruth et al. 2003) and over the shorter period from
59 to 27 kyr b2k. The analysis presented in this study was constrained
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to this segment of the records. The two proxy time series in (¢) and
(d) have been detrended by linearly regressing the data against recon-
structed global mean surface temperatures (Snyder 2016) and remov-
ing the apparent background-temperature-driven slow change. The
grey shadings mark the Greenland interstadial (GI) intervals according
to (Rasmussen et al. 2014). All data are shown on the GICCO5 chro-
nology (Vinther et al. 2006; Rasmussen et al. 2006; Andersen 2006;
Svensson et al. 2008). The data were binned to equidistant time resolu-
tion from its original 5 cm depth resolution (see App. Appendix A for
further details on the data processing (Riechers et al. 2023a))

@ Springer
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3 Methods

Our starting point is a (time-homogeneous) Markov sto-
chastic process z; of the form

dl’t = f(xt)dt+0'(l't)d€t, (1)

where d§; denotes an arbitrary uncorrelated stochastic
force. The temporal evolution of the associated conditional
probability function p(x,t+7|2’,t) then follows the Kram-
ers—Moyal equation (Kramers 1940; Moyal 1949; Kampen
1961; Gardiner 2009; Risken and Frank 1996; Tabar 2019):

a , - o0 - a m ,
gp(:r7t+r|x7t)—2< %) Dy (z) p(@, t+7]2’t). )

m=1

The Kramers—Moyal (KM) coefficients D,,(x) are related
to the conditional moments M, (x, 7) of order m of the sto-
chastic variable x at a time-lag 7 by

1 1
Dy, (z) = — lim — M, (z,7)

m! r—0T1 3
_ 1 li 1 ! "ot t)dz' ®
= o (2" =) p(2', t+7]2, t)da’

In the special case that the stochastic force in Eq. (1) is given
by Gaussian white noise (i.e., it can be expressed by the
increments of a Wiener process W}), only the first two terms
on the right of Eq. (2) contribute and the Kramers—Moyal
equation reduces to the better-known Fokker—Planck equa-
tion (Fokker 1913, 1914; Planck 1917). With d§; = dW;,
Eq. (1) becomes the Langevin equation and the resulting
process is then referred to as a Langevin process'. For Lan-
gevin processes the relation

Di(z) = f(z) and Dsy(z) = %0‘2(.%‘), 4)

between the KM coefficients, the drift f{x) and the diffusion
o(x), holds in general.

The other way around, if higher-order moments contrib-
ute to the Kramers—Moyal equation, the underlying pro-
cess cannot be a standard Langevin process. In that case, &;
does not correspond to a Wiener process but has instead a
more complex form. However, the first two KM coefficients
would still be dominated by the process’ drift and diffusion.

While a Langevin process consists, with probability 1,
of continuous sample paths (e.g. Theorem 5.1.1 in Arnold

! There is no agreement on the use of the term Langevin process.
Some authors consider Lévy-driven equations as such Langevin equa-
tions, others prefer to refer to Langevin processes as those that are
solely driven by Gaussian/Brownian noise.
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1974), a Markov stochastic process of the form Eq. (1)
generally features discontinuous paths with non-zero prob-
ability. Path-wise continuity is only one of many notions
of continuity in stochastic processes. Another is the conti-
nuity criterion for Markov processes provided by Gardiner
(2009), which requires for a process to be continuous that

1
C(z,t,0) = lim =P (|x44r — 2t > 0)

T—=0 T

= lim — )
T—=0 T

/ p(a’ t + 7|z, t)dx’ <0,

|z’ —x|>6

for all 4, x, and ¢. In words, this means that the probability
of a particle deviating from a reference position more than
4 in a time interval 7 decreases faster than linearly with 7.
The presence of higher-order KM coefficients in the cor-
responding Kramers—Moyal equation is a necessary, yet not
sufficient criterion for a given process to be discontinuous
under this latter notion.

3.1 Estimating Kramers-Moyal coefficients

The central entry point for this work is Eq. (3). It provides a
means to estimate the KM coefficients D, (x) directly from
data, i.e., from a recorded realisation of a stochastic process,
provided that the following assumptions are fulfilled (to a
reasonable degree):

i) The observed process is a Markov process,

ii) the process is time-homogeneous, i.e., the dynamics did
not change over time,

iii) the state space is sampled sufficiently densely,

iv) and the sampling time is short compared to the charac-
teristic time scale of the dynamics.

Under these conditions, the evaluation of the conditional
statistical moments M (x, 7) at the shortest available time
lag At given by the sampling rate yields a good estimate for
the KM coefficients:

. 11

D (z) = m! E«it-ﬁ-At —24)" |2,=2) & D (), (6)

wherein the ensemble average in Eq. (3) is replaced by the
average over the available data (-). Our numerical imple-
mentation of Eq. (6) is based on the Nadaraya—Watson esti-
mator which is detailed in App. Appendix B.
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3.2 Estimators of discontinuous motion

Once the KM coefficients are estimated from the data, one
can draw inference on the most fitting choice of the noise
model d¢;. Vanishing higher-order moments (m > 2) clas-
sify the model as a Langevin process. In contrast, demon-
strable contributions of these moments suggest that the
process is best modelled by including noise beyond a Wie-
ner process (see e.g. Kampen 1961; Van Kampen 2007;
Gardiner 2009; Tabar 2019; Lin 2023).

The finite sampling time step At introduces a bias for
the estimators D,,(z) (Kurth et al. 2021). As a conse-
quence, even for a Langevin process the expected values
for the higher-order KM estimators differ from zero. A first
pragmatic metric to discern whether a studied process is a
Langevin process or not is to evaluate the ratio between the
fourth KM coefficient and the second, i.e., D4(x)/Da(z).
This gauges the distributional tail of all immediate distur-
bances originating from x. It therefore offers a non-paramet-
ric insight into whether a fat tail of disturbances is needed to
recreate the dynamics at the considered sampling rate. Such
conclusions would be largely model-independent and do not
explicitly rely on the Markovianity of the data. Small values
< 0.1 are typically regarded as a justification for a Langevin
description. Values Dy(x)/D2(x) 2, 0.1 point to non-diffu-
sive motion (i.e., forcing beyond Gaussian white noise).
This metric offers a first insight into whether a discontinu-
ous noise term &; is needed to model the process (Gao et al.
2016; Lu and Duan 2020; Lucarini et al. 2022).

When the Langevin process model is contrasted with a
jump-diffusion model of the form (Tabar 2019; Lin 2023)

dzy = f(x)dt + o(xy)dW; + n(:ct)th()‘), (7
the assessment can be further refined. Here, Jt()‘)
a Poissonian jump process characterised by the rate A\. The
jump amplitude is determined by the Gaussian stochastic
variable 7)(z). For this specific process model, the KM coef-
ficients read (Tabar 2019)

denotes

Dl(w) = f($)7
Dy(z) = %cr(:c)2 + %A(x)<n(a:)2>, (8)
Din(e) =A@ (w)™), for m > 2,

where (-) expresses the expected value.

Similarly, the bias of the KM estimators defined by
Eq. (6), when applied to a jump-diffusion process sampled
at finite time step At, can be derived analytically. These
considerations offer two additional metrics to distinguish

Langevin from jump-diffusion processes, namely the ©
-ratio

B 3My(z,7)? 1, Langevin,
@(%T)—WN 1. jump-diffusion, ©)

and the Q-ratio (Lehnertz et al. 2018)

Langevin,

Qz,7) = jump-diffusion. (10)

Me(z, 1) T,
- 5]\/[4(([', T)

constant,

For details on the derivation of these relationships, we refer
the interested reader to (Tabar 2019). Observing either of
the scalings given in Eqgs. (9) and (10), respectively, can aid
in deciding between employing a Langevin or jump-diffu-
sion model.

These relationships are specifically derived for the jump-
diffusion model. Compared to the ratio of D4 and D5 dis-
cussed above, the results here are more prone to invalidity
due to unjustified modelling assumptions on the real data.
For different noise models than the ones introduced above,
different scaling behaviours of these ratios with respect to 7
will arise. Data from, e.g., a non-Markovian system may, on
the other hand, exhibit the described behaviour while actu-
ally harbouring entirely different internal dynamics. In this
work, we focus on distinguishing between the Langevin and
Poisson jump-diffusion models as two archetypical (dis-)
continuous stochastic models. Observing any other scaling
in Q or © may hint at a third model being more appropri-
ate to reproduce the time series dynamics. However, in the
context of continuous versus discontinuous stochastic mod-
els, considering the two discussed models yields essential
information.

4 Results

Figure 2 shows the first and second KM coefficients, and
the ratio of the second to the fourth KM coefficients, as
estimated from the dust and §'30 time series according to
Eq. (6). The corresponding © and Q ratios are presented in
Fig. 3.

a Dust record: For the dust, the constructed drift D; (z)
in Fig. 2b exhibits two separate stable states that match the
maxima of the probability density function in Fig. 2a. The
second KM coefficient Do(x) in Fig. 2¢ is approximately
constant. The ratio between the fourth and the second KM
coefficients in Fig. 2d is smaller than 0.1 on the entire state
space probed by the time series. For large portions of the
dust’s state space, we find in Fig. 3 a decrease of the O (z, 7)
ratio with increasing 7, similar to a 1/7 behaviour. This
applies, in particular, at the stable equilibria of the drift,

@ Springer
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0.67 (a) 0.47 (e)
—
A 0.31 0.21
a,

0.0 0.0

707 (b) 3007 (f)
= 307 \_ 1501 \
— 01 B a— 01
Q —35] T~— 150 o

701 —300-

18+ ((‘) 80 (g)
/é\ 121 W 60 ‘/W‘/——\/\—\—ﬁ\
— 40
Q 6 201

0’ 0l
E 0097 (d) 0.91 (h)
Q 0.061 W 0.61
~
= 0.03 0.3
E 0.00 0.0
-9 71 0 1 3 9 1 0 1 2
dust [n.u.] 5180 [nu]

Fig. 2 The probability density function (PDF) of (a) the dust and (e)
5'80. The non-parametric estimates of the (b, f) first KM coefficient
D1 (z) and (¢, g) the second KM coefficient D2 (). The ratio between
the fourth and the second KM coefficient D4(z)/D2(z) (d and h).
All KM coefficients are evaluated at the shortest available time step
At = byr of the time series. The estimated dust drift is bistable, while
that of 80 is monostable. The second KM coefficient D2 (z) is

where the data availability is the best and our estimation
is most robust. The dust ©(x, 7)-ratio is close to 1 only in
a region of its state space where its probability density has
a local minimum (—0.3 < dust < 0.3). The correspond-
ing Q(x, T)-ratio shows quite a distinct linear increase with
increasing 7 — at least for small values of 7. For larger val-
ues of 7, Q(x, T) is constant.

b 6*8Orecord: In the case of §'%0, the drift has only one
zero-crossing. This seems to explain the unimodal distribu-
tion of the data, though this broader distribution could also
be caused by larger observational noise in the record. The
mono-stability of the drift would not be affected by time-
and state-independent observational noise and can therefore
be seen as a more direct insight into the potential under-
lying dynamics. We note that NGRIP data products that
provide §'80 concentrations at a lower time resolution of
20- or 50-year time steps exhibit a bimodal distribution.
For the purposes of our analysis, however, only the highest
available sampling rate of time series data should be used
so as to curtail the biases incurred in the KM estimations.
With respect to the normalised units, the first and second
KM coefficients of 6'80 exceed their counterparts for dust
by factors of approximately 4 and 10, respectively. This
indicates that 510 was subjected to stronger noise while
simultaneously stronger deterministic forces acted on the

@ Springer

relatively constant for both records. The ratio D4(x)/D2(z) is small
(< 0.1) for the dust record. Yet, it is non-negligible for 6'30 (> 0.3)
in large parts of the state space, suggesting that the driving noise in a
stochastic model for these time series should not be exclusively Gauss-
ian white noise. Details on the choice of kernel and bandwidth used for
the KM coefficient estimation, as well as an analysis of the influence of
the kernel bandwidth, can be found in App. B

variable. Finally, the ratio D4(z)/D2(z) 2 0.3 is 10 times
larger for 520 than for the dust. The 6180 record exhibits
a mostly constant ©(x, 7)-ratio with respect to 7, as seen
in Fig. 3. It is slightly below but still close to 1 for large
parts of the state space. The corresponding Q(z, 7)-ratio is
likewise constant (= 1) with respect to 7, with variations in
both directions.

5 Discussion

The assessment of the KM coefficients and the scaling of
© and Q ratios from the dust and the §®0 records pro-
vides some insight into how to best model the proxy time
series within the framework of one-dimensional stochastic
processes.

For the dust, we find bistability of the estimated model’s
drift. The small D4(x)/D2(x) ratio and the linear increase
of the Q(x,7) with increasing 7 indicate that this process
can, in fact, be modelled as a Langevin process. Only the
assessment of the ©(x, ) ratio calls this conclusion into
question. For a Langevin process, this ratio should be equal
to one, but we observe a 1/7-like scaling for small values of
T, in line with an underlying jump-diffusion process.
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Fig. 3 The ©(x, 7)-ratio and Q(x, 7)-ratio of the dust and the §'%0
concentration. (a) The ©(z, 7)-ratio of the dust is not close to 1 for
a large range of 7 and x, particularly around the peaks of the bimodal
dust distribution. (b) From 7 = 5 to roughly 7 = 50 the Q(z, T)-ratio
increases linearly with 7, consistent with a continuous process, yet
for 7 > 50 the Q(z, T)-ratio is nearly constant, consistent with a dis-
continuous process. (¢) On the one hand, the ©(x, 7)-ratio of the 6%

We note that a simple Langevin model with a bistable
drift and purely diffusive noise can produce the regime
shifts observed in the dust record. However, such a model is
unlikely to reproduce the asymmetric shape of the intersta-
dial phases evident in the record.

For the 6180 record, the results are exactly the opposite.
The constructed drift function exhibits only a single stable
equilibrium. The observed quantities D4(z)/D2(z) and
Q(z,7) provide evidence for relevant contributions from
higher-order KM coefficients. The O(x, ) ratio, however,
is close to one in agreement with a Langevin model. A Lan-
gevin model together with the evidenced single equilibrium
of the drift function clearly fails to explain the two regimes
of the 580 record, and the apparent time asymmetry. Taken
together, we conclude that the evidence speaks in favour of
introducing discontinuities to the driving noise model rather
than against it. Complex noise, i.e., noise beyond a Wie-
ner process, could indeed be a way to reproduce time series

O points to being different from 1 along the peak of the distribution,
yet not sufficiently conclusive to ascertain if the 680 is discontinu-
ous. (d) On the other hand, the Q(z, 7)-ratio is arguably constant over
T, consistent with a discontinuous §'80. For visualisation purposes,
Q(z,7) of 6*80 is multiplied by 0.6 to match the scale of Q(z,7)
of the dust (Harris et al. 2020; Virtanen et al. 2020; Rydin Gorjao and
Meirinhos 2019; Rydin Gorjao et al. 2023; Hunter 2007)

with two regimes in the presence of a single equilibrium and
time asymmetry (Chechkin et al. 2003, 2004; Metzler and
Klafter 2004; Yang et al. 2020).

Given the high degree of visual similarity between the
dust and the §'80 records, the differences in the recon-
structed potentials and the ratio between the fourth and the
second KM coefficient are remarkable. This accentuates
the need for careful statistical analysis when devising time
series models for non-linear systems with abrupt transitions.

Adopting a generalised Langevin equation with a bistable
drift term, Ditlevsen (Ditlevsen 1999) showed that the noise
in the calcium concentration record from the GRIP ice core
can be modelled with an a-stable component. Calcium con-
centrations are typically considered equivalent to dust con-
centrations (cf. (Fuhrer et al. 1993; Ruth et al. 2002, 2003;
Fischer et al. 2007)). We cannot directly assess the presence
of a-stable noise in the NGRIP dust record. This is because
noise models with infinite statistical moments, which can
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be found in a-stable distributions, are inherently incompat-
ible with the Kramers—Moyal framework. Yet, our results
corroborate the notion that Greenland ice core records bear
the signature of non-Gaussian noise, though in our analy-
sis this arises primarily for the 6'80 record. Related to this,
Gottwald (2020) recently formulated a conceptual model of
DO events wherein «-stable noise plays a central role as
an event trigger, later extended by Riechers et al. (2023a).
From the perspective of theoretical stochastic modelling, it
is worth noting that the a-stable noise model leads to a path-
wise continuous process, in contrast to the Poisson jump-
diffusion model discussed in this work. Employing the
continuity notion of Eq. (5), however, both of these models
would be considered discontinuous.

We have to state that the interpretation of higher-order
KM coefficients is not straightforward and depends on the
exact choice of the stochastic model. A direct causal relation
between the DO events and discontinuous noise cannot be
inferred without further ado within this study, but the role of
discontinuities in the proxy records merits further investiga-
tion. It has been observed in complex model simulations that
(stochastic) atmospheric anomalies can indeed drive regime
changes in the North Atlantic region (Drijthout et al. 2013;
Kleppin et al. 2015). Together with the apparent aptitude of
non-Gaussian noise models for Greenland temperature and
Northern Hemisphere atmospheric circulation proxies, this
motivates further research on the effect that non-Gaussian
noise could have on climate tipping elements in present-day
climate.

If both Greenland temperatures and the state of the North-
ern Hemisphere atmospheric circulation were subject to
non-Gaussian noise, and if indeed pulses of this noise trig-
gered transitions between stadial and interstadial regimes,
this would have important implications for our conception
of stability of certain climate tipping elements. The possi-
bility that climate tipping elements are nowadays likewise
subject to non-Gaussian stochastic forcing warrants more
attention.

6 Conclusion

In this work, we presented a data-driven analysis of the '8
O and dust concentration records from the NGRIP ice core,
based on the Kramers—Moyal equation. This equation gen-
eralises the Fokker—Planck equation by allowing for arbi-
trarily complex uncorrelated driving noise d¢;. In particular,
such noise may result in a discontinuous process.

The estimation of the KM coefficients yielded a monos-
table drift for the isolated §'®0 record and a bistable one for
the dust. The analysis of the resulting agnostic time series
models does not allow for conclusions about the dynamical
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stability of the actual physical processes. It is, however,
notable that these findings are inconsistent with the hypoth-
esis that past Greenland temperatures were governed by
intrinsically bistable dynamics (Livina et al. 2010; Kwas-
niok 2013). For the atmospheric circulation, there is no such
inconsistency. We stress that this inconsistency with respect
to previous studies arises under the application of differing
modelling assumptions and data pre-processing procedures.
The potential influence of non-Markovianity in the dynam-
ics or complex measurement noise cannot be quantified.
Disentangling these confounding effects is possible but
demands large amounts of data Bottcher et al. (2006). We
nonetheless maintain that this novel perspective is a valu-
able data point for further conceptual and physical consider-
ations of DO events.

We found that stochastic forcing should include terms
beyond Gaussian white noise when modelling the §'%0
record. This renders the Langevin approach insufficient to
accurately reproduce the time series characteristics, draw-
ing attention towards including discontinuous elements. For
the dust record, similar indications could be found, though
these have not been as convincing.

In physical terms, complex noise could have played a cen-
tral role in the emergence of DO events. Our analysis does
not provide direct evidence for a causal relation between
discontinuous driving noise and the regime switches of the
North Atlantic region’s climate during the last glacial. Yet, it
motivates further exploration of this issue along the lines of
Gottwald (2020) and Riechers et al. (2023a). The possibility
that climate tipping elements are subject to non-Gaussian
noise in today’s climate should receive greater consider-
ation. The corresponding implications on the stability of
these elements and the ability to detect early warning sig-
nals should be investigated.

Appendix A: Data detrending

As mentioned in Sec. 2, this study focuses on the period
59-27 kyr b2k. Detrending of the data is necessary to
ensure that the time series are time-homogeneous station-
ary processes, which is an underlying assumption for the
Kramers—Moyal analysis performed in our investigation. To
compensate for the influence of the background climate on
the climate proxy records of dust and §'%0, we remove a lin-
ear drift with respect to reconstructed global average surface
temperatures (Snyder 2016) from both time series. Figure 4
illustrates the detrending scheme. Due to the two-regime
nature of the time series, a simple linear regression would
overestimate the temperature dependencies. Instead, we
separate the data from Greenland stadials (GS) and Green-
land interstadials (GI) and then minimise the expression
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with X either dust or §'80 and with respect to the parameters
ax, bar, and bgs. For a given time ¢; € GS (GI) indicates
that ¢; falls into a stadial (interstadial) period. The result-
ing ax is used to detrend the original data with respect to
the temperature. The detrended data are subsequently nor-
malised by subtraction of their mean and division by their
standard deviation.

Appendix B: Nadaraya-Watson estimator of
the KM coefficients and bandwidth selection

In order to carry out the estimation in Eq. (6) we map each
data point in the corresponding state space to a kernel den-
sity and then take a weighted average over all data points

original data (§'30 and dust)
—— 180 - detrended and normalised data

= dust - detrended and normalised data

11 .
Dy (z) ~ m! 7At<(xt+At — ) |mt:x>
N—-1 (Bl)
1 11
~ — K o . o ’II'L.
m! At N ;:1: (.’E xl)(‘rlJrl mz)

Similarly to selecting the number of bins in a histogram, for
a kernel-density estimation, we select both a kernel and a
bandwidth (Nadaraya 1964; Watson 1964; Lamouroux and
Lehnertz 2009). The kernel is a function K(x) for the estima-

tor fh(x), where / is the bandwidth at a point x, following

i=1

(B2)

for a collection {x;} of n random variables. The kernel
K(x) is normalisable [K(z)dz =1 and has a bandwidth
h, such that K (z) = K(x/h)/h (Rydin Gorjdo et al. 2019;
Tabar 2019; Davis and Buffett 2022). The bandwidth 7 is
equivalent to the selection of the number of bins, except that
binning in a histogram is always ‘placing numbers into non-
overlapping boxes’. We use an Epanechnikov kernel

time [kyr b2k]

Fig. 4 Removal of a linear trend in the NGRIP §'80 and dust time
series (North Greenland Ice Core Projects members 2004) with respect
to a global average surface temperature reconstruction (Snyder 2016).
In panel (a) both original 580 (light brown) as well as detrended and
normalised (purple) time series are shown. Likewise for the dust record
in panel (b) (light brown and green, respectively). The background
temperature is given in anomalies with respect to the mean over the

GI data
GS data
0 2
(b) t =35
""""""""""""" 4025
________________________ s
*—10 ':O
6180:0‘35AT+{:1‘2:22 ol -
d —
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""""" 1
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------ 5
L2 “-'m“{jgj; oS L4
0 >

A]}(:nstr

investigated period (blue). Panels (¢) and (d) show scatter plots of the
original §'80 and dust data with respect to temporarily corresponding
temperature anomalies, respectively. Data from interstadials (stadials)
is shown in orange (light blue). The black dashed lines correspond to
the fitting scheme that uses a single slope but two different offsets to
separately fit the stadial and interstadial data
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Dy (z)
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Fig. 5 The effect of the bandwidth selection hg on the KM estima-
tions, in similar fashion to Fig. 2. The non-parametric estimates of the
first KM coefficient D1 (x), the second KM coefficient D2 (x), and
the ratio of the fourth to the second KM coefficient D4(z)/D2(x).
Left column for dust, right column for §'80. Three bandwidths are
used for the Nadaraya—Watson kernel-density estimator: the optimal

— z%), with support |z| < 1, (B3)

which has a compact bounded support, but other kernels are
available, with different supports (Epanechnikov 1967). The
selection of an appropriate bandwidth /4 follows Silverman’s
rule-of-thumb (Silverman 1998), given by

467\
hS - (377,) )
where o2 is the variance of the time series. In Fig. 5 three
different bandwidths are used to evaluate the various KM
coefficients, as given in Fig. 2. The bandwidths are the
optimal bandwidth given by Silverman’s rule-of-thumb hg,
three times hg, and one-third hg.

Note that regardless of the choice of bandwidth, the
mono-stability of the 680 model is preserved, as is the
bistability of the dust concentration model.

(B4

Appendix C: Understanding continuity and
discontinuity in stochastic processes

The understanding of continuity and discontinuity can
sometimes be unclear when dealing with time series data.
We turn to Lindeberg’s continuity condition C(z, ¢, §) for a
Markov process (Lehnertz et al. 2018; Tabar 2019), which
states that a process z; is continuous if
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Silverman’s rule-of-thumb hg, three times hg, and one-third hg. The
Nadaraya—Watson kernel-density estimator’s bandwidths hg for §'8
O is 0.131 and for dust 0.103. In all cases, the interpretation of the
estimator remains the same: bistability in the dust, mono-stability in
the 6'80. In (b) and (e) the first-order estimator for the second KM
coefficient D2 (z) are included, i.e., without corrective terms

Prob [|l‘t+7- — CCt| > 6|

J:t:I:I

C(z,t,9) = lirr%)
T T
o Siar—apms (@' t+ 7z, t)da! (C1)
o .
=0.

In words, this means that the probability of a particle
deviating from a reference position more than J in a time
interval 7 decreases faster than linearly with 7. Direct
proof is easily obtained for some particular processes. For
example, for a Brownian motion we obtain, as expected,
C(z,t,0) = 0 (see (Tabar 2019), Eq. (4.5) for a derivation).
In a similar fashion, Tabar (2019) also shows two examples
where C(x,t,0) > 0. These are the Cauchy process (which
is the special case of an a-stable Lévy-driven Langevin pro-
cess with o = 1) and processes with Poissonian jumps (see
Eq. (4.6) and Eq. (11.19)). Both examples are discontinuous
processes by this definition.

For discontinuous processes in our KM setting we can
derive a relation similar in form to Lindeberg’s continuity
condition, namely C(z,t,6) < Mglin@. We follow almost
verbatim the derivation by Tabar, S11.2 (Tabar 2019). Con-
sider the m-th order conditional moment of the absolute
value of the increment
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where we disregarded the integration over the interval
[x —d,x + ], 0 being a small value. Using further that
|&" —z|™ > 0™, we get

(|2 — 2|™|py=a) > 6™ /p(x',t + 7lx, t)da’.

|z’ —x|>8

(©3)

Dividing both sides by 7 and taking the limit 7 — 0, we
obtain

70 T
|2/ —2|>8

. 1 m ’ / . 1 ! m
lim —§ /p(CE Jt+ 7|z, t)de Slgr%);ﬂx = 2| |z, =2), (C4)

where we recognise the form of Lindeberg’s continuity con-
dition as

M, (z)

Ol t,0) < 2, (C5)
with
M, (z) = lim = (|2’ — 2|™|z,=2), (C6)

noting the absolute value in contrast with Eq. (3). Although
the relation comprises only an upper bound for C(z, ¢, ), it
yields a convincing argument for the role of the higher-order
KM coefficients and their relation with discontinuity.

Note that having any vanishing KM coefficient of order
m > 2 is sufficient for the process to be continuous. For
the case of non-vanishing KM coefficients of higher order,
Pawula’s theorem (Pawula 1967a, b; Risken and Frank
1996) implies that all KM coefficients exist. It is reason-
able to expect Lindeberg’s continuity condition will not be
obeyed for at least one order m (note the left-hand side of
Eq. (C5) does not depend on m). Consequently, higher-order
KM coefficients relate to discontinuous trajectories. This,
however, does not imply that the Kramers—Moyal equation
is necessarily the only model — or even the best model — to
describe discontinuous processes (cf. Van Kampen 2007,
Gardiner 2009).
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