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Abstract
Paleoclimate proxy records from Greenland ice cores, archiving e.g. δ18O as a proxy for surface temperature, show that 
sudden climatic shifts called Dansgaard–Oeschger events (DO)  occurred repeatedly during the last glacial interval. They 
comprised substantial warming of the Arctic region from cold to milder conditions. Concomitant abrupt changes in the 
dust concentrations of the same ice cores suggest that sudden reorganisations of the hemispheric-scale atmospheric circula-
tion have accompanied the warming events. Genuine bistability of the North Atlantic climate system is commonly hypoth-
esised to explain the existence of stadial (cold) and interstadial (milder) periods in Greenland. However, the physical 
mechanisms that drove abrupt transitions from the stadial to the interstadial state, and more gradual yet still abrupt reverse 
transitions, remain debated. Here, we conduct a one-dimensional data-driven analysis of the Greenland temperature and 
atmospheric circulation proxies under the purview of stochastic processes. We take the Kramers–Moyal equation to esti-
mate each proxy’s drift and diffusion terms within a Markovian model framework. We then assess noise contributions 
beyond Gaussian white noise. The resulting stochastic differential equation (SDE) models feature a monostable drift for 
the Greenland temperature proxy and a bistable one for the atmospheric circulation proxy. Indicators of discontinuity in 
stochastic processes suggest to include higher-order terms of the Kramers–Moyal equation when modelling the Greenland 
temperature proxy’s evolution. This constitutes a qualitative difference in the characteristics of the two time series, which 
should be further investigated from the standpoint of climate dynamics.

Received: 22 February 2025 / Accepted: 15 September 2025 / Published online: 25 November 2025
© The Author(s) 2025

Discontinuous stochastic forcing in Greenland ice core data

Keno Riechers1  · Andreas Morr2,3  · Klaus Lehnertz4,5,6  · Pedro G. Lind7,8  · Niklas Boers2,3,9  · 
Dirk Witthaut10,11  · Leonardo Rydin Gorjão12,13

1 3

https://doi.org/10.1007/s00382-025-07880-9
https://orcid.org/0000-0002-1035-9960
https://orcid.org/0000-0002-9804-5180
https://orcid.org/0000-0002-5529-8559
https://orcid.org/0000-0002-8176-666X
https://orcid.org/0000-0002-1239-9034
https://orcid.org/0000-0002-3623-5341
https://orcid.org/0000-0001-5513-0580
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-025-07880-9&domain=pdf&date_stamp=2025-11-21


K. Riechers et al.

1  Introduction

Paleoclimate proxy records provide evidence for past 
abrupt climate shifts from regional to at least hemispheric 
scale (e.g. Menviel et al. 2020; Brovkin et al. 2021; Boers 
et  al. 2022). Long-term climate simulations suggest that 
anthropogenic global warming could trigger structurally 
similar transitions in several Earth system components in 
the future, i.e., that these components could ‘tip’ to a quali-
tatively different state (e.g. Lenton et al. 2008, 2019; Boers 
2021; Armstrong et al. 2022; Boulton et al. 2022; Wang et al. 
2023). Such catastrophic shifts would have severe conse-
quences on societies and ecosystems and may even unleash 
feedbacks, further increasing the global mean temperature. 
However, the assessment of potentially upcoming tipping 
points is challenging as the capability of modern complex 
climate models to simulate climate tipping dynamics is still 
limited (Valdes 2011; Liu et al. 2017; Wang et al. 2023). In 
light of this, the study of past abrupt climate shifts may pro-
vide insights into the processes involved in climate tipping 
events. Furthermore, past events may serve as benchmarks 
for the performance of fully coupled models in simulating 
the non-linear and high-dimensional dynamics that could 
lead to tipping events. In this context, we reassess here two 
proxy time series from the NGRIP ice core (North Green-
land Ice Core Projects members 2004), which feature pro-
nounced imprints of abrupt climatic transitions, by means of 
the Kramers–Moyal equation.

Agnostic time series models, i.e., models whose dynam-
ics appear to reproduce nature but are not entirely based on 
physical mechanisms, have played a major role in further-
ing the debate on climate tipping phenomena (e.g. Riechers 
et al. 2023a; Boers et al. 2017; Mitsui and Crucifix 2017; 
Kwasniok 2013; Lohmann and Ditlevsen 2018; Dakos et al. 
2008; Bochow and Boers 2023). The ability to produce 
quantitatively similar dynamical behaviour building only 
on heuristic physical assumptions facilitates the statistical 
analysis of tipping phenomena, employing methods of sto-
chastic analysis (Lenton et al. 2012; Morr and Boers 2024; 
Morr et al. 2024). The common concept of a climate tipping 
element is that of a dynamical system whose current stable 
equilibrium state is prone to annihilation in a dynamic bifur-
cation (Scheffer et al. 2009; Ashwin et al. 2012; Boers et al. 
2022). This typically involves the reduction of complex, 
high-dimensional dynamics to just a few (if not one) sum-
mary observables that may be modelled in terms of stochas-
tic differential equations (SDEs), i.e., as random dynamical 
systems. Therein, the noise term reflects the action of the 
unresolved dynamics on the summary observable  (Has-
selmann 1976). A common choice is to force the resolved 
variables with Gaussian white noise, but this approach may 
be overly simplistic in many situations. In particular, in the 

context of climate tipping points, a deviation from Gauss-
ian white noise has important implications for the detection 
of early warning signals and for the probability of prema-
ture noise-induced tipping  (Ditlevsen 1999; Lucarini et al. 
2022; Benson et  al. 2024; Kuehn ey al. 2022; Morr and 
Boers 2024).

Here, we investigate the famous heavy-oxygen δ18

O record from the NGRIP ice core  (North Greenland Ice 
Core Projects members 2004). The data shows that repeated 
decadal-scale warming events of regionally up to 16 ◦C in 
amplitude, known as Dansgaard–Oeschger events, punc-
tuated the North Atlantic climate throughout the last gla-
cial interval (Dansgaard et al. 1984; Broecker et al. 1985; 
Johnsen et  al. 1992; Dansgaard et  al. 1993; Kindler et  al. 
2014). The sudden temperature increases were followed by 
a phase of moderate cooling before the temperatures ulti-
mately relaxed back to colder levels in a second phase of 
more abrupt cooling. The two distinct cold and mild regimes 
are termed stadials and interstadials, respectively.

In line with the SDE approach outlined above, we regard 
the δ18O and dust concentration records as realisations of 
one-dimensional Markov processes and estimate the cor-
responding KM coefficients (Tabar 2019). The two records 
exhibit concomitant shifts, which are interpreted as sudden 
adjustments of global mean temperature and reorganisa-
tions of the atmospheric circulation of at least hemispheric 
scale  (Fuhrer et  al. 1999; Ruth et  al. 2003, 2007; Schüp-
bach et al. 2018). Previous studies have motivated through 
statistical means the employment of a Markovian frame-
work for these dynamics Riechers et  al. (2023b); Kwas-
niok (2013). There have also been conceptual arguments 
of time-scale separation that lend this framework credence 
Gottwald (2021); Riechers et al. (2024). Under this model-
ling assumption, the KM coefficients are closely related to 
the Fokker–Planck equation of time-evolving diffusive sys-
tems. We estimate from the data and subsequently compare 
the two Kramers–Moyal expansions with respect to their 
implied stochastic model structure. Specifically, we inves-
tigate whether the dynamics can each be represented by a 
canonical Langevin approach or whether a discontinuous 
noise component, such as Poisson jump diffusion, is needed.

This article is structured as follows: In Sec. 2 we briefly 
introduce the two paleo-climatic proxies that we examine. 
Subsequently, in Sec.  3, we detail the Kramers–Moyal 
expansion in one dimension as the prime method to con-
struct time series models including noise and possibly dis-
continuous elements. Section 4 presents the results of this 
analysis: Herein, we show the mono- and bistability of the 
obtained models of the two records and discuss the need to 
choose a noise model different from Gaussian white noise. 
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In Sec. 5 we discuss our findings and relate them to previ-
ous work. Sec.  6 summarises our key findings and draws 
conclusions.

2  Data and pre-processing

This work relies on the δ18O and dust concentration 
records obtained by the North Greenland Ice Core Project 
(NGRIP) (Ruth et al. 2003; North Greenland Ice Core Proj-
ects members 2004; Gkinis et al. 2014). From 1404.75 m 
to 2426.00 m of depth the joint record is provided at 5 cm 
equidistant resolution. This translates to the time span from 
59945 yr to 10276 yr b2k (before 2000 CE) with ∼ 5 yr res-
olution for the oldest and sub-annual resolution for the most 
recent part of the record (Fig. 1a and b). For the analysis, 
the data was rescaled, binned to an equidistant time axis of 
5-year resolution, detrended, and normalised (see Appendix 
A for details).

The concentration of dust, i.e., the number of particles 
with a diameter larger than 1  µm per ml, is commonly 
interpreted as a proxy for the state of the hemispheric atmo-
spheric circulation (e.g. Fischer et al. 2007; Ruth et al. 2007; 

Schüpbach et al. 2018; Erhardt et al. 2019). In particular, the 
dust storm activity and dryness over East Asian desserts, the 
strength and position of the polar jet, and local precipita-
tion patterns govern the emission, transport, and deposition 
of the dust, respectively (Fischer et al. 2007; Erhardt et al. 
2019). Correspondingly, the substantial changes in the dust 
concentrations at DO events are interpreted as large-scale 
reorganisations of the Northern Hemisphere’s atmospheric 
circulation. In agreement with a widespread convention, 
we rescale the dust record by taking the net negative loga-
rithm (e.g. Ditlevsen 1999; Mitsui and Crucifix 2017; Boers 
et  al. 2017; Riechers et  al. 2023a). In this form, the dust 
record exhibits a high degree of correlation with the δ18O 
record (Boers et al. 2017).

In order to reduce the influence of slow changes in the 
background climate, we restricted the analysis to the period 
59–27 kyr b2k and applied further detrending with respect 
to a Northern Hemisphere temperature reconstruction pro-
vided by Snyder (2016) (see Fig. 1c and d and App. Appen-
dix A). The concentration of stable water isotopes expressed 
as δ18O values in units of permil is a proxy for the site tem-
perature at the time of precipitation (Jouzel et al. 1997; Gki-
nis et al. 2014).

Fig. 1  Trajectories of the 20-year mean of δ18O (a) and accordingly 
resampled dust concentrations (b) from the NGRIP ice core in Green-
land, from 122  kyr and 107  kyr to 10  kyr before 2000 CE (b2k), 
respectively (Ruth et al. 2003; Rasmussen et al. 2014; Seierstad et al. 
2014). The dust data is given as the negative natural logarithm of the 
actual dust concentrations, in order to facilitate comparison to the δ18

O data. Panels (c) and (d) show the same proxies but at a higher reso-
lution of 5 years (North Greenland Ice Core Projects members 2004; 
Gkinis et al. 2014; Ruth et al. 2003) and over the shorter period from 
59 to 27 kyr b2k. The analysis presented in this study was constrained 

to this segment of the records. The two proxy time series in (c) and 
(d) have been detrended by linearly regressing the data against recon-
structed global mean surface temperatures (Snyder 2016) and remov-
ing the apparent background-temperature-driven slow change. The 
grey shadings mark the Greenland interstadial (GI) intervals according 
to (Rasmussen et al. 2014). All data are shown on the GICC05 chro-
nology (Vinther et al. 2006; Rasmussen et al. 2006; Andersen 2006; 
Svensson et al. 2008). The data were binned to equidistant time resolu-
tion from its original 5 cm depth resolution (see App. Appendix A for 
further details on the data processing (Riechers et al. 2023a))
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1974), a Markov stochastic process of the form Eq.  (1) 
generally features discontinuous paths with non-zero prob-
ability. Path-wise continuity is only one of many notions 
of continuity in stochastic processes. Another is the conti-
nuity criterion for Markov processes provided by Gardiner 
(2009), which requires for a process to be continuous that

C(x, t, δ) = lim
τ→0

1
τ

P (|xt+τ − xt| > δ)

= lim
τ→0

1
τ

ˆ

|x′−x|>δ

p(x′, t + τ |x, t)dx′ != 0,
� (5)

for all δ, x, and t. In words, this means that the probability 
of a particle deviating from a reference position more than 
δ in a time interval τ  decreases faster than linearly with τ . 
The presence of higher-order KM coefficients in the cor-
responding Kramers–Moyal equation is a necessary, yet not 
sufficient criterion for a given process to be discontinuous 
under this latter notion.

3.1  Estimating Kramers–Moyal coefficients

The central entry point for this work is Eq. (3). It provides a 
means to estimate the KM coefficients Dm(x) directly from 
data, i.e., from a recorded realisation of a stochastic process, 
provided that the following assumptions are fulfilled (to a 
reasonable degree): 

i)	 The observed process is a Markov process,
ii)	 the process is time-homogeneous, i.e., the dynamics did 

not change over time,
iii)	 the state space is sampled sufficiently densely,
iv)	 and the sampling time is short compared to the charac-

teristic time scale of the dynamics.

Under these conditions, the evaluation of the conditional 
statistical moments M(x, τ) at the shortest available time 
lag ∆t given by the sampling rate yields a good estimate for 
the KM coefficients:

D̂m(x) = 1
m!

1
∆t

⟨(xt+∆t − xt)m |xt=x⟩ ≈ Dm(x),� (6)

wherein the ensemble average in Eq. (3) is replaced by the 
average over the available data ⟨·⟩. Our numerical imple-
mentation of Eq. (6) is based on the Nadaraya–Watson esti-
mator which is detailed in App. Appendix B.

3  Methods

Our starting point is a (time-homogeneous) Markov sto-
chastic process xt of the form

dxt = f(xt)dt + σ(xt)dξt,� (1)

where dξt denotes an arbitrary uncorrelated stochastic 
force. The temporal evolution of the associated conditional 
probability function p(x, t+τ |x′, t) then follows the Kram-
ers–Moyal equation (Kramers 1940; Moyal 1949; Kampen 
1961; Gardiner 2009; Risken and Frank 1996; Tabar 2019):

∂

∂τ
p(x, t+τ |x′, t)=

∞∑
m=1

(
− ∂

∂x

)m

Dm(x) p(x, t+τ |x′, t).� (2)

The Kramers–Moyal (KM) coefficients Dm(x) are related 
to the conditional moments Mm(x, τ) of order m of the sto-
chastic variable x at a time-lag τ  by

Dm(x) = 1
m!

lim
τ→0

1
τ

Mm(x, τ)

= 1
m!

lim
τ→0

1
τ

ˆ
(x′−xt)

m
p(x′, t+τ |x, t)dx′.

� (3)

In the special case that the stochastic force in Eq. (1) is given 
by Gaussian white noise (i.e., it can be expressed by the 
increments of a Wiener process Wt), only the first two terms 
on the right of Eq. (2) contribute and the Kramers–Moyal 
equation reduces to the better-known Fokker–Planck equa-
tion (Fokker 1913, 1914; Planck 1917). With dξt = dWt, 
Eq.  (1) becomes the Langevin equation and the resulting 
process is then referred to as a Langevin process1. For Lan-
gevin processes the relation

D1(x) = f(x) and D2(x) = 1
2

σ2(x),� (4)

between the KM coefficients, the drift f(x) and the diffusion 
σ(x), holds in general.

The other way around, if higher-order moments contrib-
ute to the Kramers–Moyal equation, the underlying pro-
cess cannot be a standard Langevin process. In that case, ξt 
does not correspond to a Wiener process but has instead a 
more complex form. However, the first two KM coefficients 
would still be dominated by the process’ drift and diffusion.

While a Langevin process consists, with probability 1, 
of continuous sample paths (e.g. Theorem 5.1.1 in Arnold 

1  There is no agreement on the use of the term Langevin process. 
Some authors consider Lévy-driven equations as such Langevin equa-
tions, others prefer to refer to Langevin processes as those that are 
solely driven by Gaussian/Brownian noise.
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Langevin from jump-diffusion processes, namely the Θ
-ratio

Θ(x, τ) = 3M2(x, τ)2

M4(x, τ)
∼

{
1, Langevin,
1
τ , jump-diffusion, � (9)

and the Q-ratio (Lehnertz et al. 2018)

Q(x, τ) = M6(x, τ)
5M4(x, τ)

∼
{

τ, Langevin,
constant, jump-diffusion. � (10)

For details on the derivation of these relationships, we refer 
the interested reader to  (Tabar 2019). Observing either of 
the scalings given in Eqs. (9) and (10), respectively, can aid 
in deciding between employing a Langevin or jump-diffu-
sion model.

These relationships are specifically derived for the jump-
diffusion model. Compared to the ratio of D4 and D2 dis-
cussed above, the results here are more prone to invalidity 
due to unjustified modelling assumptions on the real data. 
For different noise models than the ones introduced above, 
different scaling behaviours of these ratios with respect to τ  
will arise. Data from, e.g., a non-Markovian system may, on 
the other hand, exhibit the described behaviour while actu-
ally harbouring entirely different internal dynamics. In this 
work, we focus on distinguishing between the Langevin and 
Poisson jump-diffusion models as two archetypical (dis-)
continuous stochastic models. Observing any other scaling 
in Q or Θ may hint at a third model being more appropri-
ate to reproduce the time series dynamics. However, in the 
context of continuous versus discontinuous stochastic mod-
els, considering the two discussed models yields essential 
information.

4  Results

Figure 2 shows the first and second KM coefficients, and 
the ratio of the second to the fourth KM coefficients, as 
estimated from the dust and δ18O time series according to 
Eq. (6). The corresponding Θ and Q ratios are presented in 
Fig. 3.

a Dust record: For the dust, the constructed drift D1(x) 
in Fig. 2b exhibits two separate stable states that match the 
maxima of the probability density function in Fig. 2a. The 
second KM coefficient D2(x) in Fig. 2c is approximately 
constant. The ratio between the fourth and the second KM 
coefficients in Fig. 2d is smaller than 0.1 on the entire state 
space probed by the time series. For large portions of the 
dust’s state space, we find in Fig. 3 a decrease of the Θ(x, τ) 
ratio with increasing τ , similar to a 1/τ  behaviour. This 
applies, in particular, at the stable equilibria of the drift, 

3.2  Estimators of discontinuous motion

Once the KM coefficients are estimated from the data, one 
can draw inference on the most fitting choice of the noise 
model dξt. Vanishing higher-order moments (m > 2) clas-
sify the model as a Langevin process. In contrast, demon-
strable contributions of these moments suggest that the 
process is best modelled by including noise beyond a Wie-
ner process  (see e.g. Kampen 1961; Van Kampen 2007; 
Gardiner 2009; Tabar 2019; Lin 2023).

The finite sampling time step ∆t introduces a bias for 
the estimators D̂m(x)  (Kurth et  al. 2021). As a conse-
quence, even for a Langevin process the expected values 
for the higher-order KM estimators differ from zero. A first 
pragmatic metric to discern whether a studied process is a 
Langevin process or not is to evaluate the ratio between the 
fourth KM coefficient and the second, i.e., D4(x)/D2(x). 
This gauges the distributional tail of all immediate distur-
bances originating from x. It therefore offers a non-paramet-
ric insight into whether a fat tail of disturbances is needed to 
recreate the dynamics at the considered sampling rate. Such 
conclusions would be largely model-independent and do not 
explicitly rely on the Markovianity of the data. Small values 
≲ 0.1 are typically regarded as a justification for a Langevin 
description. Values D4(x)/D2(x) ≳ 0.1 point to non-diffu-
sive motion (i.e., forcing beyond Gaussian white noise). 
This metric offers a first insight into whether a discontinu-
ous noise term ξt is needed to model the process (Gao et al. 
2016; Lu and Duan 2020; Lucarini et al. 2022).

When the Langevin process model is contrasted with a 
jump-diffusion model of the form (Tabar 2019; Lin 2023)

dxt = f(xt)dt + σ(xt)dWt + η(xt)dJ
(λ)
t ,� (7)

the assessment can be further refined. Here, J (λ)
t  denotes 

a Poissonian jump process characterised by the rate λ. The 
jump amplitude is determined by the Gaussian stochastic 
variable η(x). For this specific process model, the KM coef-
ficients read (Tabar 2019)

D1(x) = f(x),

D2(x) = 1
2

σ(x)2 + 1
2

λ(x)⟨η(x)2⟩,

Dm(x) = 1
m!

λ(x)⟨η(x)m⟩, for m > 2,

� (8)

where ⟨·⟩ expresses the expected value.
Similarly, the bias of the KM estimators defined by 

Eq. (6), when applied to a jump-diffusion process sampled 
at finite time step ∆t, can be derived analytically. These 
considerations offer two additional metrics to distinguish 
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variable. Finally, the ratio D4(x)/D2(x) ≳ 0.3 is 10 times 
larger for δ18O than for the dust. The δ18O record exhibits 
a mostly constant Θ(x, τ)-ratio with respect to τ , as seen 
in Fig. 3. It is slightly below but still close to 1 for large 
parts of the state space. The corresponding Q(x, τ)-ratio is 
likewise constant (≈ 1) with respect to τ , with variations in 
both directions.

5  Discussion

The assessment of the KM coefficients and the scaling of 
Θ and Q ratios from the dust and the δ18O records pro-
vides some insight into how to best model the proxy time 
series within the framework of one-dimensional stochastic 
processes.

For the dust, we find bistability of the estimated model’s 
drift. The small D4(x)/D2(x) ratio and the linear increase 
of the Q(x, τ) with increasing τ  indicate that this process 
can, in fact, be modelled as a Langevin process. Only the 
assessment of the Θ(x, τ) ratio calls this conclusion into 
question. For a Langevin process, this ratio should be equal 
to one, but we observe a 1/τ -like scaling for small values of 
τ , in line with an underlying jump-diffusion process.

where the data availability is the best and our estimation 
is most robust. The dust Θ(x, τ)-ratio is close to 1 only in 
a region of its state space where its probability density has 
a local minimum (−0.3 ≲ dust ≲ 0.3). The correspond-
ing Q(x, τ)-ratio shows quite a distinct linear increase with 
increasing τ  – at least for small values of τ . For larger val-
ues of τ , Q(x, τ) is constant.

b δ18Orecord: In the case of δ18O, the drift has only one 
zero-crossing. This seems to explain the unimodal distribu-
tion of the data, though this broader distribution could also 
be caused by larger observational noise in the record. The 
mono-stability of the drift would not be affected by time- 
and state-independent observational noise and can therefore 
be seen as a more direct insight into the potential under-
lying dynamics. We note that NGRIP data products that 
provide δ18O concentrations at a lower time resolution of 
20- or 50-year time steps exhibit a bimodal distribution. 
For the purposes of our analysis, however, only the highest 
available sampling rate of time series data should be used 
so as to curtail the biases incurred in the KM estimations. 
With respect to the normalised units, the first and second 
KM coefficients of δ18O exceed their counterparts for dust 
by factors of approximately 4 and 10, respectively. This 
indicates that δ18O was subjected to stronger noise while 
simultaneously stronger deterministic forces acted on the 

Fig. 2  The probability density function (PDF) of (a) the dust and (e) 
δ18O. The non-parametric estimates of the (b, f) first KM coefficient 
D1(x) and (c, g) the second KM coefficient D2(x). The ratio between 
the fourth and the second KM coefficient D4(x)/D2(x) (d and h). 
All KM coefficients are evaluated at the shortest available time step 
∆t = 5yr of the time series. The estimated dust drift is bistable, while 
that of δ18O is monostable. The second KM coefficient D2(x) is 

relatively constant for both records. The ratio D4(x)/D2(x) is small 
(≲ 0.1) for the dust record. Yet, it is non-negligible for δ18O (≳ 0.3) 
in large parts of the state space, suggesting that the driving noise in a 
stochastic model for these time series should not be exclusively Gauss-
ian white noise. Details on the choice of kernel and bandwidth used for 
the KM coefficient estimation, as well as an analysis of the influence of 
the kernel bandwidth, can be found in App. B
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with two regimes in the presence of a single equilibrium and 
time asymmetry (Chechkin et al. 2003, 2004; Metzler and 
Klafter 2004; Yang et al. 2020).

Given the high degree of visual similarity between the 
dust and the δ18O records, the differences in the recon-
structed potentials and the ratio between the fourth and the 
second KM coefficient are remarkable. This accentuates 
the need for careful statistical analysis when devising time 
series models for non-linear systems with abrupt transitions.

Adopting a generalised Langevin equation with a bistable 
drift term, Ditlevsen (Ditlevsen 1999) showed that the noise 
in the calcium concentration record from the GRIP ice core 
can be modelled with an α-stable component. Calcium con-
centrations are typically considered equivalent to dust con-
centrations (cf. (Fuhrer et al. 1993; Ruth et al. 2002, 2003; 
Fischer et al. 2007)). We cannot directly assess the presence 
of α-stable noise in the NGRIP dust record. This is because 
noise models with infinite statistical moments, which can 

We note that a simple Langevin model with a bistable 
drift and purely diffusive noise can produce the regime 
shifts observed in the dust record. However, such a model is 
unlikely to reproduce the asymmetric shape of the intersta-
dial phases evident in the record.

For the δ18O record, the results are exactly the opposite. 
The constructed drift function exhibits only a single stable 
equilibrium. The observed quantities D4(x)/D2(x) and 
Q(x, τ) provide evidence for relevant contributions from 
higher-order KM coefficients. The Θ(x, τ) ratio, however, 
is close to one in agreement with a Langevin model. A Lan-
gevin model together with the evidenced single equilibrium 
of the drift function clearly fails to explain the two regimes 
of the δ18O record, and the apparent time asymmetry. Taken 
together, we conclude that the evidence speaks in favour of 
introducing discontinuities to the driving noise model rather 
than against it. Complex noise, i.e., noise beyond a Wie-
ner process, could indeed be a way to reproduce time series 

Fig. 3  The Θ(x, τ)-ratio and Q(x, τ)-ratio of the dust and the δ18O 
concentration. (a) The Θ(x, τ)-ratio of the dust is not close to 1 for 
a large range of τ  and x, particularly around the peaks of the bimodal 
dust distribution. (b) From τ = 5 to roughly τ = 50 the Q(x, τ)-ratio 
increases linearly with τ , consistent with a continuous process, yet 
for τ > 50 the Q(x, τ)-ratio is nearly constant, consistent with a dis-
continuous process. (c) On the one hand, the Θ(x, τ)-ratio of the δ18

O points to being different from 1 along the peak of the distribution, 
yet not sufficiently conclusive to ascertain if the δ18O is discontinu-
ous. (d) On the other hand, the Q(x, τ)-ratio is arguably constant over 
τ , consistent with a discontinuous δ18O. For visualisation purposes, 
Q(x, τ) of δ18O is multiplied by 0.6 to match the scale of Q(x, τ) 
of the dust (Harris et al. 2020; Virtanen et al. 2020; Rydin Gorjão and 
Meirinhos 2019; Rydin Gorjão et al. 2023; Hunter 2007)
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stability of the actual physical processes. It is, however, 
notable that these findings are inconsistent with the hypoth-
esis that past Greenland temperatures were governed by 
intrinsically bistable dynamics (Livina et  al. 2010; Kwas-
niok 2013). For the atmospheric circulation, there is no such 
inconsistency. We stress that this inconsistency with respect 
to previous studies arises under the application of differing 
modelling assumptions and data pre-processing procedures. 
The potential influence of non-Markovianity in the dynam-
ics or complex measurement noise cannot be quantified. 
Disentangling these confounding effects is possible but 
demands large amounts of data Böttcher et al. (2006). We 
nonetheless maintain that this novel perspective is a valu-
able data point for further conceptual and physical consider-
ations of DO events.

We found that stochastic forcing should include terms 
beyond Gaussian white noise when modelling the δ18O 
record. This renders the Langevin approach insufficient to 
accurately reproduce the time series characteristics, draw-
ing attention towards including discontinuous elements. For 
the dust record, similar indications could be found, though 
these have not been as convincing.

In physical terms, complex noise could have played a cen-
tral role in the emergence of DO events. Our analysis does 
not provide direct evidence for a causal relation between 
discontinuous driving noise and the regime switches of the 
North Atlantic region’s climate during the last glacial. Yet, it 
motivates further exploration of this issue along the lines of 
Gottwald (2020) and Riechers et al. (2023a). The possibility 
that climate tipping elements are subject to non-Gaussian 
noise in today’s climate should receive greater consider-
ation. The corresponding implications on the stability of 
these elements and the ability to detect early warning sig-
nals should be investigated.

Appendix A: Data detrending

As mentioned in Sec.  2, this study focuses on the period 
59–27  kyr  b2k. Detrending of the data is necessary to 
ensure that the time series are time-homogeneous station-
ary processes, which is an underlying assumption for the 
Kramers–Moyal analysis performed in our investigation. To 
compensate for the influence of the background climate on 
the climate proxy records of dust and δ18O, we remove a lin-
ear drift with respect to reconstructed global average surface 
temperatures (Snyder 2016) from both time series. Figure 4 
illustrates the detrending scheme. Due to the two-regime 
nature of the time series, a simple linear regression would 
overestimate the temperature dependencies. Instead, we 
separate the data from Greenland stadials (GS) and Green-
land interstadials (GI) and then minimise the expression

be found in α-stable distributions, are inherently incompat-
ible with the Kramers–Moyal framework. Yet, our results 
corroborate the notion that Greenland ice core records bear 
the signature of non-Gaussian noise, though in our analy-
sis this arises primarily for the δ18O record. Related to this, 
Gottwald (2020) recently formulated a conceptual model of 
DO events wherein α-stable noise plays a central role as 
an event trigger, later extended by Riechers et al. (2023a). 
From the perspective of theoretical stochastic modelling, it 
is worth noting that the α-stable noise model leads to a path-
wise continuous process, in contrast to the Poisson jump-
diffusion model discussed in this work. Employing the 
continuity notion of Eq. (5), however, both of these models 
would be considered discontinuous.

We have to state that the interpretation of higher-order 
KM coefficients is not straightforward and depends on the 
exact choice of the stochastic model. A direct causal relation 
between the DO events and discontinuous noise cannot be 
inferred without further ado within this study, but the role of 
discontinuities in the proxy records merits further investiga-
tion. It has been observed in complex model simulations that 
(stochastic) atmospheric anomalies can indeed drive regime 
changes in the North Atlantic region (Drijfhout et al. 2013; 
Kleppin et al. 2015). Together with the apparent aptitude of 
non-Gaussian noise models for Greenland temperature and 
Northern Hemisphere atmospheric circulation proxies, this 
motivates further research on the effect that non-Gaussian 
noise could have on climate tipping elements in present-day 
climate.

If both Greenland temperatures and the state of the North-
ern Hemisphere atmospheric circulation were subject to 
non-Gaussian noise, and if indeed pulses of this noise trig-
gered transitions between stadial and interstadial regimes, 
this would have important implications for our conception 
of stability of certain climate tipping elements. The possi-
bility that climate tipping elements are nowadays likewise 
subject to non-Gaussian stochastic forcing warrants more 
attention.

6  Conclusion

In this work, we presented a data-driven analysis of the δ18

O and dust concentration records from the NGRIP ice core, 
based on the Kramers–Moyal equation. This equation gen-
eralises the Fokker–Planck equation by allowing for arbi-
trarily complex uncorrelated driving noise dξt. In particular, 
such noise may result in a discontinuous process.

The estimation of the KM coefficients yielded a monos-
table drift for the isolated δ18O record and a bistable one for 
the dust. The analysis of the resulting agnostic time series 
models does not allow for conclusions about the dynamical 
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Dm(x) ∼ 1
m!

1
∆t

⟨(xt+∆t − xt)m|xt=x⟩

∼ 1
m!

1
∆t

1
N

N−1∑
i=1

K(x − xi)(xi+1 − xi)m.
� (B1)

Similarly to selecting the number of bins in a histogram, for 
a kernel-density estimation, we select both a kernel and a 
bandwidth (Nadaraya 1964; Watson 1964; Lamouroux and 
Lehnertz 2009). The kernel is a function K(x) for the estima-
tor f̂h(x), where h is the bandwidth at a point x, following

f̂h(x) = 1
nh

n∑
i=1

K

(
x − xi

h

)
� (B2)

for a collection {xi} of n random variables. The kernel 
K(x) is normalisable 

´
K(x)dx = 1 and has a bandwidth 

h, such that K(x) = K(x/h)/h (Rydin Gorjão et al. 2019; 
Tabar 2019; Davis and Buffett 2022). The bandwidth h is 
equivalent to the selection of the number of bins, except that 
binning in a histogram is always ‘placing numbers into non-
overlapping boxes’. We use an Epanechnikov kernel

R2 =
N∑

i=1

(
Xti

− aX∆T (ti) −
{

bGI, if ti ∈ GI
bGS, if ti ∈ GS

)2

,� (A1)

with X either dust or δ18O and with respect to the parameters 
aX , bGI, and bGS. For a given time ti ∈ GS (GI) indicates 
that ti falls into a stadial (interstadial) period. The result-
ing aX  is used to detrend the original data with respect to 
the temperature. The detrended data are subsequently nor-
malised by subtraction of their mean and division by their 
standard deviation.

Appendix B: Nadaraya–Watson estimator of 
the KM coefficients and bandwidth selection

In order to carry out the estimation in Eq. (6) we map each 
data point in the corresponding state space to a kernel den-
sity and then take a weighted average over all data points

Fig. 4  Removal of a linear trend in the NGRIP δ18O and dust time 
series (North Greenland Ice Core Projects members 2004) with respect 
to a global average surface temperature reconstruction (Snyder 2016). 
In panel (a) both original δ18O (light brown) as well as detrended and 
normalised (purple) time series are shown. Likewise for the dust record 
in panel (b) (light brown and green, respectively). The background 
temperature is given in anomalies with respect to the mean over the 

investigated period (blue). Panels (c) and (d) show scatter plots of the 
original δ18O and dust data with respect to temporarily corresponding 
temperature anomalies, respectively. Data from interstadials (stadials) 
is shown in orange (light blue). The black dashed lines correspond to 
the fitting scheme that uses a single slope but two different offsets to 
separately fit the stadial and interstadial data
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C(x, t, δ) = lim
τ→0

Prob
[
|xt+τ − xt| > δ|xt=x

]

τ

= lim
τ→0

´
|x′−x|>δ

p(x′, t + τ |x, t)dx′

τ
= 0.

� (C1)

In words, this means that the probability of a particle 
deviating from a reference position more than δ in a time 
interval τ  decreases faster than linearly with τ . Direct 
proof is easily obtained for some particular processes. For 
example, for a Brownian motion we obtain, as expected, 
C(x, t, δ) = 0 (see (Tabar 2019), Eq. (4.5) for a derivation). 
In a similar fashion, Tabar (2019) also shows two examples 
where C(x, t, δ) > 0. These are the Cauchy process (which 
is the special case of an α-stable Lévy-driven Langevin pro-
cess with α = 1) and processes with Poissonian jumps (see 
Eq. (4.6) and Eq. (11.19)). Both examples are discontinuous 
processes by this definition.

For discontinuous processes in our KM setting we can 
derive a relation similar in form to Lindeberg’s continuity 
condition, namely C(x, t, δ) ≤ M̄m(x)

δm . We follow almost 
verbatim the derivation by Tabar, S11.2 (Tabar 2019). Con-
sider the m-th order conditional moment of the absolute 
value of the increment

K(x) = 3
4

(1 − x2), with support |x| < 1,� (B3)

which has a compact bounded support, but other kernels are 
available, with different supports (Epanechnikov 1967). The 
selection of an appropriate bandwidth h follows Silverman’s 
rule-of-thumb (Silverman 1998), given by 

hS =
(

4σ̂5

3n

) 1
5

,� (B4)

where σ2 is the variance of the time series. In Fig. 5 three 
different bandwidths are used to evaluate the various KM 
coefficients, as given in Fig.  2. The bandwidths are the 
optimal bandwidth given by Silverman’s rule-of-thumb hS, 
three times hS, and one-third hS.

Note that regardless of the choice of bandwidth, the 
mono-stability of the δ18O model is preserved, as is the 
bistability of the dust concentration model.

Appendix C: Understanding continuity and 
discontinuity in stochastic processes

The understanding of continuity and discontinuity can 
sometimes be unclear when dealing with time series data. 
We turn to Lindeberg’s continuity condition C(x, t, δ) for a 
Markov process (Lehnertz et al. 2018; Tabar 2019), which 
states that a process xt is continuous if

Fig. 5  The effect of the bandwidth selection hS on the KM estima-
tions, in similar fashion to Fig. 2. The non-parametric estimates of the 
first KM coefficient D1(x), the second KM coefficient D2(x), and 
the ratio of the fourth to the second KM coefficient D4(x)/D2(x). 
Left column for dust, right column for δ18O. Three bandwidths are 
used for the Nadaraya–Watson kernel-density estimator: the optimal 

Silverman’s rule-of-thumb hS, three times hS, and one-third hS. The 
Nadaraya–Watson kernel-density estimator’s bandwidths hS for δ18

O is 0.131 and for dust 0.103. In all cases, the interpretation of the 
estimator remains the same: bistability in the dust, mono-stability in 
the δ18O. In (b) and (e) the first-order estimator for the  second KM 
coefficient D2(x) are included, i.e., without corrective terms
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∞̂
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|x′ − x|mp(x′, t + τ |x, t)dx′

≥
ˆ

|x′−x|>δ

|x′ − x|mp(x′, t + τ |x, t)dx′,

� (C2)

where we disregarded the integration over the interval 
[x − δ, x + δ], δ being a small value. Using further that 
|x′ − x|m > δm, we get

⟨|x′ − x|m|xt=x⟩ ≥ δm

ˆ

|x′−x|>δ

p(x′, t + τ |x, t)dx′.� (C3)

Dividing both sides by τ  and taking the limit τ → 0, we 
obtain

lim
τ→0

1
τ

δm

ˆ

|x′−x|>δ

p(x′, t + τ |x, t)dx′ ≤ lim
τ→0

1
τ

⟨|x′ − x|m|xt=x⟩,� (C4)

where we recognise the form of Lindeberg’s continuity con-
dition as

C(x, t, δ) ≤ M̄m(x)
δm

,� (C5)

with

M̄m(x) = lim
τ→0

1
τ

⟨|x′ − x|m|xt=x⟩,� (C6)

noting the absolute value in contrast with Eq. (3). Although 
the relation comprises only an upper bound for C(x, t, δ), it 
yields a convincing argument for the role of the higher-order 
KM coefficients and their relation with discontinuity.

Note that having any vanishing KM coefficient of order 
m > 2 is sufficient for the process to be continuous. For 
the case of non-vanishing KM coefficients of higher order, 
Pawula’s theorem  (Pawula 1967a, b; Risken and Frank 
1996) implies that all KM coefficients exist. It is reason-
able to expect Lindeberg’s continuity condition will not be 
obeyed for at least one order m (note the left-hand side of 
Eq. (C5) does not depend on m). Consequently, higher-order 
KM coefficients relate to discontinuous trajectories. This, 
however, does not imply that the Kramers–Moyal equation 
is necessarily the only model – or even the best model – to 
describe discontinuous processes  (cf. Van Kampen 2007; 
Gardiner 2009).
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