High performance scientific computing in C++
HPC C++ Course 2025

27 October — 30 October 2025 | Sandipan Mohanty | Forschungszentrum Jiilich, Germany

IJ JULICH

Member of the Helmholtz Association Forschungszentrum

Chapter 1
Introduction

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 1 Forschungszentrum

HPC and C++ in scientific computing

= Handle complexity and do it fast

= Reliablity: catch implementation logic errors before
the program runs

= Efficient machine code based on the source:
application return time may decide whether or not
a research problem is even considered

= Smart algorithms
= Hardware aware translation of ideas into code

= Profiling and tuning

IJ JULICH

Forschungszentrum

Slide 2

Member of the Helmholtz Association 27 October — 30 October 2025

C++: elegant and efficient abstractions

= General purpose: no specialization to specific usage areas

= Compiler as a friend: in a large project, static type checking, data ownership control, const-ness guarantees
and user defined compile time checks preclude a lot of possible errors

= No over simplification that precludes direct expert level use of hardware
= Leave no room for a lower level language

= You don't pay for features you don't use

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 3 Forschungszentrum

C++ : high level and low level

Qutline of themes

High level abstractions to facilitate fast development
Direct access to low level features when you want them

= A “quick” recap of C++20 and C++23

Revisiting language fundamentals for high performance code

Expression templates

Explicit SIMD programming

Multi-threaded programs using standard parallel algorithms and Intel (R) Threading Building Blocks
Lessons from writing a matrix multiplication program

Linear algebra with EIGEN

GPU programming with NVidia CUDA and Thrust

Introduction to single source heterogeneous computing using SYCL and OneAPI

The default C++ standard for code samples, examples exercises etc. is C++23, but a few examples will

require older standards. ‘ JUL'CH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 4 Forschungszentrum

C++20

Member of the Helmholtz Association

Important refreshing of the language, similar to C++11.

Concepts
Ranges
Modules
Coroutines

auto function parameters to implicitly declare
function templates

Explicit template syntax for lambdas
Class non-type template parameters

try ... catch and virtual functions in
constexpr functions

consteval and constinit

<=>

27 October — 30 October 2025

<ranges>

<concepts>
std::atomic<double>
constexpr algorithms
std: :assume_aligned

constexpr numeric algorithms

IJ JULICH

Slide 5 Forschungszentrum

C+423

(Interesting changes are mostly concentrated in the standard library.)

= Multi-dimensional subscript operators

= Deducing this

» [[assume (expr)]]

Member of the Helmholtz Association

Static operator () and operator (]

27 October — 30 October 2025

import std;

<expected>
ranges: :to, views::zip
<stacktrace>

std: :byteswap

std: :mdspan

Formatting ranges and containers
<print>

std: :forward_like

std: :generator: synchronous coroutine
generator

IJ JULICH

Slide 6 Forschungszentrum

First: a couple of small, but interesting changes...

std::osyncstream

#include <iostream>
#include <omp.h>

auto main() -> int
{
#pragma omp parallel for
for (auto i1 = 0UL; 1 < 100UL; ++1i) {
std::cout << "counter = " << i << " on thread "
<< omp_get_thread_num() << "\n";

=
H O © K NO O AW N

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 7 J Forschungszentrum

First: a couple of small, but interesting changes...

std::osyncstream

Fle Edt View Bookmarks Settings Help

sandipan@bifrost:~/Work/C++/c++20demos> g++ -02 -fopenmp garbled.cc -o garbled.g
sandipan@bifrost:~/Work/C++/c++20demos> ./garbled.g

counter = counter = 8 on thread 0 on thread 40
counter = 9 on thread 4
counter = counter = counter = 414counter = on thread 7

counter = 15 on thread 7
10 on thread 5
counter = 11 on thread 5
on thread 122
counter = 5 on thread 2

on thread 6

counter = 13 on thread 6
counter = 6 on thread 3
counter = 7 on thread 3
counter = 2 on thread 1
counter = 3 on thread 1

counter = 1 on thread 0
sandipan@bifrost:~/Work/C++/c++20demos> |

JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 7 Forschungszentrum

First: a couple of small, but interesting changes...

std::osyncstream

1 #include <iostream>

2 #include <syncstream>

3 #include <omp.h>

4

5 auto main() —-> int

6 {

7 #pragma omp parallel for

8 for (auto i = 0UL; i < 100UL; ++i) {

9 std::osyncstream{std::cout} << "counter = " << i << " on thread "
10 << omp_get_thread_num() << "\n";
11 }

12 }

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 7 J Forschungszentrum

First: a couple of small, but interesting changes...

std::osyncstream

counter
counter
counter
counter
counter
counter
counter
counter

counter
counter
counter
counter
counter
counter
counter

counter =

Fle &t View Bookmiks Setings Help
sandipan@bifrost:~/Work/C++/c++20demos> g++ -02 -fopenmp -std=c++20 syncstream.cc -o syncstream.g
sandipan@bifrost:~/Work/C++/c++20demos> ./syncstream.g

0 on thread 0
6 on thread 3
7 on thread 3
4 on thread 2
5 on thread 2
12 on thread 6
2 on thread 1
10 on thread 5
11 on thread 5
8 on thread 4
1 on thread 0
13 on thread 6
3 on thread 1
14 on thread 7
15 on thread 7
9 on thread 4

sandipan@bifrost:~/Work/C++/c++20demos> |

Member of the Helmholtz Association

27 October — 30 October 2025

Slide 7

JULICH

Forschungszentrum

To work on the examples, please copy the examples folder into the work folder of your private work space. Do
not modify the content in the orig folder, since that is where the course material will be updated. The update
does not succeed if any file is modified in the orig folder. Suggested work flow...

$ cd $cxx2025/work

$ cp -r ../orig/dayl/examples ./dlexamples
$ cd dlexamples

$ G syncstream.cc -fopenmp -o syncstream.g
$./syncstream.g

examples/garbled.cc and examples/syncstream.cc demonstrate the use of std: :osyncstream as shown
above. examples/syncstream mpi.cc demonstrates that the synchronisation of output stream also works with
output from different MPI processes.

$ mpicxx -std=c++23 -03 -fopenmp syncstream mpi.cc -o syncstream.mpi
$ OMP_NUM_THREADS=4 batch_run --ntasks=32 --cpus-per-task=4 ./syncstream.mpi

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 8 Forschungszentrum

Immediate functions

// examples/immediate.cc

constexpr auto cxpr_sqgr (auto x) { return x

consteval auto cevl_sqgr (auto x) { return x

auto main(int argc, charx argv([]) -> int

{
std::array<double, cxpr_sqr(l14)> A;
std::array<double, cevl_sqr(14)> B;
std::cout << cxpr_sqgr (argc) << "\n";
std::cout << cevl_sqgr (argc) << "\n";

* X;
* Xy

Member of the Helmholtz Association

27 October — 30 October 2025

}
}

= constexpr functions with compile time constant

arguments are evaluated at compile time, if the
result is needed to initialise a constexpr variable

constexpr functions remain available for use
with non-constant objects at run-time. This is
sometimes desirable, but it also makes certain
accidental uses possible, when we intend compile
time evaluation but get something else.

The new consteval specifier creates “immediate
functions. It is possible to use them in the compile
time context. But it is an error to use them with
non-constant arguments.

IJ JULICH

Slide 9 Forschungszentrum

Designated initialisers

1 // examples/desig2.cc

2 struct v3 { double x, y, z; };

3 struct pars { int offset; v3 velocity; };

4 auto operator<<(std::ostream & os, const v3 & v) —-> std::ostream&

5 {

6 return os << v.x << ", " << v.y << ", " << vy.z << "M,

7 }

8 void example_func (pars p)

9 {

10 std::cout << p.offset << " with velocity " << p.velocity << "\n";
11 }

12 auto main () -> int

13 {

14 example_func({.offset = 5, .velocity = {.x=1., .y = 2., z=3.}});
15 }

= Simple struct type objects can be initialised by designated initialisers for each field.

= Can be used to implement a kind of "keyword arguments" for functions. But remember, at least upto
C++23, the field order can not be shuffled.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 10 Forschungszentrum

Couple of small, but interesting changes... |

= You can now write auto in function parameter lists, e.g.,
auto add(auto x, auto y) { return x + y; }, to create a function template
template <class T, class U> auto add(T x, U y) { return x + y; }

= You can now use explicit template parameters in lambda functions
[]<class T> (T x, const std::vector<T>& v) {
for (auto el : v) x += el;
return x;
i

= std::string can now reserve () memory
= S.starts_with ("pre") checks if a string S starts with the prefix "pre". Similarly for ends_with ()

= M.contains ("key") answers whether a certain key "key" is present in an associative container. Cleaner
than try { M.at("key"); } catch (auto& err) { }, or

1 if (auto it = find_if (M.begin(), M.end(), [] (autoss& el){ return el.first == "key"; });
2 it !'= M.end()) { ... }

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 11 Forschungszentrum

IJ JULICH

Couple of small, but interesting changes... |l

= std::erase(C, element) and std::erase_if (C, predicate) erase elements equal to a given
element or elements satisfying a given predicate from a container C. Same behaviour for different containers.

= std::lerp(min, max, t) : linear interpolation, std: :midpoint (a, b) : overflow aware
mid-point calculation

= std::assume_aligned<16> (dptr) returns the input pointer, but the compiler then assumes that the
pointer is aligned to a given number of bytes.

@ » JULICH
27 October — 30 October 2025 Slide 12 J Forschungszentrum

Member of the Helmholtz Association

Couple of small, but interesting changes...

= std::span<T> is a new non-owning view type for contiguous ranges of arbitrary element types T. It is
like the string_view, but for other array like entities such as vector<T>, array<T, N>,
valarray<T> or even C-style arrays. Can be used to encapsulate the (pointer, size) pairs often used as
function arguments. Benefit: it gives us an STL style interface for the (pointer, size) pair, so that they can
be directly used with C++ algorithms.

= Signed size of containers: std: :ssize (C), where C is a container, returns a signed integer (number of
elements in container). Containers like std: :vector, std::1ist, std: :map have member functions
ssize () for the same purpose. Signed sizes are useful, for instance, when iterating backwards through the
container.

Safe integer comparisons: functions like cmp_less (i1, i2) will perform integer comparisons without
conversions. cmp_less (=1, 1U) will return true, where as, -1 < 1U returns false. Similarly, we
have, cmp_less_equal, cmp_greater, cmp_not_equal and cmp_equal.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 13 Forschungszentrum

Couple of small, but interesting changes...

Bit manipulation:

= std::bit_cast<>: bit_cast<uint64_t>(3.141592653) reinterprets the bits in the object
representation of the input and returns an object of a required type so that the corresponding bits match

= has_single_bit (UnsignedInteger): answers if only one of the bits in the input is 1, while the rest
are 0

= std::rotl (UnsignedInteger, amount), std::rotr (UnsignedInteger, amount): Rotates
the bits in an unsigned integer left or right by a given amount

= std::bit_floor (UnsignedInteger): Largest power of two not greater than input
= std::bit_ceil (UnsignedInteger): Smallest power of two not smaller than input
= Count consecutive 0 bits from the left count1_zero or right countr_zero, and similarly for 1 bits

= popcount, count the total number of 1 bits in the entire input

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 14 J Forschungszentrum

Exercise 1.2:

Some example programs about the minor new features of C++20 and C++23 are desig.cc, desig2.cc,
cxpr_algo0.cc, immediate.cc, intcmp.cc, and bit0.cc, in the examples/ directory. Check them, change them in

small ways, ask related questions!
Alternatively, double click on the Jupyter Notebook in the examples directory called MiscsmallFeatures.ipynb,

and work through the notebook.

Forschungszentrum

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 15

Formatted output

= While convenient and type safe and

o oA W N

for (auto i = OUL; i < 100UL; ++i) { extensible, the interface of ostream objects
std::cout << "i = " << i . P . .

<", E1 =" << cos(i » wn) like std: :cout isn't by itself conducive to
<< ", B_2 = " << sin(i * wn) regular well-formatted output
<< "\nﬂ;

}

i =5, E_1=0.55557, E_2 = 0.83147

i =6, E_1 = 0.382683, E_2 = 0.92388

i =7, E_L1 = 0.19509, E_2 = 0.980785

i =8, E_1 = 6.12323e-17, E_2 = 1

i =9, E_L1 = -0.19509, E_2 = 0.980785

i =10, E_1 = -0.382683, E_2 = 0.92388

i =11, E_1 = -0.55557, E_2 = 0.83147

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 16 J Forschungszentrum

Formatted output

1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 =" << sin(i % wn)
5 << "\n";
6 }
i=25, E_1 = 0.55557, E_2 = 0.83147
i=6, E_1 = 0.382683, E_2 = 0.92388
i=7, E_1 = 0.19509, E_2 = 0.980785
i 8, E_1 6.12323e-17, E_2 = 1
i 9, E_1 = -0.19509, E_2 = 0.980785
i =10, E_1 = -0.382683, E_2 = 0.92388
i =11, E_1 = -0.55557, E_2 = 0.83147

Member of the Helmholtz Association

27 October — 30 October 2025

= While convenient and type safe and

extensible, the interface of ostream objects
like std: :cout isn't by itself conducive to
regular well-formatted output

C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible

C++ <iomanip> header allows formatting

with a great deal of control, but has a
verbose and inconsistent syntax

IJ JULICH

Slide 16 Forschungszentrum

Formatted output

1 for (auto i = 0UL; i < 100UL; ++i) {

2 std::cout << format (

3 "i = {:>4d}, E_1 {:< 12.8£f}, "

4 "E_2 = {:< 12.8f}\n",

5 i, cos(i * wn), sin(i * wn));

6 }
i= 5, E_L1 = 0.55557023 , E_2 = 0.83146961
i= 6, E_1 = 0.38268343 , E_2 = 0.92387953
i= 7, E_1 0.19509032 , E_2 = 0.98078528
i 8, E_1 0.00000000 , E_2 1.00000000
i 9, E_L1 = -0.19509032 , E_2 0.98078528
i 10, E_1 -0.38268343 , E_2 = 0.92387953
i= 11, E_1 -0.55557023 , E_2 = 0.83146961

Member of the Helmholtz Association

27 October — 30 October 2025

While convenient and type safe and
extensible, the interface of ostream objects
like std: :cout isn't by itself conducive to
regular well-formatted output

C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible

C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax

C++20 introduced the <format> header,
which introduces Python like string formatting

Based on the open source fmt library.

l) JULICH

Slide 16 Forschungszentrum

Formatted output

1 for (auto i = 0UL; i < 100UL; ++i) {

2 std::cout << format (

3 "i = {:>4d}, E_1 = {:< 12.8f}, "

4 "E_2 = {:< 12.8f}\n",

5 i, cos(i * wn), sin(i * wn));

6 }
i= 5, E_L1 = 0.55557023 , E_2 = 0.83146961
i= 6, E_1 = 0.38268343 , E_2 = 0.92387953
i= 7, E_1 0.19509032 , E_2 = 0.98078528
i 8, E_1 0.00000000 , E_2 1.00000000
i 9, E_L1 = -0.19509032 , E_2 0.98078528
i 10, E_1 = -0.38268343 , E_2 = 0.92387953
i= 11, E_1 = -0.55557023 , E_2 = 0.83146961

Perfectly aligned, as

all numeric output should be.

Member of the Helmholtz Association

27 October — 30 October 2025

While convenient and type safe and
extensible, the interface of ostream objects
like std: :cout isn't by itself conducive to
regular well-formatted output

C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible

C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax

C++20 introduced the <format> header,
which introduces Python like string formatting

Based on the open source fmt library.

Elegant. Safe. Fast. Extensible.

Slide 16 Forschungszentrum

IJ JULICH

Formatted output

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 17

std::format ("format string {}, {} etc.", args...) takes a compile time constant format
string and a parameter pack to produce a formatted output string

std: :vformat can be used if the format string is not known at compilation time

If instead of receiving output as a newly created string, output into a container or string is desired,
std::format_to or std: :format_to_n are available

The format string contains python style placeholder braces to be filled with formatted values from the
argument list

The braces can optionally contain id : spec descriptors. id is a 0 based index to choose an argument
from args. .. for that slot. spec controls how the value is to be written: width, precision, alignment,
padding, base of numerals etc. Details of the format specifiers can be found here!

l) JULICH

Forschungszentrum

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification

std::print

= Introduced in C++23

. L. 1 std::print ("Hello world!\n");
. F_ormats using the std: : forma.t syntax, but. then 204 ‘print ("answer — (: >12.8f}\n", d);
directs the output to stdout, as if you had written 3 std::print("{}\n", v);
std::cout << std::format (...); 4 std::print("{}\n", tl - t0);

= Formatting capabilities were extended to containers
(ranges in general), date/time utilities

Exercise 1.3:

A simple example demonstrating the text formatting library of C++20 is in examples/format1.cc. Replace
cout+format by the equivalent use of std: :print!

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 18 Forschungszentrum

o
H O ©®NOUE WN =

T T o =t
B RO ©ONO T AW N

Optional values

Member of the Helmholtz Association

#include <optional>
auto f (double x) -> std::optional<double> ({

std: :optional<double> ans;

const auto eps2 = 1.0e-24;
if (x >= 0) |
auto r0 = 0.5 % (1. + x);
auto rl = x / r0;
while ((r0 - rl) » (xr0O - rl) > eps2) {
r0 = 0.5 » (xr0O + rl);
rl = x / r0;
}
ans = rl;
}
return ans;
}
// Elsewhere. ..
std::cout << "Enter number : ";
std::cin >> x;
if (auto r = f(x); r.has_value()) {

std::cout << "The result is "
<< r.value() << '\n';

27 October — 30 October 2025

std: :optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all

If created without any initialisers, the box is empty

You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a true
outcome if there is an object inside, irrespective of
the value of that object

Empty box evaluates to false

IJ JULICH

Slide 19 Forschungszentrum

o
H O ©®NOUE WN =

T T o =t
B RO ©ONO T AW N

Optional values

Member of the Helmholtz Association

#include <optional>
auto f (double x) -> std::optional<double> ({

std: :optional<double> ans;

const auto eps2 = 1.0e-24;
if (x >= 0) |
auto r0 = 0.5 % (1. + x);
auto rl = x / r0;
while ((r0 - rl) » (xr0O - rl) > eps2) {
r0 = 0.5 » (xr0O + rl);
rl = x / r0;
}
ans = rl;
}
return ans;
}
// Elsewhere. ..
std::cout << "Enter number : ";
std::cin >> x;
if (auto r = f(x); r) |

std::cout << "The result is "
<< *xr << '\n';

27 October — 30 October 2025

std: :optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all

If created without any initialisers, the box is empty

You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a true
outcome if there is an object inside, irrespective of
the value of that object

Empty box evaluates to false

IJ JULICH

Slide 19 Forschungszentrum

C++423 std::expected

1 #include <expected>

2 auto mysqgrt (double x) —> std::expected<double, std::string> {
3 const auto eps = 1.0e-12;

4 const auto eps2 = eps * eps;

5 if (x >= 0.) {

6 auto r0O = 0.5 » (1. + x);

7 auto rl = x / r0;

8 while ((rO - rl) * (r0O - rl) > eps2) {

9 r0O = 0.5 « (r0 + rl);

10 rl = x / r0;

11 }

12 return { rl };

13 } else {

14 return std::unexpected { "Unexpected input!" };

15 }

16 }

17 // Elsewhere. ..

18 if (auto rm = mysqgrt(x); rm) std::cout << "Square root = " << rm.value() << "\n";
19 else std::cout << "Error: " << rm.error() << "\n";

= Similar to std: :optional, but has more capacity to describe the error
= The unexpected value can be of a type of our choosing, making it very flexible

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 20 Forschungszentrum

std::span (C++20)
std::vector

= operator|]

m size () and ssize ()

= begin ()
= end ()
VECEor
@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 21 J Forschungszentrum

std::span (C++20)

std::vector std::span

= operator/(] = operator([]

m size () and ssize () » size () and ssize ()

= begin () = begin ()
= end () = end ()
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 21 J Forschungszentrum

std::span (C++20)

std::vector
= operator|]
m size () and ssize ()
= begin ()
= end ()

Contiguous containers
= RAIl

Member of the Helmholtz Association

std::span
= operator|[]

» size () and ssize ()

= begin ()
= end ()
span: address and size of pre-existing data
= No resource ownership or management
27 October — 30 October 2025 Slide 21 J Forschungszentrum

std::span (C++20)

std::vector std::span

= operator|] = operator[]

m size () and ssize () » size () and ssize ()

= begin () = begin ()
= end () = end ()
Contiguous containers span: address and size of pre-existing data
= As long as container exists, elements can be = Even if span exists, accessibility of data is not
accessed guaranteed

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 21 J Forschungszentrum

std::span (C++20)

std::vector std::span

= operator|] = operator[]

m size () and ssize () » size () and ssize ()

= begin () = begin ()
= end () = end ()
Contiguous containers span: address and size of pre-existing data
= When container has expired, references / pointers / = When span has expired, references / pointers /
iterators to elements are invalidated iterators to elements may remain valid

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 21 J Forschungszentrum

o
H O ©®NOUE WN =

N e e S R
SO WO U AN

Member of the Helmholtz Association

span

using std::transform_reduce;
using std::plus;

using std::multiplies;
using std::vector;

auto compute (const vector<double>& u,
const vector<double>& v) -> double
{
return transform_reduce (
u.begin(), u.end(),
v.begin(), 0., plus<double>({},
multiplies<double>{});
}
void elsewhere ()
{
vector<double> A (100UL, 0.34);
vector<double> B(100UL, 0.87);
std::cout << compute(d, B) << "\n";

27 October — 30 October 2025

= We can avoid needlessly restrictive interfaces

IJ JULICH

Slide 22 Forschungszentrum

o
H O ©®NOUE WN =

L
SO ®NO TR ®N

span

= We can avoid needlessly restrictive interfaces

using
using
using
using
using

::transform_reduce;
::plus;
::multiplies;
ector;
::valarray;

= As written here, std: :valarray wouldn't be an
acceptable input

auto compute (const vector<double>& u,

{

const vector<double>& v) -> double
return transform_reduce (
u.begin(), u.end()
v.begin(), 0., plus<double>({},

}

multiplies<double>{});

void elsewhere ()

{

vector<double> A (100UL,

valarray<double> B (100UL,

std::cout << compute (3,

0.87);

Member of the Helmholtz Association

"\n";
;
@) JULICH
27 October — 30 October 2025 Slide 22 J Forschungszentrum

o
H O ©®NOUE WN =

T = B T R
R R N)

span

using std::transform_reduce;
using std::plus;
using std::multiplies;
using std::vector;
template <class T>
using VT = vector<T, tbb::scalable_allocator<T>>;
auto compute (const vector<double>& u,
const vector<double>& v) -> double
{
return transform_reduce (
u.begin(), u.end(),
v.begin(), 0., plus<double>({},
multiplies<double>{});
}
void elsewhere ()
{
vector<double> A (100UL, 0.34);
VT<double> B(100UL, 0.87);
std::cout << compute (A, B) << "\n";
}
Member of the Helmholtz Association 27 October — 30 October 2025

= We can avoid needlessly restrictive interfaces

= As written here, std: :valarray wouldn't be an
acceptable input

= As written here, even std: :vector with a
different allocator wouldn't be an acceptable input

IJ JULICH

Slide 22 Forschungszentrum

o
H O ©®NOUE WN =

T = B T R
R R N)

Member of the Helmholtz Association

span

using std::transform_reduce;
using std::plus;

using std::multiplies;
using std::vector;

template <class T>
using VT = vector<T,
using std::span;
auto compute (span<const double> u,
span<const double> v) -> double

tbb::scalable_allocator<T>>;

{
return transform_reduce (
u.begin(), u.end(),
v.begin(), 0., plus<double>({},
multiplies<double>{});
}
void elsewhere ()

{

vector<double> A (100UL, 0.34);
VT<double> B(100UL, 0.87);
std::cout << compute (A, B) << "\n";

27 October — 30 October 2025

We can avoid needlessly restrictive interfaces

As written here, std: :valarray wouldn't be an
acceptable input

As written here, even std: :vector with a
different allocator wouldn't be an acceptable input

With std: : span we can write a concrete function,
which can be used with any contiguous container!

IJ JULICH

Slide 22 Forschungszentrum

o
H O ©®NOUE WN =

L
SO ®NO TR ®N

Member of the Helmholtz Association

span

using std::transform_reduce;

using std::plus;
using std::multiplies;
using std::vector;

template <class T>
using VT = vector<T,
using std::span;
auto compute (span<const double> u,
span<const double> v) -> double

tbb::scalable_allocator<T>>;

{
return transform_reduce (
u.begin(), u.end()
v.begin(), 0., plus<double>({},
multiplies<double>{});
}
void elsewhere (const doublex A,

{

size_t N)

VT<double> B(N, 0.87);
std::cout << compute(span(aA, N), B) << "\n";

27 October — 30 October 2025

= We can avoid needlessly restrictive interfaces

= As written here, std: :valarray wouldn't be an
acceptable input

= As written here, even std: :vector with a
different allocator wouldn't be an acceptable input

= With std: : span we can write a concrete function,
which can be used with any contiguous container!

= Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

template <class NoBueno>

auto compute (std::span<NoBueno> s) {...}

void elsewhere (const VT& v) {
compute (v) ;

} // Template argument deduc

[N

IJ JULICH

Slide 22 Forschungszentrum

o
H O ©®NOUE WN =

e e e
N0 Uk W

-
®

span

using std::span;
using std::transform_reduce;
using std::plus;
using std::multiplies;
auto compute (span<const double> u,
span<const double> v) -> double
{
return transform_reduce (
u.begin(), u.end(),
v.begin(), 0., plus<double>({},
multiplies<double>{});
}
void elsewhere (doublex x, doublex vy,
unsigned N)
{
return compute (span(x, N), span(y, N));
}
Member of the Helmholtz Association 27 October — 30 October 2025

= Non-owning view type for a contiguous range

= No memory management

Numeric operations can often be expressed in terms
of existing arrays in memory, irrespective of how
they got there and who cleans up after they expire

= span is designed to be that input for such
functions

= Cheap to copy: essentially a pointer and a size

= STL container like interface

Exercise 1.4:

examples/spans is a directory containing the compute
function as shown here. Notice how this function is used
directly using C++ array types as arguments instead of
spans, and indirectly when we only have pointers.

IJ JULICH

Slide 23 Forschungszentrum

The 4 big changes

= Concepts: Named constraints on templates

= Ranges

= A concept of an iterable range of entities demarcated by an iterator-sentinel pair, e.g., all STL containers, views
(like string_views and spans), adapted ranges, any containers you might write so long as they have some
characteristics

= Views: ranges which have constant time copy, move and assignment

= Range adaptors : lazily evaluated functionals taking viewable ranges and producing views.
Important consequence: UNIX pipe like syntax for composing simple easily verified components for non-trivial
functionality

= Modules : Move away from header files, even for template/concepts based code. Consequences: faster build
times, easier and more fine grained control over the exposed interface

= Coroutines: functions which can suspend and resume from the middle. Stackless. Consequences:
asynchronous sequential code, lazily evaluated sequences, ... departure from pure stack trees at run time.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 24 Forschungszentrum

IJ JULICH

Concepts

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 25

IJ JULICH

Forschungszentrum

Constrained templates

= Overloaded functions: different strategies for different input types
auto power (double x, double y) -> double ;
auto power (double x, int 1) > double ;

= Function templates: same steps for different types, e.g.,

template <class T> auto power (double x, T i) -> double ;
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 26 J Forschungszentrum

Constrained templates

= Overloaded functions: different strategies for different input types
auto power (double x, double y) -> double ;
auto power (double x, int 1) > double ;

= Function templates: same steps for different types, e.g.,
template <class T> auto power (double x, T i) -> double ;

= Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point

type ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 26 Forschungszentrum

Constrained templates

= Overloaded functions: different strategies for different input types
auto power (double x, double y) -> double ;
auto power (double x, int 1) > double ;

= Function templates: same steps for different types, e.g.,
template <class T> auto power (double x, T i) -> double ;
= Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
= |s there any way to impose conditions for a given function template to be selected instead of blindly

substituting T with the type of the input ? Perhaps, something like this ?
template <class T> auto power (double x, T i) -> double requires floating_point<T>;
template <class T> auto power (double x, T i) -> double requires integer<T>;

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 26 Forschungszentrum

Constrained templates

= Overloaded functions: different strategies for different input types
auto power (double x, double y) -> double ;
auto power (double x, int 1) > double ;

= Function templates: same steps for different types, e.g.,
template <class T> auto power (double x, T i) -> double ;
= Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
= |s there any way to impose conditions for a given function template to be selected instead of blindly

substituting T with the type of the input ? Perhaps, something like this ?
template <class T> auto power (double x, T i) -> double requires floating_point<T>;

template <class T> auto power (double x, T i) -> double requires integer<T>;
= We can.
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 26 J Forschungszentrum

Constrained templates

= Overloaded functions: different strategies for different input types
auto power (double x, double y) -> double ;
auto power (double x, int 1) > double ;

= Function templates: same steps for different types, e.g.,
template <class T> auto power (double x, T i) -> double ;
= Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
= |s there any way to impose conditions for a given function template to be selected instead of blindly

substituting T with the type of the input ? Perhaps, something like this ?
template <class T> auto power (double x, T i) -> double requires floating_point<T>;
template <class T> auto power (double x, T i) -> double requires integer<T>;

= We can. Or rather, we always could with C++ templates. But now the syntax is easier.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 26 Forschungszentrum

IJ JULICH

Concepts

Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = (X != 0 && (X & (X-1)) == 0);
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 27 J Forschungszentrum

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 27 Forschungszentrum

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);
constexpr auto flagl = PowerOfTwo<2048U>; // Compiler sets flagl to True
constexpr auto flag2 = PowerOfTwo<2056U>; // Compiler sets flag2 to False

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 27 Forschungszentrum

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);
template <class T, unsigned N> requires PowerOfTwo<N>
struct MyMatrix ({

// code which assumes that the square matrix size 1is a power of two

}i

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 27 Forschungszentrum

Concepts

Named requirements on template parameters

template <unsigned X> concept PowerOfTwo
template <class T,

struct MyMatrix ({

std: :has_single_bit (X);
unsigned N> requires PowerOfTwo<N>

// code which assumes that the square matrix size 1is a power of two

Vi
auto main() -> int
{
auto m = MyMatrix<double, 16U>{};
}

c++20demos : bash — Konsole <2

Fle Edit View Bookmarks Settings Help

sandipan@bifrost:~/Work/C++/c++20demos> clang++ -std=c++20 conceptint.cc
sandipan@bifrost:~/Work/C++/c++20demos> [

Member of the Helmholtz Association

@ » JULICH
27 October — 30 October 2025 Slide 27 J

Forschungszentrum

Concepts

Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);
template <class T, unsigned N> requires PowerOfTwo<N>

struct MyMatrix {
// code which assumes that the square matrix size 1is a power of two

bi

auto main ()

{

auto m

Member of the Helmholtz Association

-> int

MyMatrix<double, 17U>{};

c++20demos : bash — Konsole <2
File Edit View Bookmarks Settings Help
sandipan@bifrost:~/Work/C++/c++20demos> clang++ -std=c++20 conceptint.cc
conceptint.cc:11:14: error: constraints not satisfied for class template 'MyMatrix' [with T = double, N = 17]
auto m = MyMatrix<double, 17>{};
conceptint.cc:4:36: note: because 17 does not satisfy 'Power0fTwo'
template <class T, int N> requires Power0OfTwo<N>

conceptint.cc:2:33: note: because '(17 & (17 -
concept Power0fTwo = (X != 0 && (X & (X-1)) ==

1)) == 0' (16 == 0) evaluated to false
0);

1 error generated.
sandipan@bifrost:~/Work/C++/c++20demos> [

Forschungszentrum

9 JULICH

27 October — 30 October 2025 Slide 27

Concepts

Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);
template <class T> concept Number = std::integral<T> or std::floating_point<T>;
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 28 J Forschungszentrum

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);

template <class T> concept Number = std::integral<T> or std::floating_point<T>;

template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>

struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type

i

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 28 Forschungszentrum

Concepts

Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);

template <class T> concept Number = std::integral<T> or std::floating_point<T>;
template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>

struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type

}i
auto main() -> int

{
auto m = MyMatrix<double, 16U>{};

c++20demos : bash — Konsole <2

Fle Edit View Bookmarks Settings Help

sandipan@bifrost:~/Work/C++/c++20demos> clang++ -std=c++20 concept_type.cc
sandipan@bifrost:~/Work/C++/c++20demos> [

Member of the Helmholtz Association

@ » JULICH
27 October — 30 October 2025 Slide 28 J

Forschungszentrum

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit (X);

template <class T> concept Number = std::integral<T> or std::floating_point<T>;
template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>

struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type

}i
auto main() -> int
{
auto m = MyMatrix<doublex, 16U>{};
}

c++20demos

ash — Konsole <2
File Edit View Bookmarks Settings Help
sandipan@bifrost:~/Work/C++/c++20demos> clang++ -std=c++20 concept_type.cc
concept_type.cc:13:14: error: constraints not satisfied for class template 'MyMatrix' [with T = double *, N =
6]

auto m = MyMatrix<double*

16>{};

concept_type.cc:6:36: note: because 'double *' does not satisfy 'Number'
template <class T, int N> requires Number<T> and PowerOfTwo<N>

concept_type.cc:5:18: note: because 'std::is_integral_v<double *>' evaluated to false
concept Number = std::is_integral_v<T> || std::is_floating_point_v<T>;

concept_type.cc:5:43: note: and 'std::is_floating_point_v<double *>' evaluated to false
concept Number = std::is_integral_v<T> || std::is_floating_point_v<T>;

1 error generated.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 28 J

JULICH

Forschungszentrum

Concepts

Named requirements on template parameters

= concepts are named requirements on template parameters, such as floating_point,
contiguous_range

= |f MyAPT is a concept, and T is a template parameter, MyAPI<T> evaluates at compile time to either
true or false.

= Concepts can be combined using conjunctions (& &) and disjunctions (| |) to make other concepts.

= A requires clause introduces a constraint or requirement on a template type

A suitably designed set of concepts can greatly improve readability of template code

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 29 Forschungszentrum

Creating concepts

= Qut of a simple type_traits style boolean

template <template-pars> expresdon
concept conceptname = constraint_expr;

= Combine with logical operators to create more

complex requirements
template <class T>
concept Integer = std::is_integral v<T>; = The requires expression allows creation of

template <class D, class B> . .
concept Derived = std::is_base_of_v<B, D>; syntactic requirements

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T, Counters>;

template <class T>

concept Addable = requires (T a, T b) {
{a+b};

Vi

template <class T>

concept Indexable = requires (T A) {
{ A[OUL] };

& IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 30 Forschungszentrum

Creating concepts

= Out of a simple type_traits style boolean

template <template-pars> expression
concept conceptname = constraint_expr;

= Combine with logical operators to create more

complex requirements
template <class T>

concept Integer = std::is_integral v<T>; = The requires expression allows creation of

template <class D, class B> . .
concept Derived = std::is_base_of_ v<B, D>; syntacUc reanren1ents

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T, Counters>;

template <class T>

concept Addable = requires (T a, T b) {
{a+b};

Vi

template <class T>

concept Indexable = requires (T A) {
{ A[OUL] };

& lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 30 Forschungszentrum

Creating concepts

= Out of a simple type_traits style boolean
template <template-pars> expresgon
concept conceptname = constraint_expr;

= Combine with logical operators to create more

complex requirements
template <class T>

concept Integer - std::is_integral v<T>; = The requires expression allows creation of
template <class D, class B> . .

. . syntactic requirements
concept Derived = std::is_base_of_ v<B, D>; Y q

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T, Counters>;

template <class T>

concept Addable = requires (T a, T b) {
{a+bl};

Vi

template <class T>

concept Indexable = requires (T A) {
{ A[OUL] };

2 IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 30 Forschungszentrum

Creating concepts

template <template-pars>
concept conceptname = constraint_expr;

template <class T>

concept Integer = std::is_integral_v<T>;
template <class D, class B>

concept Derived = std::is_base_of_ v<B, D>;

class Counters;

template <class T>

concept Integer_ish = Integer<T> ||
Derived<T, Counters>;

template <class T>
concept Addable = requires
{a+b};

(T a, T b) {

}i

template <class T>

concept Indexable = requires (T A) {
{ A[OUL] };

Vi

Member of the Helmholtz Association 27 October — 30 October 2025

= Out of a simple type_traits style boolean
expression

= Combine with logical operators to create more
complex requirements

= The requires expression allows creation of
syntactic requirements

requires expression: Parameter list and a brace
enclosed sequence of requirements:
= type requirements, e.g.,
typename T::value_type;

simple requirements as shown on the left

= compound requirements with optional return type
constraints, e.g.,

{ A[OUL] } —> convertible_to<int>;

IJ JULICH

Slide 30 Forschungszentrum

Creating concepts

= Out of a simple type_traits style boolean

template <template-pars> expression
concept conceptname = constraint_expr;

= Combine with logical operators to create more
complex requirements

template <class T>
concept Integer = std::is_integral v<T>; = The requires expression allows creation of

template <class D, class B> . .
concept Derived = std::is_base_of_ v<B, D>; syntacUc requ”ernents

class Counters;

template <class T> 1 // Usage example...
concept Integer_ish = Integer<T> || 2 template <class T> requires Indexable<T>
Derived<T, Counters>; 3 auto f (T&& x) —> unsigned long;
4 void elsewhere() {
5 std::vector<Protein> v;
template <class T> 6 std::array<NucleicAcidType, 4> NA;
concept Addable = requires (T a, T b) { 7 f(v); // OK
{at+bl; s £(NB); // OK
Vi 9 f£(4); // No match!
template <class T> 10 }

concept Indexable = requires (T A) {
{ A[OUL] };

K IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 30 Forschungszentrum

Using concepts

To constrain template parameters, one can
template <class T>

requires Integer ish<T> = place a requires clause immediately after the
: . .
auto categ0(T&& i, double x) g template parameter list

template <class T> = place a requires clause after the function header

auto categl(T&& i, double x) —> T

; X = Use the concept name in place of class or
requires Integer_ish<T>;

typename in the template parameter list
template <Integer_ish T> = Use ConceptName auto in the function
auto categ2(T&& i, double x) -> T; parameter list

void erase (Integer_ish autos&s i)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 31 Forschungszentrum

Using concepts

To constrain template parameters, one can
template <class T>

requires Integer_ish<T> = place a requires clause immediately after the
auto categ0(T&& i, double x) -> T; template parameter list

template <class T> = place a requires clause after the function header
auto categl (T&& i, double x) —> T

; X = Use the concept name in place of class or
requires Integer_ish<T>;

typename in the template parameter list
template <Integer_ish T> = Use ConceptName auto in the function
auto categ2(T&& i, double x) -> T; parameter list

void erase (Integer_ish autos&s i)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 31 Forschungszentrum

Member of the Helmholtz Association

Using concepts

template <class T>
requires Integer_ish<T>

auto categ0(T&& i, double x) -> T;

template <class T>
auto categl(T&& i, double x) —> T
requires Integer_ish<T>;

template <Integer_ish T>

auto categ2(T&& i, double x) —> T;

void erase (Integer_ish autos&s i)

27 October — 30 October 2025

To constrain template parameters, one can

place a requires clause immediately after the
template parameter list

place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list

Use ConceptName auto in the function
parameter list

JULICH

J Forschungszentrum

Slide 31

Using concepts

template <class T>
requires Integer_ish<T>

To constrain template parameters, one can

= place a requires clause immediately after the

auto categ0(T&& i, double x) -> T; tenwplate paranweterlht

template <class T> = place a requires clause after the function header
auto categl(T&& i, double x) —> T

; X = Use the concept name in place of class or
requires Integer_ish<T>;

typename in the template parameter list

= Use ConceptName auto in the function
parameter list

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase (Integer_ish auto&s i)

IJ JULICH

Member of the Helmholtz Association Forschungszentrum

27 October — 30 October 2025 Slide 31

Using concepts

To constrain template parameters, one can
template <class T>

requires Integer_ish<T> = place a requires clause immediately after the
auto categ0(T&& i, double x) -> T; template parameter list

template <class T> = place a requires clause after the function header
auto categl(T&& i, double x) —> T

; X = Use the concept name in place of class or
requires Integer_ish<T>;

typename in the template parameter list
template <Integer_ish T> = Use ConceptName auto in the function
auto categ2(T&& i, double x) -> T; parameter list

void erase (Integer_ish autos&s i)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 31 Forschungszentrum

Declaring function input parameters with auto

= Because of syntax introduced for functions with
1 template <class T> constrained templates in C++420, we have a new
2 auto sqr(comst T¢ x) { return x » xj |} way to write fully unconstrained function
templates...

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 32 Forschungszentrum

Declaring function input parameters with auto

= Because of syntax introduced for functions with
1 constrained templates in C++420, we have a new
2 auto sqr(const autod x) { return x » ¥j | way to write fully unconstrained function
templates...

= Functions with auto in their parameter list are
implicitly function templates

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 32 J Forschungszentrum

Declaring function input parameters with auto

= Because of syntax introduced for functions with
1 constrained templates in C++420, we have a new
2 auto sqr{const autol x) { return x » x; | way to write fully unconstrained function
templates...

= Functions with auto in their parameter list are
implicitly function templates

The program examples/concepts/gcd_w_concepts.cc shows a very small concept definition and its use in a
function calculating the greatest common divisor of two integers.

Exercise 1.10:

The series of programs examples/concepts/generic_funcl.cc through generic_funcéd.cc shows some trivial
functions implemented with templates with and without constraints. The files contain plenty of comments
explaining the rationale and use of concepts.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 32 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

void proc (Number auto&s& x) {
std::cout << "Called proc for numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc("eighty"s);

27 October — 30 October 2025

= Constraints on template parameters are not just
“documentation” or decoration or annotation.

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s& x) {

std::cout << "Called proc for numbers";
}

void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc(”OllS 999 88199 9119725 3");
proc (3 1)
proc (" e1ghty"s)

27 October — 30 October 2025

= Constraints on template parameters are not just
“documentation” or decoration or annotation.

= The compiler can choose between different versions
of a function based on concepts

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc ("eighty"s);

27 October — 30 October 2025

= Constraints on template parameters are not just
“documentation” or decoration or annotation.

The compiler can choose between different versions
of a function based on concepts

= The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");

(

(
proc(3.141);

("eighty"s);

27 October — 30 October 2025

Constraints on template parameters are not just
“documentation” or decoration or annotation.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple

matches are found, the most constrained overload
is chosen.

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc ("eighty"s);

27 October — 30 October 2025

Constraints on template parameters are not just
“documentation” or decoration or annotation.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc ("eighty"s);

27 October — 30 October 2025

Constraints on template parameters are not just
“documentation” or decoration or annotation.

The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships

Not a “quack like a duck, or bust” approach either.

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

Overloading based on concepts

template <class N>
concept Number = std::floating_point<N>
or std::integral<N>;

template <class N>
concept NotNumber = not Number<N>;
void proc (Number auto&s x) {

std::cout << "Called proc for numbers";
}
void proc (NotNumber auto&s& x) {

std::cout << "Called proc for non-numbers";

}

auto main () > int {
proc(-1);
proc (88UL) ;
proc("0118 999 88199 9119725 3");
proc(3.141);
proc ("eighty"s);

27 October — 30 October 2025

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It's not who you are underneath, it's
what you (can) do that defines you."

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.

Entirely compile time mechanism

IJ JULICH

Slide 33 Forschungszentrum

o
H O ©®NOUE WN =

o R e e e e
©® N o v W N

Member of the Helmholtz Association

template <class T>

concept hasAPI = requires(T x) {
typename T::value_type;
typename T::block_type;
{ x[0UL] };
{ x.block (0UL) };

Vi

template <class C> auto algo(C && x)

{

-> size_t

if constexpr (hasAPI<C>) {
// Use x.block() etc to calculate
// using vector blocks

} else {
// Some general method, quick to
// develop but perhaps slow to run

27 October — 30 October 2025

© 0N oA W N

Selecting a code path based on input properties

lude "algo.hh"
le "Machinery.hh"
auto main() —-> int
{
Machinery obj;
auto res = algo(obj);

std::cout << "Result = " << res << "\n";

= General algorithms can be implemented such that a
faster method is selected whenever the input has
specific properties

= No requirement of any inheritance relationships for
the user of the algorithms

IJ JULICH

Slide 34 Forschungszentrum

Constraining non-template members of class templates

1 template <class T> struct ClassTemp {
2 auto operator++ () —> std::enable_if t<std::is_integral_v<T>, ClassTemp&> {
3 ++obj;
4 return xthis;
5 }
6 auto other() —-> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9}
10 auto main() -> int {
11 ClassTemp<int> x;
12 std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }
$ g++ -std=c++20 nontempconstr.cc
S
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 35

lJ JULICH

Forschungszentrum

Constraining non-template members of class templates

1 template <class T> struct ClassTemp {
2 auto operator++ () —> std::enable_if t<std::is_integral_v<T>, ClassTemp&> {
3 ++obJ;
4 return xthis;
5 }
6 auto other () -> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9 bi
10 auto main() -> int {
11 ClassTemp<double> x;
12 std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }

$ g++ -std=c++20 nontempconstr.cc

error: no type named ‘type’ in ‘struct std::enable_if<false, ClassTemp<double>&>'

2614 | using enable_if t = typename enable_if<_Cond, _Tp>::type;

| Bttt bttt

nontempconstrl.cc: In function ‘int main()’:

nontempconstrl.cc:19:19: error: no match for ‘operator++’ (operand type is

‘ClassTemp<double>"')

$

.o
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 35 J Forschungszentrum

Constraining non-template members of class templates

1 template <class T> struct ClassTemp {
2 auto operator++ () —> std::enable_if t<std::is_integral_v<T>, ClassTemp&> {
3 ++obj;
4 return xthis;
5 }
6 auto other() —-> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9}
10 auto main() -> int {
11 ClassTemp<double> x;
12 // std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }
$ g++ -std=c++20 nontempconstr.cc
error: no type named ‘type’ in ‘struct std::enable_if<false, ClassTemp<double>&>'
2614 | using enable_if t = typename enable_if<_Cond, _Tp>::type;
$
std: :enable_if can not be used to disable non-template members of class templates.
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 35 J Forschungszentrum

Constraining non-template members of class templates

1 template <class N> concept Number = std::integral<N> std::floating_point<N>;
2 template <class N> concept Integer = Number<N> && std::integral<N>;
3
4 template <class T> struct ClassTemp {
5 auto operator++ () —> ClassTemp& requires Integer<T> {
6 ++obj;
7 return xthis;
8 }
9 auto other () -> std::string { return "something else"; }
10 auto val() const -> T { return obj; }
11 T obj{};
12 }i
13 auto main() -> int {
14 ClassTemp<double> x;
15 // std::cout << (++x).val() << "\n";
16 std::cout << x.other() << "\n";
17 }

$ g++ —-std=c++20 nontempconstr.cc

$

But concepts can be used as restraints on non-template members of class templates.
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 35 J Forschungszentrum

Concepts: summary

f(those who can fly)
X

&S‘_j f(runners)
= o

f(swimmers)

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 36 J Forschungszentrum

Exercise 1.11:

= Build and run the exan1phs conceptint.cc, concept_type.cc, overload_w_concepts.cc, nontempconstr.cc,
and cpp_sum_2.cc. In some cases the programs illustrate specific types of programming error. The
demonstration is that compiler finds them and gives us useful error messages. Example compilation:

clang++ —-std=c++20 -stdlib=libc++ overload_w_concepts.cc
a.out

= Alternatively, you could use one of the shortcuts provided with the course material.

C overload_w_concepts.cc -o overload_w_concepts.l && ./overload_w_concepts.l

UJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 37 Forschungszentrum

Predefined useful concepts

Many concepts useful in building our own concepts

same_as
convertible_to

signed_ingegral, unsigned_integral
floating_point

assignable_from

swappable, swappable_with

Member of the Helmholtz Association 27 October — 30 October 2025

are available in the standard library header <concepts>.

s derived_from

= move_constructible,
copy_constructible

= invocable
= predicate

= relation

IJ JULICH

Slide 38 Forschungszentrum

Ranges

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 39

IJ JULICH

Forschungszentrum

The range concept

1 def python_sum(Container, start=0):
2 res = start

3 for x in Container:

4 res += x

5 return res

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 40 J Forschungszentrum

The range concept

1 auto sum(autos& Container, auto start = 0) {
2 for (auto&s& el : Container) start += el;
3 return start;

4 }

A C++ version can be as compact as the python version, but then it will also have the same problems:

= We did not ensure that the first parameter is a container. Just calling it Container isn't good enough

= We did not ensure that the type of the second parameter was the data type of the first

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 40 Forschungszentrum

The range concept

1 template <class T> requires has_referenceable_begin_end<T>
2 auto sum(T&& Container, element_type_of<T> start = 0) {

3 for (autos&s& el : Container) start += el;

4 return start;

5 }

As compact as the python version, but with the same problems:

= Use concepts to put constraints on the function template!

= What matters for the code inside sum to work is the presence of begin and end functions, which return
iterator types

= The type of the second parameter should somehow be obtained from the first using some kind of
meta-function

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 40 Forschungszentrum

The range concept

template <class
template <class
template <class
auto sum(T&& a,

for (auto&s

e N

T> using cleanup = std::remove_cvref t<T>;

T> using element = std::iter_value_t<cleanup<T>>;
T> requires std::ranges::forward_range<T>
element<T> start) {

el : a) start += el;

return start;

Using definitions in the ranges header, we have a few more lines, but:

= Only available when T really is a sequence where forward iteration is possible

= The second parameter must be the element type of the first one

Member of the Helmholtz Association

IJ JULICH

27 October — 30 October 2025 Slide 40 Forschungszentrum

The range concept

1 template <class T> using cleanup = std::remove_cvref t<T>;

2 template <class T> using element = std::iter_value_t<cleanup<T>>;

3 template <class T> requires std::ranges::forward_range<T>

4 auto sum(T&& a, element<T> start) {

5 for (auto&s el : a) start += el;

6 return start;

7 }

8 template <class ... T, class U> requires ((std::same_as<T, U>) && ...)

9 auto sum(U&& start, T&& ... a) { return (start + ... + a); 1}

.
@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 40 J Forschungszentrum

The range concept

template <class
template <class
template <class
auto sum(T&& a,

T> using cleanup = std:
T> using element = std:
T> requires std::ranges
element<T> start) {

© 0N ;AW N

:remove_cvref_ t<T>;
:iter_value_t<cleanup<T>>;
::forward_range<T>

for (autoss el a) start += el;

return start;
}
template <class T, class U> requires ((std::same_as<T, U>) && ...)
auto sum(U&& start, T&& a) { return (start + + a); }

different constraints

We can overload with a different function template taking the same number of generic parameters, but

= We can overload with a variadic function template of the same name, so long as the constraints are different

Member of the Helmholtz Association

27 October — 30 October 2025

JULICH

J Forschungszentrum

Slide 40

The range concept

template <class T> using cleanup = std::remove_cvref t<T>;
template <class T> using element = iter_value_t<cleanup<T>>;
template <class T> requires std::ranges::forward_range<T>
auto sum(T&& a, element<T> start) {

for (auto&s el : a) start += el;

return start;

}
template <class ... T, class U> requires ((std::same_as<T, U>) && ...)
auto sum(U&& start, T&& ... a) { return (start + ... + a); 1}

© 0N G R W=

auto main() -> int {
std::vector v{ 1, 2, 3, 4, 5 };
std::1list 1{9.1, , 9.3, 9.4, 9.5, 9.6};
std::cout << sum(v, 0) << "\n";
std::cout << sum 0.) << "\n";
std::cout << sum(4.5, 9.) << "\n";
std::cout << sum 5, 3.4, 5., 9.) << "\n";

W NG R W N

Tremendous flexibility, but still resolved at compilation time!

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 40 Forschungszentrum

AW N =

o

The range concept

sSr

std::vector v{ 1, 2, 6, 7, 8, 9 }; 1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// before std::ranges we his.. 2 namespace sr = std::ranges;
std: :reverse (v.begin(), v.end()); 3 sr::reverse(v);
std::rotate(v.begin(), v.begin() + 3, v.end()); 4 sr::rotate(v, v.begin() + 3);
5

std::sort (v.begin(), v.end());

cisort(v);

= The <ranges> header defines a special kind of concept describing entities with a start and an end.

= The range concept is defined in terms of
= the existence of an iterator type and a “sentinel” type.
= the iterator should behave like an iterator, e.g., allow ++it xit etc.
= it should be possible to compare the iterators with other iterators or with a sentinel for equality.
= A begin () function returning an iterator and an end () function returning a sentinel

= Other useful concepts defined in the ranges header:
= view is a range with constant time copy/move/assignment
= sr::sized_range, input_range, output_range
= borrowed_range : a type such that its iterators can be returned without the danger of dangling.

= The <algorithm> header has many algorithms taking ranges as inputs instead of pairs of iterators

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 41 Forschungszentrum

The range concept

1 // examples/ranges/ranges0.cc
2 #include <ranges>
3 #include
4 auto sum(std::ranges::input_range auto&s seq) {
5 std::iter_value_t<decltype (seq)> ans{};
6 for (auto x : seq) ans += x;
7 return ans;
8 }
9 auto main() -> int
10 {
11 //using various namespaces;
12 cout << "vector : " << sum(vector({ 9,8,7,2 })) << "\n";
13 cout << "list : " << sum(list({ 9,8,7,2 })) << "\n";
14 cout << "valarray : " << sum(valarray({ 9,8,7,2 })) << "\n";
15 cout << "array HE
16 << sum(array<int,4>({ 9,8,7,2 })) << "\n";
17 cout << "array .
18 << sum(array<string, 4>({ "9"s,"8"s,"7"s,"2"s })) << "\n";
19 int A[]{1,2,3};
20 cout << "span(built-in array) : " << sum(span(A)) << "\n";
21 }
.o
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 42 J Forschungszentrum

Exercise 1.12:

The function template sum in examples/ranges/ranges0.cc accepts any input range, i.e., some entity whose
iterators satisfy the requirements of an input_iterator. Notice how we obtain the value type of the range

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 43 Forschungszentrum

IJ JULICH

© 0N W N

I R
B W N RO

Fun with ranges and views

// examples/ranges/iota.cc

#include <ranges>
#include <iostream>
auto main() —-> int {
namespace sv = std::views;
for (auto i : sv::iota(lUL)) {
if ((i+1) % 10000UL == QUL) {

std::cout << i << ' ';
if ((i+1) % 100000UL =

std::cout << '\n';
if (i >= 100000000UL) break;

= 0UL)

Member of the Helmholtz Association

27 October — 30 October 2025

All containers are ranges, but not all ranges are
containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end () functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.

We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

IJ JULICH

Slide 44 Forschungszentrum

© 0N W N

e e
B W N RO

Fun with ranges and views

// examples/ranges/iota.cc
#include <ranges>
#include <iostream>
auto main() —-> int {
namespace sv = std::views;
for (auto i sv::iota (1UL)) {

if ((i+1) % 10000UL == 0UL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == 0OUL)

std::cout << '\n';
if (i >= 100000000UL) break;

Member of the Helmholtz Association

27 October — 30 October 2025

All containers are ranges, but not all ranges are
containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end () functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.

We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

Slide 44

IJ JULICH

Forschungszentrum

© 0N W N

I R
B W N RO

Fun with ranges and views

// examples/ranges/iota.cc
#include <ranges>
#include <iostream>
auto main() —-> int {
namespace sv = std::views;
for (auto i : sv::iota(lUL)) {
if ((i+1) % 10000UL == QUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL =
std::cout << '\n';
if (i >= 100000000UL) break;

= 0UL)

Member of the Helmholtz Association

27 October — 30 October 2025

All containers are ranges, but not all ranges are
containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end () functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.

We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

Slide 44

IJ JULICH

Forschungszentrum

Fun with ranges and views

This is only the box. The range you
asked for is inside.
J——

Member of the Helmholtz Association

27 October — 30 October 2025

= All containers are ranges, but not all ranges are
containers

std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end () functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.

= We could take this further by creating views

which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

.
IJ JULICH
Slide 44 Forschungszentrum

o
H O ©®NOoUE WN =

=
w N

Fun with ranges and views

le <ranges>
de <iostream>
auto main() —-> int {
namespace sv = std::views;
for (auto i : sv::iota(1lUL)) {
if ((i+l) % 10000UL == 0QUL) {
std::cout << i << ' ';
if ((i+1) % 100000UL == OUL)
std::cout << '\n';
if (i >= 100000000UL) break;

Member of the Helmholtz Association

27 October — 30 October 2025

= All containers are ranges, but not all ranges are
containers

= std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin () and end () functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.

= We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.

= Example: the standard view
std::views::iota (integer) gives us an
infinite sequence of integers starting at a given
value.

.
IJ JULICH
Slide 44 Forschungszentrum

© 0N W N

[
o

View adaptors

= A view is a range with constant time copy, move

namespace sv = std::views; etc. Think string_view
std::vector v{1l,2,3,4,5};
auto v3 = sv::take (v, = A view adaptor is a function object, which takes a
// v3 is some sort of “viewable" range as an input and constructs a view
out of it. viewable is defined as “either a
borrowed_range or already a view.
= View adaptors in the <ranges> library have very
// sviitake() is a view adaptor interesting properties, and make some new ways of
coding possible.
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 45 ‘J grscuhunLgslzgrﬂ

View adaptors

Adaptor (Viewable) -> View = A vi itself is trivially viewable.
viewable | adaptor - View = Since a view adaptor produces a view, successive
V| AL | A2 | A3 ... —> View ptor p '

applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View = |f an adaptor takes only one argument, it can be
Adaptor(Args...) (Viewable) -> View called using the pipe operator as shown. These
Viewable Adaptor (Args...) —> View)
adaptors can then be chained to produce more
complex adaptors.
= For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 46 J Forschungszentrum

View adaptors

Adaptor (Viewable) -> View = A view itself is trivially viewable.
Viewable Adaptor -> View

V1AL L A2 | A3 ... —> view = Since a view adaptor produces a view, successive

applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View If an adaptor takes only one argument, it can be
Adaptor (Args...) (Viewable) -> View called using the pipe operator as shown. These
Viewable Adaptor (Args...) —> View)
adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 46 Forschungszentrum

View adaptors

Adaptor (Viewable) -> View = A view itself is trivially viewable.
Viewable | Adaptor -> View = Since a view adaptor produces a view, successive
V | AL | A2 | A3 ... —> View €a) ptor p '
applications of such adaptors makes sense.
Adaptor (Viewable, Args...) -> View = |f an adaptor takes only one argument, it can be
Adaptor (Args...) (Viewable) -> View called using the pipe operator as shown. These
Viewable | Adaptor (Args...) —> View)
adaptors can then be chained to produce more
complex adaptors.
= For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 46 J Forschungszentrum

View adaptors

Adaptor (Viewable) -> View = A view itself is trivially viewable.

Viewable Adaptor -> View

VAL | A2 | A3 ... —> view = Since a view adaptor produces a view, successive

applications of such adaptors makes sense.
Adaptor (Viewable, Args...) -> View If an adaptor takes only one argument, it can be
POEEOR (BRGS0 o o) (Viemablle) => Viem called using the pipe operator as shown. These
Viewable | Adaptor (Args...) —> View)

adaptors can then be chained to produce more

complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 46 Forschungszentrum

View adaptors

Adaptor (Viewable) -> View = A view itself is trivially viewable.
viewable | adaptor - View = Since a view adaptor produces a view, successive
V| AL | A2 | A3 ... —> View ptor p '

applications of such adaptors makes sense.

Adaptor (Viewable, Args...) -> View = |f an adaptor takes only one argument, it can be
Adaptor (Args...) (Viewable) -> View called using the pipe operator as shown. These
Viewable Adaptor (Args...) —> View

adaptors can then be chained to produce more
complex adaptors.

For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

So what are we going to do with this ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 46 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

= Map the integer range to real numbers in the range " R =ToRo=T(n— QLN")RO
[0, 27)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

= Map the integer range to real numbers in the range " R =ToRo=T(n— QLN")RO
[0, 27) » Ry = TRy = T(x — (sin®(x) + cos?(x) — 1)) R
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting
range Ry = TuRi= TaTiwkRe
= Ro|Tw|Ta

= Ro|(T1wo|T21)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

= Map the integer range to real numbers in the range " R =TRo=T(n— QLN")RO

[0, 27) » Ry = TRy = T(x — (sin*(x) + cos?(x) — 1)) R
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

range Ry = TuRi= TaTiwkRe
= |f absolute value of any of the values in the result = Ro|Two| Tz

exceeds ¢, we have found a counter example = Ro|(T1wo|T21)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

= Map the integer range to real numbers in the range " R =TRo=T(n— QLN")RO

[0, 27) « Ry = TuR1 = T(x = (sin®(x) + cos’(x) — 1))R:
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

range Ry = TuRi= TaTiwkRe
= |f absolute value of any of the values in the result = Ro|Two| Tz

exceeds €, we have found a counter example = Ro|(T1wo|T21)

= Intuitive left-to-right readability

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. = Ry ={0,1,2,3...}

= Map the integer range to real numbers in the range " R =TRo=T(n— QLN")RO

[0, 27) » Ry = TRy = T(x — (sin*(x) + cos?(x) — 1)) R
= Evaluate sin’(x) 4 cos®(x) — 1 over the resulting

range Ry = TuRi= TaTiwkRe
= |f absolute value of any of the values in the result = Ro|Two| Tz

exceeds ¢, we have found a counter example = Ro|(T1wo|T21)
= Intuitive left-to-right readability

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 47 Forschungszentrum

View adaptors

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 48 Forschungszentrum

View adaptors

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

= Small utilities. Each program does one thing, and does it well.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 48 Forschungszentrum

View adaptors

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...
= Small utilities. Each program does one thing, and does it well.

= There is a way to chain them together with the pipe

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 48

/.

JULICH

Forschungszentrum

View adaptors

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...
= Small utilities. Each program does one thing, and does it well.
= There is a way to chain them together with the pipe

= Qverall usefulness of the tool set is amplified exponentially!

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 48 Forschungszentrum

View adaptors

find . -name "x.cc" | xargs grep "if" | grep -v "constexpr" | less

= Command line of Linux, Mac OS ...

= Small utilities. Each program does one thing, and does it well.
= There is a way to chain them together with the pipe

= Qverall usefulness of the tool set is amplified exponentially!

= What about writing something similar in C++ 7

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 48 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 49 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 49 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

= Map the integer range to real numbers in the range [0, 27), i.e., perform the transformation n — 2”7" over

the range: R1 = RO | transform([] (int n) -> double { return 2+pi*n/N; })

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 49 Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

= Map the integer range to real numbers in the range [0, 27), i.e., perform the transformation n — 2”7" over
the range: R1 = RO | transform([] (int n) -> double { return 2+pi*n/N; })

= Perform the transformation x — sin®*(x) + cos?(x) — 1 over the resulting range
R2 = R1 transform([] (double x) -> double { return sin(x)+*sin(x)+cos(x)*cos(x); });

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 49 J Forschungszentrum

View adaptors

Pretend that you want to verify that sin®(x) + cos®(x) = 1

= Start with a range of integers from 0 to N = 10000. RO = iota (0, N)

= Map the integer range to real numbers in the range [0, 27), i.e., perform the transformation n — 2”7" over

the range: R1 = RO | transform([] (int n) -> double { return 2+pi*n/N; })

= Perform the transformation x — sin®*(x) + cos?(x) — 1 over the resulting range
R2 = R1 transform([] (double x) -> double { return sin(x)+*sin(x)+cos(x)*cos(x); });

= |f absolute value of any of the values in the result exceeds ¢, we have found a counter example
if (any_of(R2, [] (auto x) {return fabs(x) > eps;}))

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 49 Forschungszentrum

View adaptors

1 auto main() —-> int {

2 namespace sr = std::ranges;

3 namespace sv = std::views;

4 using std::numbers::pi;

5 constexpr auto npoints = 10'000'00UL;

6 constexpr auto eps = 100 * std::numeric_limits<double>
7 auto to_0_2pi = [=](size_t idx) -> double {

8 return std::lerp(0., 2#pi, idx = 1.0 / npoints);

9 }i

10 auto x_to_fx = [] (double x) -> double ({

11 return sin(x) * sin(x) + cos(x) =*

12 }s

13 auto is_bad = [=] (double x){ return std::fabs(x) > eps; };
14

15 auto res = sv::iota(0OUL, npoints) | sv::transform(to_0_2pi)
16

17 if (sr::any_of(res, is_bad)) {

18 std::cerr << "The relation does not hold.\n";

19 } else {

20 std::cout << "The relation holds for all inputs\n";
21 }

22 }

::epsilon();

sv::transform(x_to_£fx);

Member of the Helmholtz Association 27 October — 30 October 2025

Slide 50

/)

JULICH

Forschungszentrum

View adaptors

= The job of each small transform in the previous example was small, simple, easily verified for correctness.
= The view adaptors allow us to chain them to produce a resulting range

= Algorithms like std: :range: :any_of work on ranges, so they can work on the resulting views from
chained view adaptors.

= No operation is done on any range when we create the variable res above.

= When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

= any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 51 J Forschungszentrum

Exercise 1.13:

The code used for the demonstration of view adaptors is examples/ranges/trig_views.cc. Build this code with
GCC and Clang.

g++ —-std=c++20 trig_views.cc
./a.out

clang++ -std=c++20 -stdlib=libc++ trig_views.cc

./a.out
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 52 J Forschungszentrum

Exercise 1.14:
The trigonometric relation we used is true, so not all possibilities are explored. In
examples/ranges/trig_views2.cc there is another program trying to verify the bogus claim
sin®(x) < 0.99. It's mostly true, but sometimes it isn't, so that our if and else branches both have work to do.
The lambdas in this program have been rigged to print messages before returning. Convince yourself of the
following:

= The output from the lambdas come out staggered, which means that the program does not process the

entire range for the first transform and then again for the second ...

= Processing stops at the first instance where any_of gets a true answer.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 53 Forschungszentrum

View adaptors

1 // les/ranges/gerund.cc

2 us:.ng itertype = std::istream_iterator<std::string>;

3 std::ifstream fin { argv([1l] };

4 auto gerund = [] (std::string_view w) { return w.ends_with("ing"); };
5 auto in = sr::istream _view<std::string> (fin);

6 std::print ("{}\n", in sv::filter (gerund));

7

range is of the type T.

elements satisfying a given condition

libc++. Since GCC doesn't have an implementation yet, please use clang++ for this.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 54

sr::istream_view<T> creates an (input) iterable range from an input stream. Each element of this
sv::filter is a view adaptor, which when applied to a range, produces another containing only the

In the above, std: :print is shown writing out a range. This works with the Clang standard library

View adaptors

A program to print the alphabetically -first and -last word entered on the command line, excluding the program

name.

1 // examples/ranges/views_and_span.cc

2 auto main(int argc, charx argv[]) -> int

3 {

4 if (argc < 2) return 1;

5 namespace sr = std::ranges;

6 namespace sv = std::views;

7

8 std::span args(argv, argc);

9 auto str = [] (auto cstr) -> std::string_view { return cstr; };

10 auto [mn, mx] = sr::minmax(args | sv::drop(l) | sv::transform(str));

11

12 std::cout << "Alphabetically first = " << mn << " last = " << mx << "\n";

13 }

.
@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 55 J Forschungszentrum

Ranges improvements in C++423

1 std::vector v { "apples"s, "oranges's,
2 "mangos"s, "bananas"s };
3
4 for (auto [1i, fruit] : sv::enumerate(v)) {
5 std::print ("{}: {}\n", i, fruit);
6 }
$ G —-std=c++23 enumerate.cc
$./a.out
0: apples
1: oranges
2: mangos
3: bananas
Member of the Helmholtz Association 27 October — 30 October 2025

With the definitions
namespace sr = std::ranges
and namespace sv = sr::views

= Sv::enumerate

= sv::zip

m sv::zip_transform
= sv::adjacent

m sr::to

= Formatting ranges

IJ JULICH

Slide 56 Forschungszentrum

Ranges improvements in C++423

B N

Member of the Helmholtz Association

std::vector v { "apples"s, "oranges's,
"mangos"s, "bananas"s };

for (auto [fruitl, fruit2] :
sv::zip (v, sv::reverse(v))) {
std::print ("{}: {}\n", fruitl, fruit2);

$ G —std=c++23 zip.cc
$./a.out

apples: bananas
oranges: mangos
mangos: oranges
bananas: apples

27 October — 30 October 2025

With the definitions
namespace sr = std::ranges
and namespace sv = sr::views

= Sv::enumerate

= sv::zip

m sv::zip_transform
= sv::adjacent

m sr::to

= Formatting ranges

IJ JULICH

Slide 56 Forschungszentrum

Ranges improvements in C++423

std::cout << s << "\n";

1 for (auto s : sv::zip_transform(

2 [] (auto&s sl, autoss s2) {

3 return format ("{} <-—> {}", sl, s2);
4 by

5 v, sv::reverse(v))) {

6

7

$ G -std=c++23 zip_transform.cc

$./a.out

apples <--> bananas
oranges <--> mangos
mangos <—-—> oranges
bananas <--> apples

Member of the Helmholtz Association

27 October — 30 October 2025

With the definitions
namespace sr = std::ranges
and namespace sv = sr::views

= Sv::enumerate

= sv::zip

m sv::zip_transform
= sv::adjacent

m sr::to

= Formatting ranges

IJ JULICH

Slide 56 Forschungszentrum

Ranges improvements in C++423

1 for (auto [i0, i1, i2]:
2 sv::iota (0UL, 15UL) | sv::adjacent<3UL>) {
3 std::print ("{}, {}, {}\n", 10, i1, i2);
4 }
$ G -std=c++23 adjacent.cc
$./a.out
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
Member of the Helmholtz Association 27 October — 30 October 2025

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

= Sv::enumerate

= sv::zip

m sv::zip_transform
= sv::adjacent

m sr::to

= Formatting ranges

IJ JULICH

Slide 56 Forschungszentrum

Ranges improvements in C++423

With the definitions

1 auto R = sv::iota(0UL, 50UL) namespace sr = std::ranges,
2 | sv::transform([] (auto i) { return 2. » pi * i; }) and namespace sSv = Sr: -views
3 | sr::to<std::vector>();

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 56

sv::enumerate
sv::zip
sv::zip_transform
sv::adjacent

SE2 2O

Formatting ranges

IJ JULICH

Forschungszentrum

Ranges improvements

in C4++423

1 auto main() -> int

2 {

3 using namespace std::literals;
4 namespace sr = std::ranges;

5 namespace sv sSr: :views;

6 std::vector "One"s, "Two'"s,
7
8
9

v {
std::print ("{}\n", v);
std::print ("{}\n", v | sv::reverse);
std::print ("{}\n", sv::zip(v |
10 std::print ("{}\n", sv::zip(sv:
11 }

"Three"s, "Four"s};

sv::reverse, Vv));
riota (1UL), v));

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

= Sv::enumerate

= sv::zip

m sv::zip_transform
= sv::adjacent

m sr::to

Formatting ranges

"One", "Two", "Three", "Four"]
"Four", "Three", "Two", "One"]

[
[
[
[

("Four", "One"), ("Three", "Two"), ("Two", "Three"),
(1, "One"), (2, "Two"), (3, "Three"), (4, "Four")

("One", "Four")]

Member of the Helmholtz Association 27 October — 30 October 2025

lJ JULICH

Slide 56 Forschungszentrum

Recap of elementary features with an example

1 // Trivial piece of code as a background for discussions
2 // examples/demo_saxpy/saxpy_0.cc
3 // includes
4 auto main() —-> int
5 {
6 const std::vector inpl { 1., 2., 3., 4., 5. };
7 const std::vector inp2 { 9., 8., 7., 6., 5. };
8 std::vector outp(inpl.size(), 0.);
9
10 auto saxpy = [] (double a,
11 const std::vector<double>& x,
12 const std::vector<double>s& y,
13 std: :vector<double>&z) {
14 std: :transform(x.begin(), x.end(), y.begin(), z.begin(),
15 [a] (double X, double Y){ return a * X + Y; });
16 }i
17
18 std::ostream_iterator<double> cout { std::cout, "\n" };
19 saxpy (10., inpl, inp2, outp);
20 copy (outp.begin(), outp.end(), cout);
21 }
.
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 57 J Forschungszentrum

Recap of elementary features with an example

1 // Trivial piece of code as a background for discussions

2 // examples/demo_saxpy/saxpy_0.cc How many syntax errors are there if

3 // includes .

4 auto main() —-> int we are using C++17 ?

5 { 4

6 const std::vector inpl { 1., 2., 3., 4., 5. };

7 const std::vector inp2 { 9., 8., 7., 6., 5. }; 3 3

8 std::vector outp(inpl.size(), 0.);

9 2

10 auto saxpy = [] (double a,

11 const std::vector<double>& x, D) 0

12 const std::vector<double>s& y,

13 std: :vector<double>&z) {

14 std: :transform(x.begin(), x.end(), y.begin(), z.begin(),

15 [a] (double X, double Y){ return a * X + Y; });

16 }i

17

18 std::ostream_iterator<double> cout { std::cout, "\n" };

19 saxpy (10., inpl, inp2, outp);

20 copy (outp.begin(), outp.end(), cout);

21 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 57 J Forschungszentrum

Generic lambdas...

W NG AW N

15
16
17
18

1.cc
auto main() —-> int
{
const std::vector inpl { 1., 2., 3., 4., 5. };
const std::vector inp2 { 9., 8., 7., 6., 5. };
std::vector outp(inpl.size(), 0.);
auto saxpy = [] (double a, auto&& x, autos&s y, autos z) {
std::transform(x.begin(), x.end(), y.begin(), z.begin(),
[a] (auto X, auto Y){ return a » X + Y; });
i
std::ostream_iterator<double> cout { std::cout, "\n" };

saxpy (10., inpl, inp2, outp);
copy (outp.begin(), outp.end(), cout);

We can make the lambda more compact by making it generic. But now the types of x, v and z are deduced
independently. How can we keep it generic, and yet indicate that we want the same types for x and y ?

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 58

IJ JULICH

Forschungszentrum

Explicit template syntax for lambdas

W NG AW N

15
16
17

// examples/demo_saxpy/saxpy_2.cc

// in

auto main() -> int

{

const std::vector inpl { 1., 2., 3., 4., 5. };
const std::vector inp2 { 9., 8., 7., 6., 5. };
std::vector outp(inpl.size(), 0.);
auto saxpy = []<class T, class T_in, class T_out>
(T a, const T_in& x, const T_in& y, T_out& z) {
std: :transform(x.begin(), x.end(), y.begin(), z.begin(),
[a] (T X, T Y){ return a = X + Y; });
}i

std: :ostream_iterator<double> cout { std::cout, "\n" };
saxpy (10., inpl, inp2, outp);
copy (outp.begin(), outp.end(), cout);

For normal function templates, we could easily express relationships among the types of different parameters.
Now, we can do that for generic lambdas.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 59

IJ JULICH

Forschungszentrum

Constraining generic functions

1 // examples/demo_saxpy/saxpy_3.cc

2 template <class T> using value_type_of = typename std::remove_cvref t<T>
3 {

4 const std::vector inpl { 1., 2., 3., 4., 5. };

5 const std::vector inp2 { 9., 8., 7., 6., 5. };

6 std::vector outp(inpl.size(), 0.);

7 auto saxpy = []<class T_in, class T_out>

8 (value_type_of<T_in> a, T_in&é& x, T_in&& y, T_out& z) {

9 using in_element_type = value_type_of<T_in>;

10 using out_element_type = value_type of<T_out>;

11 static_assert (std::is_same_v<in_element_type, out_element_type>,

12 "Input and output element types must match!");

13 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

14 [a] (in_element_type X, in_element_type Y){ return a =
15 Yi

16 Y

17 std::ostream_iterator<double> cout { std::cout, "\n" };

18 saxpy (10., inpl, inp2, outp);

::value_type;

At the least, we can use this to get helpful error messages when we use the function in a way that violates our

assumptions.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 60

IJ JULICH

Forschungszentrum

Constraining generic functions

1 // examples/demo_saxpy/saxpy_3b.cc

2 const std::array inpl { 1., 2., 3., 4., 5. };

3 const std::array inp2 { 9., 8., 7., 6., 5. };

4 std: :vector outp(inpl.size(), 0);

5 auto saxpy = []<class T_in, class T_out>

6 (value_type_of<T_in> a, T_in&& x, T_in&& y,
7 using in_element_type = value_type_of<T_in>;

8 using out_element_type = value_type_of<T_out>;
9 static_assert (std::is_same_v<in_element_type,
10 "Input and output element types
11 std: :transform(x.begin(), x.end(), y.begin(),
12 [a] (in_element_type X,

13 }i

14

15 std::ostream_iterator<double> cout { std::cout, "\n"
16 saxpy (10., inpl, inp2, outp);

in_element_type Y) {

T_outé& z) |

out_element_type>,

must match!");

z.begin(),

1)

return a * X + Y;

bi

saxpy_3b.cc:16:9: error:

'std::is_same_v<double, int>'

static_assert failed due to requirement
"Input and output element types must match!"

Member of the Helmholtz Association 27 October — 30 October 2025

JULICH

J Forschungszentrum

Slide 61

Constraining generic functions

1 const std::array inpl { 1., 2., 3., 4., 5. };

2 const std::array inp2 { 9., 8., 7., 6., 5. };

3 std::vector outp(inpl.size(), 0.);

4

5 auto saxpy = []<class T_in, class T_out>

6 (value_type_of<T_in> a, T_in&& x, T_in&& y, T_outs z) |

7 using in_element_type = value_type_of<T_in>;

8 using out_element_type = value_type_of<T_out>;

9 static_assert (std::is_same_v<in_element_type, out_element_type>,
10 "Input and output element types must match!");

11 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

12 [a] (in_element_type X, in_element_type Y){ return a » X + Y; });
13 }i

14

15 std::ostream_iterator<double> cout { std::cout, "\n" };

16 saxpy (10., inpl, inp2, outp);

17 copy (outp.begin(), outp.end(), cout);

Different container types are acceptable as long as element types match! Controlled generic behaviour!

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 62 Forschungszentrum

Constraining generic functions

1)_saxpy/saxpy_4.cc

2

3 <class T> using value_type_of = std::remove_cvref_ t<T>::value_type;
4 template <class T_in, class T_out>

5 auto saxpy(value_type_of<T_in> a, T_in&& x, T_in&& y, T_outs z)

6 {

7 using in_element_type = value_type_of<T_in>;

8 using out_element_type = value_type_of<T_out>;

9 static_assert (std::is_same_v<in_element_type, out_element_type>,

10 "Input and output element types must match!");

11

12 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

13 [a] (in_element_type X, in_element_type Y) { return a « X + Y; });
14 }

15 auto main() -> int { ... }

Constraining normal function templates with template metaprogramming is an old technique. The syntax has
become clearer with newer standards. Still, we are not expressing in code that the template parameters T_in
and T_out should be array like objects, with begin (), end () etc.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 63 Forschungszentrum

std::span as function parameters

// exan
// ot
#1 de
template
void saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)

{

demo_saxpy/saxpy_5.cc

std::transform(x.begin(), x.end(), y.begin(), z.begin(),
[a]l(T X, T Y) { return a = X + Y; });
}

e
O © 0N OAWN R

auto main () >int { ... }

= std::span<T> is a non-owning adaptor (“view”) for an existing array of objects in memory. It is like a
pointer and a size.

= Provides an STL compatible interface
= Can be constructed from typical array like containers, e.g., vector array, C-style arrays ...

= Writing the saxpy function in terms of the span allows us to easily express that the element types in all
three containers must be the same as the scalar.

= Still general enough to be used with different container types and different T

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 64

IJ JULICH

Forschungszentrum

Exercise 1.15:

The examples used in these slides are all present in the examples/demo_saxpy folder of your course material.
Check examples saxpy_1.cc through saxpy_5.cc containing the various version discussed so far. The
important C++-20 features we have revisited in this section so far, are explicit template syntax for lambdas and
std: :span.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 65 Forschungszentrum

std::span as function parameters

1 // examples/demo_saxpy/saxpy_5.cc
2 // other includes
3 #include
4 template <class T>
5 void saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
6 {
7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
8 [a]l(T X, T Y) { return a = X + Y; });
9 }
10 auto main() -> int
11 {
12 const std::array inpl { 1., 2., 3., 4., 5. };
13 const std::array inp2 { 9., 8., 7., 6., 5. };
14 std::vector outp(inpl.size(), 0.);
15 saxpy (10., {inpl}, {inp2}, {outp});
16 }
No inheritance relationships between span and any other containers!
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 66 J Forschungszentrum

std::span as function parameters

1 // examples/demo_saxpy/saxpy_5.cc

2 // other includes

3 #include

4 template <class T>

5 void saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)

6 {

7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

8 [a]l(T X, T Y) { return a = X + Y; });

9 }

10 auto main() -> int

11 {

12 const std::array inpl { 1., 2., 3., 4., 5. };

13 const std::array inp2 { 9., 8., 7., 6., 5. };

14 std::vector outp(inpl.size(), 0.);

15 saxpy (10., {inpl}, {inp2}, {outp});

16 }

Can we restrict the scalar type to just floating point numbers, like £loat or double ?
@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 66 J Forschungszentrum

Constraining templates using concepts

template <class T>
auto saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
-> std::enable_if_ t<std::is_floating_point_v<T>, void>

std::transform(x.begin(), x.end(), y.begin(), z.begin(),

1

2

3

4 {
5

6 [a](T X, T Y) { return a = X + Y; });
7

}

SFINAE: “Substitution Failure is not an error” is widely used to achieve the effect in C++.
If T is not a floating point number, is_floating_point_v becomes false.
enable_if_t<cond, R> is defined as R if cond is true. If not it is simply undefined!
False condition to enable_1if_t makes the result type, which is used as the output here, vanish.

The compiler interprets that as : “Stupid substitution! If | do that the function ends up with no return type!
That can’t be the right function template. Let’s look elsewhere!”

Does the job. But, in C++420, we have a better alternative...

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 67 J

Forschungszentrum

Constraining templates using concepts

1 template <class T> requires std::floating_point<T>

2 void saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
3 {

4 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

5 [a](T X, T Y) { return a = X + Y; });

6

concepts: Named requirements on template parameters.
= Far easier to read than SFINAE (even the name!)

If MyAPT is a concept, and T is a type, MyAPI<T> evaluates at compile time to either true or false.
= Concepts can be combined using conjunctions (&&) and disjunctions (| |) to make other concepts.
= A requires clause introduces a constraint on a template type

A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 67

IJ JULICH

Forschungszentrum

1 // examples/demo_saxpy/saxpy_6.cc

2 template <class T> concept Number = std::floating_point<T> or std::integral<T>;

3 template <class T> requires Number<T>

4 auto saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)

5 {

6 std::transform(x.begin(), x.end(), y.begin(), z.begin(),

7 [a](T X, T Y) { return a » X + Y; });

8 }

9 auto main() -> int

10 {

11 {

12 const std::array inpl { 1., 2., 3., 4., 5. };

13 const std::array inp2 { 9., 8., 7., 6., 5. };

14 std: :vector outp (inpl.size(), 0.);

15 saxpy (10., {inpl}, {inp2}, {outp});

16 }

17 {

18 const std::array inpl { 1, 2, 3, 4, 5 };

19 const std::array inp2 { 9, 8, 7, 6, 5 };

20 std: :vector outp (inpl.size(), 0);

21 saxpy (10, {inpl}, {inp2}, {outp});

22 }

23 }

@) JiLIC

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 68 J Forschungszentrﬂ

Using concepts for our example

// examples/demo_saxpy/saxpy_6b.cc
template <class T> concept Number = std::floating_point<T> or std::integral<T>;

template <Number T>
auto saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
{

std::transform(x.begin(), x.end()

, y.begin(), z.begin(),
[al](T X, T Y) { return a » X + Y

i D)

© 0N U AW N

}

Our function is still a function template. But it does not accept “anything” as input. Acceptable inputs must
have the following properties:

= The scalar type (first argument here) is a number by our definition
= The next two are contiguously stored constant arrays of the same scalar type

= The last is another span of non-const objects of the same scalar type

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 69 Forschungszentrum

Using standard concepts and ranges in our example

1 // examples/demo_saxpy/saxpy_7.cc

2 namespace sr = std::ranges;

3 auto saxpy (std::floating_point auto a,

4 sr::input_range auto&& x, sr::input_range autoss vy,

5 std::weakly_incrementable auto&s z)

6 {

7 sr::transform(x, y, z, [a](auto X, auto Y) { return a » X + Y; });

8 }

9 auto main() -> int

10 {

11 std::vector inpl { 1., 2., 3., 4., 5. };

12 std::vector inp2 { 9., 8., 7., 6., 5. };

13 std::array inp3 { 9., 8., 7., 6., 5. };

14 double cstyle[] { 1., 2., 3., 4., 5. };

15 std::vector outp(inpl.size(), 0.);

16 saxpy (10., inpl, inp2, outp.begin());

17 saxpy (10., inpl, inp3, outp.begin());

18 saxpy (10., inpl, std::to_array(cstyle), outp.begin());

19 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 70 J Forschungszentrum

1 namespace Sr std: : ranges;

2 void saxpy (std::floating_point auto a,

3 sr::input_range auto&& x, sr::input_range autoss y,

4 std::weakly_incrementable auto&s z) {

5 sr::transform(x, vy, z, [a](auto X, auto Y) { return a = X + Y; });

6 }

7 void saxpy (std::weakly_incrementable auto&s z, std::floating_point auto a,

8 sr::input_range auto&& x, sr::input_range auto&s y) |

9 sr::transform(x, y, z, [a](auto X, auto Y) { return a = X + Y; });

10 }

11 auto main() -> int {

12 std::vector inpl { 1., 2., 3., 4., 5. };

13 std::vector inp2 { 9., 8., 7., 6., 5. };

14 std::array inp3 { 9., 8., 7., 6., 5. };

15 double cstyle[] { 1., 2., 3., 4., 5. };

16 std: :vector outp(inpl.size(), 0.);

17 saxpy (10., inpl, inp2, outp.begin());

18 saxpy (10., inpl, inp3, outp.begin());

19 saxpy (10., inpl, std::to_array(cstyle), outp.begin());

20 saxpy (outp.begin(), 10., inpl, inp3);

21 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 71 J Forschungszentrum

5

can now specify our requirements thoroughly...

namespace sr = std::ranges;
template <std::floating_point D, sr::input_range IR, std::weakly_incrementable OI>
requires std::is_same_v<D, std::iter_value_t<IR>> and std::indirectly_writable<OI, D>
void saxpy (D a, IR x, IR y, OI z)
{

sr::transform(x, y, z, [a](auto X, auto Y) { return a » X + Y; });
}

W N U AW N

9 template <std::floating_point D, sr::input_range IR, std::weakly_incrementable OI>
10 requires std::same_as<D, std::iter_value_t<IR>> and std::indirectly_writable<OI, D>
11 void saxpy(OI z, D a, IR x, IR y)

12 {

13 sr::transform(x, y, z, [a] (const auto& X, const auto& Y) { return a » X + Y; });
14 }

Look up cppreference.com and find out what pre-defined concepts and ranges are available in the standard library.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 72 Forschungszentrum

https://en.cppreference.com/w/cpp/ranges

Exercise 1.16:

The program examples/demo_saxpy/saxpy_9.cc contains this last version with the requirements on template
parameters as well as two overloads. Verify that even if the two functions are both function templates with 4
function parameters, they are indeed distinct for the compiler. Depending on the placement of our arguments,
one or the other version is chosen. Try changing data types uniformly in all parameters. Try using different
numeric types between source, destination arrays. Try changing container types for the 3 containers involved.

Forschungszentrum

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 73

Modules

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 74

IJ JULICH

Forschungszentrum

C++420 modules

Traditionally, C++ projects are organised into header and source files. As an example, consider a simple saxpy
program ...

#ifndef SAXPY_HH
#define SAXPY_ HH
#include <algorithm>
#include
template <class T> concept Number = std::floating_point<T> or std::integral<T>;
template <class T> requires Number<T>
auto saxpy (T a, std::span<const T> x, std::span<const T> y, std::span<T> z) {
std: :transform(x.begin(), x.end(), y.begin(), z.begin(),
[a](T X, T Y) { return a = X + Y; });
}
#endif

#include "saxpy.hh"
auto main() -> int {
//declarations
saxpy (10., {inpl}, {inp2}, {outp});

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 75 Forschungszentrum

Problems with header files

= Headers contain declarations of functions, classes etc., and definitions of inline functions.
= Source files contain implementations of other functions, such as main.

= Since function templates and class templates have to be visible to the compiler at the point of instantiation,
these have traditionally lived in headers.

Standard library, TBB, Thrust, Eigen ... a lot of important C++ libraries consist of a lot of template code,
and therefore in header files.

= The #include <abc> mechanism is essentially a copy-and-paste solution. The preprocessor inserts the
entire source of the headers in each source file that includes it, creating large translation units.

The same template code gets re-parsed over and over for every new translation unit.

If the headers contain expression templates, CRTP, metaprogramming repeated processing of the templates
is a waste of resources.

Forschungszentrum

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 76

- -
The compilation process
‘ Header File 1 H Source File 1
‘ Header File 2

Object File 1
Object File 2

ar rs libmylibrary.a A.o B.o Coo ...

Source File 2

Program source

Object File for program

‘g++ -std=c++-23 -c main.cc -0 main.o

JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 77 Forschungszentrum

Modules

= The C++20 modules offer an alternative (better) organisation, in which all code, including template code,
can now reside in source files

= Module sources are processed once to generate the so called compiled module interface (binary module
interface, BMI) in addition to an object file

= The BMI caches syntactic information from all entities in the module

= Any source importing the module immediately has access to the precompiled syntax tree in the BMI,
leading to faster compilation

Enforces ordered compilation: since a source file may export a module to be imported by another source file
= C++423 added the standard library as a module

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 78 J Forschungszentrum

Compilation flow using modules

‘g++ -std=c++23 -fmodules -c abc.ixx -0 abc.ixx.0

MIUL @ BMI1 ‘ } ‘ Object File MIUL
Module Impl. unit1

Module Impl. unit2

ar rs libmylibrary.a A.o B.o C.o

Compiler Object File (Impl. 1)

Compiler Object File (Impl. 2)

Object File (Program)

Program Source
(uses Module 2 + Library)

‘g++ -std=c++23 -fmodules -c main.cc -o main,o‘

g-+-+ main.o -Imylibrary

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 79

Using modules

= In C4++23, the standard library is also available as a module.

import std; - = Note: We have set up an alias Gn="g++ -std=c++23 -fmodules' in
auto main() -> int the course
{
std::print ("Hello, world!\n");
}

$ Gm -c -fsearch-include-path bits/std.cc
$ Gm hello_m23.cc

$./a.out

$

= The first step generates the BMI for the standard library and the second compiles the actual program

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Forschungszentrum

Slide 80

Using modules

= Clang standard library is also avilable as a module, but usually it

i : to_m23. requires building using build system generators like CMake
import std;
auto main() -> int
{
std::print ("Hello, world!\n");
}

$ export libcxxsrc=$(find $(dirname $(which clang))/.. —-name std.cppm 2>/dev/null)
$ clang++ —-std=c++23 -stdlib=libc++ -Wno-reserved-identifier\
-Wno-reserved-module-identifier --precompile \
-0 std.pcm $libcxxsrc
$ clang++ -std=c++23 -stdlib=libc++ —-fmodules -fmodule-file=std=std.pcm hello_m23.cc
$./a.out

= Not as elegant as the GCC oneliner, but it’s possible to precompile the standard library module with clang
= |t is necessary to explicitly specify the location of the module file when using it

Member of the Helmholtz Association

IJ JULICH

27 October — 30 October 2025 Slide 80 Forschungszentrum

Using modules

Exercise 1.17:
Convert a few of the example programs you have seen during the course to use modules syntax instead. At the
moment it means no more than replacing the #include lines with the import line for the standard library.
The point is to get used to the extra compilation options you need with modules at the moment. Use, for
instance, the date time library demo programs like feb.cc and advent.cc. In the next step, replace all the
import lines using individual header units for standard library features by a single import std; line. Refer to
the slides and compile using g++.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 81 Forschungszentrum

Creating a module (example)

class NullSimulator {
bool config_ok{false}, run_ok{false};
public:
void configure (std::string_view pars)
{
if (pars.empty())
throw std::runtime_error{"..."};
std::println("config {}", pars);
config_ok = true;
}
void run()
{
if (not config_ok)

throw std::runtime_error{"..."};
std::println("running NullSimulator!");
run_ok = true;

}
auto summary () const -> std::string
{

if (not run_ok)

throw std::runtime_error{"..."};
return { "And here are the results:" };
Member of the Helmholtz Association 27 October — 30 October 2025

auto main() -> int {
using namespace cxx_course;
try {

NullSimulator sim;
sim.configure ("Modules demo");
sim.run();
std::print ("{}\n", sim.summary());
return 0;

} catch (std::exception& err) {
std::print ("{}\n", err.what());
return 1;

Vi

}

= A simple “do nothing” simulator class, mimicking
the top level control flow in many applications

= We want to put our NullSimulator in a module
and import it in main and use it as shown

IJ JULICH

Slide 82 Forschungszentrum

Member of the Helmholtz Association

Creating a module (example)

= When using our module, like when using the
standard library module, there are no changes in
syntax

= We just have to import our module

Notice that the module name, namespace name
and the class name are all independent in C+-+

» #include "myheader.hh" searches for the
header file and inserts it in place

= In contrast, the file name containing module code
is not tied to the module name (which is why we
had to explicitly state -fmodule-file=std=std.pcm
when compiling with clang earlier)

27 October — 30 October 2025

// main.cc

import NullSim;

import std;

auto main() -> int {

using namespace CxXx_course;

try {
NullSimulator sim;
sim.configure ("Modules demo");
sim.run();

std::print ("{}\n", sim.summary());
return 0;

} catch (std::exceptioné& err) {
std::print ("{}\n", err.what());

return 1;
Vi
}

= In the module world, there are no transitive
imports. Module std has to be imported
independently wherever it is used

l) JULICH

Slide 83 Forschungszentrum

Creating a module (example)

// NullSimulator.cc
export module NullSim;
import std;
namespace Cxx_course {
export class NullSimulator ({
bool config_ok{false}, run_ok{false};
public:
void configure (std::string view pars) {
// code...
}
void run() {
// code...
}

auto summary () const -> std::string {
// code. ..
}

Vi

void i_am_invisible() {

YV

}

}

Member of the Helmholtz Association 27 October — 30 October 2025

= The class/function declarations and definitions can
all be put in module source files
= The first non-comment line has to declare the
module.
= export module XYZ; : Module interface unit

= module XYZ; : Module implementation unit
= module; : Start of the "global module fragment

Forschungszentrum

IJ JULICH

Slide 84

Member of the Helmholtz Association

Creating a module (example)

// NullSimulator.cc
export module NullSim;
import std;
namespace Cxx_course {
export class NullSimulator {
bool config_ok{false}, run_ok{false};
public:
void configure (std::string view pars) {
// code. ..
}
void run() {
// code. ..
}
auto summary () const -> std::string {
// code. ..
}
Vi
void i_am_invisible() {
YV
}
}

27 October — 30 October 2025

= Unlike declarations in a header file, those in a
module file are not automatically visible if you
import the module

= Only exported symbols are visible to code which
imports a module

= Unexported declarations remain private

IJ JULICH

Slide 84 Forschungszentrum

Member of the Helmholtz Association

Creating a module (example)

// NullSimulator.cc
export module NullSim;
import std;
namespace Cxx_course {
export class NullSimulator {
bool config_ok{false}, run_ok{false};

public:
void configure (std::string_view pars) {
// code. ..
}
void run() {
// code...
}

auto summary () const -> std::string {
// code. ..
}
Vi
void i_am_invisible () {
Y78
}
}

27 October — 30 October 2025

// main.cc
import NullSim;
import std;

auto main() -> int {
using namespace CxXxX_course;
try {

NullSimulator sim;

sim.configure ("Modules demo");

sim.run();

std::print ("{}\n", sim.summary());
} catch (std::exception& err) {

std::print ("{}\n", err.what());

return 1;

bi

Gm -c -fsearch-include-path bits/std.cc
Gm —-c NullSimulator.cc

Gm -c main.cc
g++ main.o NullSimulator.o std.o -o nullsim

lJ JULICH

Slide 85 Forschungszentrum

Building the project using CMake

= Let CMake handle the necessary compiler
cmake_minimum_required (VERSION 3.30 FATAL_ERROR) opﬂons

set (CMAKE_CXX_EXTENSIONS OFF)

set (CMAKE_CXX_STANDARD 23)

set (CMAKE_CXX_STANDARD_REQUIRED ON)
set (CMAKE_EXPORT_COMPILE_COMMANDS ON)

mkdir build && cd build
CXX=g++ cmake -GNinja

ninja
if (CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.3") . K K
set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD = For Clang, you would conflgure like this:
"dOedc3af-4c50-42ea-a356-e2862fe7a444")
elseif (CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.0") CXxX=clang++ CXXFLAGS="-stdlib=libc++"\
set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD cmake -GNinja

"a9elcf81-9932-4810-974b-6eccaflded57")
elseif (CMAKE_VERSION VERSION_GREATER_EQUAL "3.30.0") = The odd experimental import std guids are

set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD . .
"0e5b6991 -d74f-4b3d-a81c—cE09600b2508") temporary as long as the feature is considered

endif () “experimental”

project (nullsim LANGUAGES CXX)

set (CMAKE_CXX_MODULE_STD 1)

add_executable (nullsim main.cc)

target_sources (nullsim PUBLIC FILE_SET CXX_MODULES
FILES NullSimulator.cc)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 86 Forschungszentrum

Exercise 1.18:

The simple example with NullSimulator in the previous slides is in the folder examples/modules/createo.
Build it using CMake with both Clang and GCC as compilers. Try building it directly using GCC as shown. The
idea is to familiarise yourself with the modules based workflow. Insert a simple I_am_invisible function as
shown in the slides. Try to use it in main (). What error do you get, even if we are importing the module
containing it? Now, add the keyword export before that function, and test again!

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 87 J Forschungszentrum

Creating a module: implementation units

= Separating implementation is not syntactically

// NullSimulator.ixx necessary, but may sometimes be desirable to offer
export module NullSim; . . .
export class NullSimulator { a clearer overview of the interface without the
public: implementation code

void configure (std::string_view pars); . i

void run(); = Only the interface unit shall export the symbols

- auto summary() censt -> std::string; and the module itself, not the implementation unit
i

= The implementation units are bound to the module
r.ce by the module lines at the start

2t

// Null]
module NullSim;
import std;
void NullSimulator::configure (std::string_...) {
// actual implementation
}
void NullSimulator::run() {
// code. ..
}
auto NullSimulator::summary () const
-> std::string {

// code...
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 88 J Forschungszentrum

Creating a module: implementation units

// NullSimulator.ixg Gm -c -fsearch-include-path bits/std.cc
export module NullSim; Gm -c NullSimulator.ixx

export class NullSimulator Gm -c NullSimulator.cc

public:

Gm -c main.cc

void configure(std::string_view pars); g++ main.o NullSimulator.o std.o —-o nullsim

void run();
auto summary () const -> std::string;

}i

// NullSimulator.cc

module NullSim;

import std;

void NullSimulator::configure (std::string_...) {
// actual implementation

}

void NullSimulator::run() {
// code. ..

}

auto NullSimulator::summary () const
-> std::string {

// code...
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 88 J Forschungszentrum

Creating a module: implementation units

// NullSimulator.ixg Gm -c -fsearch-include-path bits/std.cc
export module NullSim; Gm -c NullSimulator.ixx

export class NullSimulator Gm -c NullSimulator.cc

public:

Gm -c main.cc

void configure(std::string_view pars); g++ main.o NullSimulator.o std.o —-o nullsim

void run();
auto summary () const -> std::string; . .
}i Works, but masks a big problem! Can you see it?

// NullSimulator.cc

module NullSim;

import std;

void NullSimulator::configure (std::string_...) {
// actual implementation

}

void NullSimulator::run() {
// code. ..

}

auto NullSimulator::summary () const
-> std::string {

// code...
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 88 J Forschungszentrum

Creating a module: implementation units

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 89

Gm
Gm
Gm
Gm

-fsearch-include-path bits/std.cc
NullSimulator.ixx
NullSimulator.cc

main.cc

g++ main.o NullSimulator.o std.o -o nullsim

The third line overwrites one of the outputs Nullsimulator.o from the second line

When we compile the interface unit, the by-products are the BMI and an object file.
= The BMI contains information about the interface and the pre-compiled inline functions, class and function
templates.
= Since implementation units are not mandatory, the interface units can contain ordinary function definitions,
which will result in binary code stored in the object file

Compiling the implementation unit is like compiling any other C++ file, and results in an object file for the
functions defined there.

Our example works because we separated all implementation code into the implementation unit
NullSimulator.cc. What if we left one function body in Nullsimulator.ixx?

l) JULICH

Forschungszentrum

Exercise 1.19:

The example directory modules/createl contains the code where we have split the NullSimulator code
between the module interface and implementation units. Compile it with GCC as shown in the previous slides.
What happens if you delete the NullSimulator. o output after the second step and go through with the rest?
Then in modules/createlb, we have the same code, but, we have inserted a new free function check_results.
It will lead to a compiler error in step 2, which you should be able to solve. Does the rest of the build process go

through without issues?

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 90 Forschungszentrum

Non-inline functions in interface units

= ... end up in the object file when the interface unit is compiled. If we are using those functions, we need
that object file when linking
= —> Possible conflict in output filename when compiling the implementation unit
= Common solutions:
= When compiling with option -c, use an explicit output filename, e.g.,

Gm -c NullSimulator.ixx -—-o NullSimulator.ixx.o

Gm -c NullSimulator.cc -o NullSimulator.cc.o

Gm -c main.cc -o main.cc.o

gt++ main.cc.o NullSimulator.cc.o NullSimulator.ixx.o std.o

= Abandon suffix based differentiation, and name interface and implementation units differently, e.g.,
NullSimulator.cc and NullSimulator_impl.cc

Gm -c NullSimulator.cc

Gm -c NullSimulator_impl.cc

Gm -c main.cc

g++ main.o NullSimulator.o NullSimulator_impl.o std.o

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 91 Forschungszentrum

Non-inline functions in interface units

= How do the functions defined inside the class declarations behave?
= Answer: as of C++423, like regular non-inline functions!

// NullSi ator.ixx

export module NullSim;
import std;

namespace cxx_course {
export class NullSimulator ({

// NullSimulator.cc
module NullSim;
void NullSimulator::configure(...)

{

bool config_ok{false}, run_ok{false}; }

public: void NullSimulator::run/()

void configure (std::string_view pars); {

void run();

auto summary () const -> std::string }

{

) return {"Summary of results:"}; = The functions configure () and run() end up in the
Vi object file when nullsimulator.cc is compiled.
}

= Both generated object files are required for linking!

The function summary is compiled and placed in the
object code when compiling Nullsimulator.ixx

Member of the Helmholtz Association 27 October — 30 October 2025

IJ JULICH

Slide 92 Forschungszentrum

Building process including modules

= Object files from the interface and implementation units can be combined into static/shared libraries.
= The interface units also produce the BMI
= To compile a module user, we need the BMI of all modules it uses

= To link the application, we need the object files or libraries made of them.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 93 Forschungszentrum

Splitting the module interface

= Large module interface units may be split into
multiple files
= Example: different large classes in their own files
= Reason: maintenance, collaborative development
= How: module partitions
= Each of the 3 module interface units shown here
belong to the same module Measurements.
Observe how they are named and exported

= Implementation units belong to the module as a
whole, not to any partitions

Member of the Helmholtz Association 27 October — 30 October 2025

// Meas
export module Measurements;
export import :RMSD;

export import :Rg;

export import :ContactOrder;

S ements.1xXx

// D.ixx
export module Measurements:RMSD;
export class RMSD {/*...x/};

export module Measurements:Rg;
export class Rg {/*...x%/};

// ContactOrder.ixx
export module Measurements:ContactOrder;
export class ContactOrder {/«*...x*/};

= Partitions can be imported by other partitions

= Partitions can not be directly imported outside the

module
IJ JULICH

Slide 94 Forschungszentrum

Splitting the module interface

= Large module interface units may be split into
multiple files
= Example: different large classes in their own files
= Reason: maintenance, collaborative development
= How: module partitions
= Each of the 3 module interface units shown here
belong to the same module Measurements.
Observe how they are named and exported

= Implementation units belong to the module as a
whole, not to any partitions

Member of the Helmholtz Association 27 October — 30 October 2025

// Measurements.ixx

export module Measurements;
export import :RMSD;

export import :Rg;

export import :ContactOrder;

// D.ixx
export module Measurements:RMSD;
export class RMSD {/*...x/};

export module Measurements:Rg;
export class Rg {/*...x%/};

// ContactOrder.ixx
export module Measurements:ContactOrder;
export class ContactOrder {/«*...x*/};

= The interface exported by the module partitions
can be exported by the primary module interface

IJ JULICH

Slide 94 Forschungszentrum

oW N =

NI VR

//
// M.hh
constexpr auto R = 42;

// A.hh
struct cA {
auto func() const -> int;

bi

// B.hh
struct cB {
auto func() const -> int;

i

Member of the Helmholtz Association

= Quite common to have classes in their own headers

= Must include the header for a class when

implementing member functions in separate source
files

27 October — 30 October 2025

EAS I I

(SIS I

© 0N U W N

Organisation of interface partitions vs headers

ide "A.hh"
auto cA::func() const —-> int {
return 42;

}

le "B.hh"
auto cB::func() const -> int ({
return 43;

-> int {

auto main ()
cA a;
cB b;
return R + a.func() + b.func();
}
‘ .o
Slide 95 J grchhunLgslzgrﬂ

© 0N W N

Member of the Helmholtz Association

// M.ixx
export module M;
export constexpr auto R = 42;
export struct cA {

auto func() const -> int;
Vi
export struct cB {

auto func() const -> int;
}i

= Large module interface units are not considered bad

= Names exported in the primary module interface

don't need to be imported inside the module’s
implementation units

27 October — 30 October 2025

(SIS I EAS I I

G I N

Organisation of interface partitions vs headers

// A.cc

module M;

auto cA::func() const —-> int {
return 42;

}

// B.cc

module M;

auto cB::func() const -> int ({
return 43;

}

// main.cc

import M;

auto main ()
cA a;
cB Db;
return a.func()

-> int {

+ b.func();

IJ JULICH

Slide 96 Forschungszentrum

[e S oA W N e

S NI R

Member of the Helmholtz Association

Organisation of interface

export module M;

export constexpr auto R = 42;
export import :A;
export import :B;
// A.ixx
export module M:A;
export struct cA {
auto func() const -> int;

}i

// B.ixx
export module M:B;
export struct cB {
auto func() const -> int;
Vi

In case the primary interface is split into partitions,
the partitions need to be re-exported in it, in order
that the declarations in them be visible in

implementation units
27 October — 30 October 2025

(SIS I EAS I I

G I N

partitions vs headers

// A.cc

module M;

auto cA::func() const —-> int {
return 42;

}

// B.cc

module M;

auto cB::func() const -> int ({
return 43;

}

// main.cc

import M;

auto main ()
cA a;
cB Db;
return R + a.func()

-> int {

+ b.func();

JULICH

J Forschungszentrum

Slide 97

SN I SIS U

S NI R

Organisation of interface partitions vs headers

Member of the Helmholtz Association

// M.ixx
export module M;
export constexpr auto R = 42;
export import :A;
export import :Bj;
// A.ixx
export module M:A;
export struct cA {
auto func() const -> int;

}i

// B.ixx
export module M:B;
export struct cB {
auto func() const -> int;
Vi

Module exporters and importers must be compiled
in a specific order, not always trivially inferred

27 October — 30 October 2025

(SIS I SISO R

G I N

// A.cc

module M;

auto cA::func() const -> int ({
return 42;

}

// B.cc

module M;

auto cB::func() const -> int ({
return 43;

}

// main.cc

import M;

auto main ()
cA a;
cB Db;
return R + a.func()

-> int {

+ b.func();

JULICH

J Forschungszentrum

Slide 97

Letting the build system generators handle modules

= CMake and other build system generators simplify the management of modules based compilation

= A set of module interface units can be attached to an executable or library target in CMake with the
target_sources function

= CMake determines the order in which they must be compiled, and sets where the BMI and object files are
stored

= The library or executable is then linked using the relevant set of object files
= CMake places the BMI files at the right places so that it can find them while compiling the rest of the project

= The BMI must be generated from the module interface units fresh using the build flags.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 98 Forschungszentrum

Using header files inside module units

= Even if you want to use modules for your project,
you might need external dependencies which don't
yet support a modules based build

= Including headers is possible, but restricted to a
specific segment in a module unit, called the global
module fragment

= The global module fragment, if present, has to be
the first section in a module unit.

Member of the Helmholtz Association 27 October — 30 October 2025

module;

le <Eigen
le <boost
module Measurements;

import ...;

Slide 99

/)

JULICH

Forschungszentrum

Using header files inside module units

= Even if you want to use modules for your project,
you might need external dependencies which don't module;
yet support a modules based build '

le <Eigen

le <boost
module Measurements;

Including headers is possible, but restricted to a
specific segment in a module unit, called the global import ..
module fragment

.7

= |t starts like an empty or nameless module
declaration (module;). It ends at the actual
module declaration (with export for interface and
without for implementation)

= The global module fragment, if present, has to be
the first section in a module unit.

As of October 2025, mixed mode projects when using the standard library as a module, but also including
it directly or indirectly through dependencies, lead to errors with GCC! With versions 15.1, 15.2 and the
latest git version.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 99 J Forschungszentrum

Converting older header based projects

= A header file contains a function template saxpy,

7/ saxpy.hh . and a concept necessary to define that function
#ifndef SAXPY HH
#define SAXPY_ = A source file, main.cc which includes the header

#include <algorithm> .
#include and uses the function
template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin ()
y.begin ()

[al (T X, T Y) {
return a x X + Y;

x.end (),
z.begin(),

’
’

}) i

#endif
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 100 J Forschungszentrum

Converting older header based projects

= A header file contains a function template saxpy,

’/ psesapy oo and a concept necessary to define that function
l1o0Stream
<array> = A source file, main.cc which includes the header

<vector>

"saxpy.hh"

and uses the function

auto main () > int

{
using namespace std;
const array inpl { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inpl.size(), 0.);
saxpy (10., {inpl}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":r::i::iiiiiiiii:i::i::i:i::z\n";
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 101 J Forschungszentrum

Converting older header based projects

Make a module interface unit

// saxpy.hh —-> saxpy.ixx
#ifndef SAXPY HH

#define SAXPY_ HH
#include <algorithm>
#include

template <class T>
concept Number = std:
or std:
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std::span<T> z)

floating_point<T>
integral<T>;

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al (T X, T Y) {
return a x X + Y;

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 102 Forschungszentrum

Converting older header based projects

// saxpy.hh —-> saxpy.

#ifndef SAXPY_HH
#define SAXPY_HH
#1 de <algor
¢

template <class T>
concept Number = std

or std:

template <Number T>
auto saxpy (T a, std:

Ixx

::floating_point<T>
:integral<T>;

:span<const T> x,

std::span<const T> vy,
std: :span<T> z)

std::transform(x
y

[al(T X, T Y
return a

1)
}
#endif

.begin(), x.end(),
.begin(), z.begin(),
) A

* X +Y;

Member of the Helmholtz Association

27 October — 30 October 2025

Make a module interface unit

= Include guards are no longer required, since
importing a module does not transitively import

things used inside the module

Slide 102

/)

JULICH

Forschungszentrum

Converting older header based projects

Make a module interface unit

// saxpy.hh —> saxpy.ixx

> <algorithm>

template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin () x.end (),

’
’

y.begin(), z.begin(),
[al (T X, T Y) {
return a ~ X + Y;
1)
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 102 J Forschungszentrum

Converting older header based projects

Make a module interface unit

//dsalXpy'm > saxpy.ixx = Start a global module fragment to enclose the
module;
fi de <algorithm> headers you have to use.

#include
export module saxpy; = Export the module.

template <class T>
concept Number = std::floating_point<T>
or std::integral<T>;
template <Number T>
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al (T X, T Y) {
return a x X + Y;
1)

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 102

/)

JULICH

Forschungszentrum

Converting older header based projects

Make a module interface unit

// saxpy.hh —> saxpy.ixx = Start a global module fragment to enclose the
export module saxpy; headers you have to use.
import std;
B ! = Export the module.
template <class T> = If you can get by with only imports, replace
concept Number = std::floating_point<T> y g. Yy X Yy P ; ! P i
or std::integral<T>; #include lines with corresponding import lines.
template <Number T> Omit the global module fragment in this case
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy,
std: :span<T> z)

std::transform(x.begin(), x.end(),
y.begin(), z.begin(),
[al (T X, T Y) {
return a » X + Y;
1)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 102 Forschungszentrum

Converting older header based projects

Make a module interface unit

// saxpy.hh -> saxpy.ixx = Start a global module fragment to enclose the

export module saxpy; headers you have to use.

import std;
B ! = Export the module.
z’;zi:teN“l:is Tth floating point T = If you can get by with only imports, replace
‘umb = H 1] 1 < ;
or std::integral<T>; #include lines with corresponding import lines.
export template <Number T> Omit the global module fragment in this case
auto saxpy (T a, std::span<const T> x,
std: :span<const T> vy, = Explicitly export any definitions (classes,
(std::span<l> z) functions...) you want for users of the module.
std::transform(x.begin(), x.end(), Anything not exported by a module is automatically
y.begin(), z.begin(), private to the module

[al(T X, T Y) {
return a » X + Y;
1)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 102 Forschungszentrum

Using the module

// usesaxpy.cc
#include <iostream>
#include <array>
#include <vector>
#include
#include "saxpy.hh"

auto main() -> int

{
using namespace std;
const array inpl { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inpl.size(), 0.);
saxpy (10., {inpl}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":r::i::iiiiiiiii:i::i::i:i::z\n";

}

Member of the Helmholtz Association 27 October — 30 October 2025

Use your module

Slide 103

/)

JULICH

Forschungszentrum

Using the module

Use your module

// usesaxpy.cc

st = Optionally replace #include lines with

#include "saxpy.hh" corresponding import line(s).
auto main() -> int = |f the source is not a module unit, include directives
{ may be used alongside imports

using namespace std;
const array inpl {
const array inp2 { 9.,
vector outp (inpl.size(), 0.);

saxpy (10., {inpl}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";

cout << ":::i:i:ii:iiiz:iiz:iz:i:::z\n";
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 103 J Forschungszentrum

Using the module

Use your module

// usesaxpy.cc

st = Optionally replace #include lines with

import saxpy; corresponding import line(s).
auto main() -> int = |f the source is not a module unit, include directives
{ may be used alongside imports

using namespace std;

const array inpl { 1., 2., 3., 4., 5. }; = Import your module by name

const array inp2 { 9., 8., 7., 6., 5. };

vector outp (inpl.size(), 0.);

saxpy (10., {inpl}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";

cout << ":::i:i:ii:iiiz:iii:i::i:::z\n";
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 103 J Forschungszentrum

Member of the Helmholtz Association

Using the module

// usesaxpy.cc
import std;
import saxpy;
auto main() —> int
{
using namespace std;
const array inpl { 1.
const array inp2 { 9.,
vector outp (inpl.size(), 0.);

.y 5. };

4
6., 5. };

saxpy (10., {inpl}, {inp2}, {outp});
for (auto x outp) cout << x << "\n";
cout << M":i::i::i:iiiiiiiii::i::i:::\n";

27 October — 30 October 2025

Use

your module

Optionally replace #include lines with
corresponding import line(s).

If the source is not a module unit, include directives
may be used alongside imports

Import your module by name

Importing saxpy here, only grants us access to the
explicitly exported function saxpy. Not other
functions, classes, concepts etc. defined in the
module saxpy, not any other module imported in
the module interface unit.

JULICH

J Forschungszentrum

Slide 103

Setup building with CMake

cMake supports C++ modules since the

cmake_minimum_required (VERSION 3.30) version 3.28
set (CMAKE_CXX_EXTENSIONS OFF) .]])
set (CMAKE_CXX_STANDARD 23) = Since version 3.30 it supports creation

set (CMAKE_CXX_STANDARD_REQUIRED ON)

and use of standard library as a module
set (CMAKE_EXPORT_COMPTLE_COMMANDS ON)

if the compiler + standard library

if (CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.3") combination supports it
set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD .
"d0edc3af-4c50-42ea-a356-e2862fe7a444") = This means Clang >= 18.1 or GCC >=
elseif (CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.0") 15.1.
set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD i)
"29e1cf81-9932-4810-974b-6eccarlded5T") = The Ninja generator is required
elseif (CMAKE_VERSION VERSION_GREATER_EQUAL "3.30.0") . . e . .
set (CMAKE_EXPERIMENTAL_CXX_IMPORT_STD = Massive simplification of the build
"0e5b6991-d74f-4b3d-adlc-c£096e0b2508") process!
endif ()

project (use_saxpy-example LANGUAGES CXX)
set (CMAKE_CXX_ MODULE_STD 1)
add_executable (use_saxpy usesaxpy.cc)

mkdir -p build && cd build
cmake -DCMAKE_GENERATOR=Ninja

ninja
target_sources (use_saxpy
PUBLIC
FILE_SET CXX_MODULES
FILES saxpy.ixx
) @) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 104 J Forschungszentrum

Exercise 1.20:

Versions of the saxpy program written using header files and then modules can be found in the examples/saxpy/.
Familiarise yourself with the process of building applications with modules. Experiment by writing a new inline
function in the module interface file without exporting it. Try to call that function from main. Check again after
exporting it in the module.

Exercise 1.21:

As a more complicated example, we have in examples/2_any the second version of our container with
polymorphic geometrical objects. The header and source files for each class Point, Circle etc have been
rewritten for modules. Compare the two versions, build them, run them.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 105 J Forschungszentrum

Modules: Summary

= Status, since around September 2024: Usable!
= There is support from CMake and b2build with GCC and Clang.

= A different organisation of multi-file projects than the one with header and source files
= Promise:

easier control over symbol visibility

no “copy and paste” solution of headers

smaller translation units and hence faster compilation
no transitive imports, no import of MACROs defined in imported modules

= Does not change anything about functions, classes, templates or concepts, just how we place them in files

= Module interface units play a similar role to headers, but without their problems

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 106 Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("sd\n",
app::variable++);

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 107 J Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("sd\n",
app::variable++);
}

g++ -S -03 A.cc

Member of the Helmholtz Association 27 October — 30 October 2025

Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app { AQ):

int variable{}; movl app::variable (3rip), %esi
) movl $.1C0, %edi
void A() leal 1(%rsi), %eax
{ movl %eax, app::variable(%rip)

std::printf("%d\n", xorl %eax, %eax

app::variable++); Jmp printf
} app::variable:
.zero 4
Crrr =8 =08 Asece
@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 107 J Forschungszentrum

Linkage:

namespace app {
int variable{};
}
void A()
{
std::printf("sd\n",
app::variable++);

g++ -S -03 A.cc

namespace app {
int variable{};
}
void B()
{
std::printf("%d\n",
app::variable++);

Member of the Helmholtz Association

AQ:
movl app::variable (3rip), %esi
movl $.LCO, %edi
leal 1(%rsi), %eax
movl %eax, app::variable (3rip)
xorl %eax, %eax
Jmp printf
app::variable:
.zZero 4
27 October — 30 October 2025 Slide 107

/)

determining who is who in multi-file projects

JULICH

Forschungszentrum

Linkage:

determining who is who in multi-file

namespace app {
int variable{};
}
void A()
{
std::printf ("%d\n",
app::variable++);

g++ -S -03 A.cc

namespace app {
int variable{};
}
void B()
{
std::printf("%d\n",
app::variable++);

g++ -S -03 B.cc

Member of the Helmholtz Association

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable (3rip)
%eax, %eax

printf

app::variable:

.zZero 4

27 October — 30 October 2025 Slide 107

projects

lJ JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf ("%d\n",
app::variable++);

g++ -S -03 A.cc

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable (3rip)
%eax, %eax

printf

app::variable:

.zZero 4

namespace app {
int variable{};
}
void B()
{
std::printf("sd\n",
app: :variablett);

g++ -S -03 B.cc

Member of the Helmholtz Association

B():

movl app::variable (3rip), %esi

movl $.LCO, %edi

leal 1(%rsi), %eax

movl %eax, app::variable (3rip)

xorl teax, %eax

Smp printf
app: :variable:

.zero 4
27 October — 30 October 2025 Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("%d\n",
app::variable++);

g++ -S -03 A.cc

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable(%rip)
%eax, %eax

printf

app::variable:

.zZero 4

namespace app {
int variable{};
}
void B()
{
std::printf ("sd\n",
app: :variablett);

g++ -S -03 B.cc

auto main() —> int

AQ;
BO;

Member of the Helmholtz Association

B():

movl app::variable (3rip), %esi

movl $.LCO, %edi

leal 1(%rsi), %eax

movl %eax, app::variable (3rip)

xorl teax, %eax

Smp printf
app: :variable:

.zero 4
27 October — 30 October 2025 Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("%d\n",
app::variable++);

g++ -S -03 A.cc

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable(%rip)
%eax, %eax

printf

app::variable:

.zZero 4

namespace app {
int variable{};
}
void B()
{
std::printf ("sd\n",
app: :variablett);

g++ -S -03 B.cc

auto main() —> int

AQ;
BO;

g++ -S -03 main.cc

Member of the Helmholtz Association

B():

movl app::variable (3rip), %esi

movl $.LCO, %edi

leal 1(%rsi), %eax

movl %eax, app::variable (3rip)

xorl teax, %eax

Smp printf
app: :variable:

.zero 4
27 October — 30 October 2025 Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("%d\n",
app::variable++);

g++ -S -03 A.cc

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable(%rip)
%eax, %eax

printf

app::variable:

.zZero 4

namespace app {
int variable{};
}
void B()
{
std::printf ("sd\n",
app: :variablett);

g++ -S -03 B.cc

auto main() —> int

AQ;
BO;

g++ -S -03 main.cc

Member of the Helmholtz Association

B():
movl app::variable (3rip), %esi
movl $.LCO, %edi
leal 1(5rsi), %eax
movl %eax, app::variable (3rip)
xorl teax, %eax
Smp printf
app: :variable:
.zero 4
main:
call AQ)
call B()
xorl teax, %eax
addg $8, Srsp
ret$
27 October — 30 October 2025 Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app {
int variable{};
}
void A()
{
std::printf("%d\n",
app::variable++);

g++ -S -03 A.cc

AQ:
movl
movl
leal
movl
xorl
Jmp

app::variable (3rip), %esi
$.1C0, %edi

1(%rsi), %eax

%eax, app::variable(%rip)
%eax, %eax

printf

app::variable:

.zZero 4

namespace app { B():
int variable{}; movl app::variable (%rip), %esi
} movl $.LCO, %edi
void B() leal 1(%rsi), %eax
{ movl %eax, app::variable (%rip)
std::printf ("%d\n", xorl teax, teax
app::variable++); jmp printf
} app::variable:
.zero 4
Err =8 =03 B.ee
auto main() -> int main:
call A()
AQ); call B()
BO; xorl teax, %eax
} addq $8, %rsp
ret$

g++ -S -03 main.cc

Member of the Helmholtz Association

27 October — 30 October 2025

Link

Slide 107

/)

JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

= Have to produce one sequence of

namespace app { AQ: instructions.
int variable{}; movl app::variable (¢rip), S%esi
} movl $.LCO, %edi
leal 1(%rsi), %eax
movl %eax, app::variable (%rip)
sprintf ("$d\n", xorl %eax, %eax
::variable++); Jmp printf
} app::variable:
.zero 4
Crrr =8 =08 Asece
namespace app { B():
int variable{}; movl app::variable (%rip), %esi
} movl $.LCO, %edi A\
void B() leal 1(%rsi), %eax
{ movl teax, app::variable (3rip) c
std::printf("sd\n", xorl teax, teax =
app::variable++); Jmp printf —I
} app::variable:
.zero 4
Err =8 =03 B.ee
auto main() -> int main:
call A()
AQ); call B()
BO; xorl teax, %eax
} addq $8, %rsp
ret$

g++ -S -03 main.cc

JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 107 Forschungszentrum

Linkage: determining who is

namespace app { AQ):
int variable{}; movl app::variable (3rip), %
) movl $.LCO, %edi
void A() leal 1(%rsi), %eax
{ movl %eax, app::variable (
std::printf("sd\n", xorl Seax, %eax
app::variablet+); Jmp printf
} app::variable:
.zero 4
gt++ -S -03 A.cc
namespace app { B():
int variable{}; movl app: :variable (%rip),
} movl $.LCO, %edi
void B() leal 1(%rsi), %eax
{ movl 2eax, app::variable(
std::printf ("$d\n", xorl eax, %eax
app::variablet+); jmp printf
) app: :variable:
.zero 4
Err =8 =03 B.ee
auto main() -> int nain:
{ call A()
AQ); call B()
BO; xorl eax, %eax
} addq $8, Srsp
ret$

g++ -S -03 main.cc

Member of the Helmholtz Association

27 October — 30 October 2025

who in multi-file projects

= Have to produce one sequence of

srip)

rip)

Link

Slide 107

instructions.

= But there are two versions of
app: :variable, one from the
compilation of a.cc, one from that

of B.cc

/)

JULICH

Forschungszentrum

Linkage: determining who is

namespace app { AQ):

int variable{}; movl app::variable (%rip), %
) movl $.1C0, %edi
void A() leal 1(%rsi), %eax
{ movl teax, app::variable(

std::printf("%d\n", xorl teax, %eax

app::variable++); jmp printf
) app::variable:
.zero 4

g++ -S -03 A.cc
namespace app { B():

int variable{}; movl app::variable (3rip), %
} movl $.1C0, %edi
void B() leal 1(5rsi), %eax
{ movl teax, app::variable(

std::printf("sd\n", xorl eax, %eax

app: :variable+t) ; jmp printf
) app: :variable:
.zero 4

g++ -S -03 B.cc
auto main() -> int nain:
{ call A()

207 call B()

BO; xorl eax, %eax
} addg $8, %rsp

ret$

g++ -S -03 main.cc

Member of the Helmholtz Association

27 October — 30 October 2025

who in multi-file projects

srip)

rip)

Link

Slide 107

= Have to produce one sequence of
instructions.

= But there are two versions of
app: :variable, one from the
compilation of a.cc, one from that
of B.cc

= Are they to be treated as the same
entity or different ones?

IJ JULICH

Forschungszentrum

Linkage: determining who is who in multi-file projects

namespace app |
int variable{};

)

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 108 J Forschungszentrum

Linkage: determining who is who in multi-file projects

#include "var.hh"

void A()

{

std::printf ("%d\n",
app::variable++);

// var.hh }
namespace app |
int variable{};

)

std::printf("%d\n",
app::variable++);

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 108

/)

JULICH

Forschungszentrum

Linkage: determining who is who in

#include
void A()
{
std::printf("sd\n",
app::variable++);

// var.hh 3
namespace app {

int variable{};

4 g
} void B()
{

std::printf(
app::variable++);

Member of the Helmholtz Association 27 October — 30 October 2025

multi-file projects

AQ):
movl app::variable (3rip), %esi
movl $.1LCO, %edi
leal 1(%rsi), %eax
movl %eax, app::variable (3rip)
xorl seax, %eax
Jmp printf
app: :variable:
.zero 4
B():
movl app::variable (3rip), %esi
movl $.LCO, %edi
leal 1(5rsi), %eax
movl %eax, app::variable (3rip)
xorl Seax, %eax
jmp printf

app: :variable:
.zero 4

Slide 108

JULICH

Forschungszentrum

/)

Linkage: determining who is who in

#include
void A()
{
std::printf("sd\n",
app::variable++);

var.hh 1
namespace app {

int variable{};

)

void B()
{

std::printf(
app::variable++);

= Putting it in a header does not fix anything!

Member of the Helmholtz Association 27 October — 30 October 2025

multi-file projects

AQ):
movl app::variable (3rip), %esi
movl $.1LCO, %edi
leal 1(%rsi), %eax
movl %eax, app::variable (3rip)
xorl seax, %eax
Jmp printf
app: :variable:
.zero 4
B():
movl app::variable (3rip), %esi
movl $.LCO, %edi
leal 1(5rsi), %eax
movl %eax, app::variable (3rip)
xorl Seax, %eax
jmp printf

app: :variable:
.zero 4

Slide 108

JULICH

Forschungszentrum

/)

Linkage: determining who is who in multi-file projects

#include "var.hh" AQ):
void A() movl app::variable (%rip), %esi
{ movl $.1LCO, %edi
std::printf ("%d\n", leal 1(srsi), %eax
app::variable++); movl %eax, app::variable (%rip)
/ ar.hh } xorl %eax, %eax
namespace app { jmp printf
int variable{}; nelude " h app::variable:
) : .zero 4
{
std::printf("%d\n",
app::variable++);
} B()
movl app::variable (%rip), %esi
movl $.1LCO, %edi
leal 1(srsi), %eax
movl eax, app::variable (%rip)
xorl seax, %eax
Jmp printf
app::variable:
.zero 4

= Putting it in a header does not fix anything!

= There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 108 Forschungszentrum

Linkage: determining who is who in multi-file projects

#include "va 1 A():
void A() movl app: :variable (5rip), %esi
{ movl $.1CO, %edi
std::printf ("$d\n", leal 1(%rsi), %eax
app::variable++); movl Seax, app::variable (5rip)
/ ar.hh } xorl %eax, %eax
namespace app { jmp printf
int variable{}; sin § app::variable:
} void B() -zero 4
{
std::printf("%d\n",
app::variable++);
} B()
movl app::variable (trip), %esi
movl $.1CO, %edi
leal 1(%rsi), %eax
mov1l eax, app::variable(%rip)
xorl teax, %eax
jmp printf
app: :variable:
.zero 4

= Putting it in a header does not fix anything!

= There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.

= Connected with a name, not with a file or project

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 108 Forschungszentrum

Linkage type

No-linkage: variables like block-scope entities can be safely excluded when trying to solve the problem of
whether or not the same name appearing in different translation units refer to the same entity

Internal linkage: the name is treated as private to each translation unit it appears in. Different occurences
in different translation units are considered independent entities

External linkage: Anywhere the name appears in all the translation units, it refers to the same entity. There
needs to be a single definition of the object (ODR).
Module linkage: The symbol is to be treated as the same entity everywhere it appears inside a module, but
if it appears outside the module, it is another entity

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 109 Forschungszentrum

External linkage

o and

= “Top-level” /namespace scope (non-constant)
variables and functions have external linkage by
namespace app (
int variable{}; defau|t
}

void A()
{
std::printf("sd\n",
app::variable++);

/ B.cc : A.o and B.o can't be linked toc

namespace app {
int variable(};

}
void A()
{
std::printf("sd\n",
app::variable++);

Member of the Helmholtz Association 27 October — 30 October 2025

IJ JULICH

Slide 110 Forschungszentrum

External linkage

= “Top-level” /namespace scope (non-constant)
// A.cc : A.0 ar variables and functions have external linkage by
namespace app (
int variable{}; default
}

void A()

v = One and only one definition is permitted for such a
std: sprinte ("sd\ar, name(ODR: One Definition Rule)

app::variable++);

namespace app {
int variable(};

i B.o can't be linked tc

}
void A()
{
std::printf("sd\n",
app::variable++);

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Forschungszentrum

Slide 110

External linkage

namespace app {
extern int variable{};
}
void A()
{
std::printf ("$d\n",
app::variable++);

namespace app {
int variable(};
}
void A()
{
std::printf("sd\n",
app::variable++);

Member of the Helmholtz Association

27 October — 30 October 2025

= “Top-level” /namespace scope (non-constant)
variables and functions have external linkage by
default

= One and only one definition is permitted for such a
name(ODR: One Definition Rule)
= Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)

IJ JULICH

Slide 110 Forschungszentrum

External linkage

namespace app {
extern int variable{};
}
void A()
{
std::printf ("$d\n",
app::variable++);

namespace app {
int variable(};
}
void A()
{
std::printf("sd\n",
app::variable++);

Member of the Helmholtz Association

27 October — 30 October 2025

= “Top-level” /namespace scope (non-constant)
variables and functions have external linkage by
default

= One and only one definition is permitted for such a
name(ODR: One Definition Rule)

= Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)

= Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

l) JULICH

Slide 110 Forschungszentrum

External linkage

namespace app {
inline int variable({};

{

std::printf("sd\n",
app::variable++);

void B()
{

std::printf ("sd\n",

app::variable++);

Member of the Helmholtz Association

27 October — 30 October 2025

“Top-level” /namespace scope (non-constant)
variables and functions have external linkage by
default

= One and only one definition is permitted for such a
name(ODR: One Definition Rule)

= Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)

= Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

= inline: Making a variable or function inline

frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

IJ JULICH

Slide 110 Forschungszentrum

Internal linkage

= “Top-level” /namespace scope constants have

// var.hh internal linkage by default in C4++ (but not in C!)
namespace app {
const unsigned long max_dim = 1024UL;

static auto f(int i) {

}
static int variable({};

void A()
{

std::printf ("%d\n",
app::variable++);

void B()
{

std::printf ("%d\n",
app::variable++);

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 111 Forschungszentrum

Internal linkage

= “Top-level” /namespace scope constants have
/ var.hh internal linkage by default in C4++ (but not in C!)

namespace app {
const unsigned long max_dim = 1024UL;

static auto f(int i) (= A free function can be declared static give it
internal linkage

}

static int variable({};

void A()

{
std::printf("sd\n",
app::variable++);

void B()
{

std::printf ("%d\n",
app: :variablet+);

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 111 Forschungszentrum

Internal linkage

= “Top-level” /namespace scope constants have
// var.hh internal linkage by default in C4++ (but not in C!)
namespace app (

const unsigned long max_dim = 1024UL;

static auto f(int i) (= A free function can be declared static give it
T internal linkage

static int variable({};

} = A non-constant namespace scope variable can be
declared static to give it both a static storage
var.hh" duration and internal linkage

void A()
{

std::printf("sd\n",

app::variable++);

void B()
{

std::printf ("%d\n",
app: :variablet+);

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 111 Forschungszentrum

Internal linkage

“Top-level” /namespace scope constants have
internal linkage by default in C4++ (but not in C!)

namespace app {
const unsigned long max_dim = 1024UL;

static auto f(int i) (= A free function can be declared static give it
T internal linkage

static int variable({};

} = A non-constant namespace scope variable can be
declared static to give it both a static storage
duration and internal linkage

void A()
U tdiprinte(vinan, = Since a variable or function with internal linkage

appiivariablert); can not be “required elsewhere”, it is possible for
the compiler to perform agressive optimizations,
sometimes eliminating the symbol altogether from
the translation unit

void B()
{

std::printf("sd\n",
app::variable++);

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 111 Forschungszentrum

Member of the Helmholtz Association

Module linkage

export module A;
import std;
namespace app {
int variable {};
}
void other_func();
export void A()
{
std::print ("{}\n",
app::variable ++);
other_func();

module A;
void other_func()
{
app::variable += 10;
}

export module B;
import std;
namespace app {
int variable {};
}
export void B()
{
std::print ("{}\n",
app::variable ++);

27 October — 30 October 2025

= In between internal and external linkage: external
as far as different module units inside the module
are concerned, but visible only inside the module

IJ JULICH

Slide 112 Forschungszentrum

Module linkage

= In between internal and external linkage: external
as far as different module units inside the module
export module A; o L

import std; are concerned, but visible only inside the module

namespace app {
int variable {};

, = Unexported names in the primary module interface
id other_f 0 H H H
Comore vaid Aty unit are regarded as the same entity in all
! B o implementation units of the same module
std::print ("(}\n",

app::variable ++);
other_func();

}

module A;
void other_func()
{
app::variable += 10;
}

export module B;
import std;
namespace app {
int variable {};
}
export void B()
{
std::print ("{}\n",
app::variable ++);

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 112 Forschungszentrum

Module linkage

export module A;
import std;
namespace app {
int variable {};
}
void other_func();
export void A()
{
std::print ("(}\n",
app: :variable ++) ;
other_func();

}

= In between internal and external linkage: external
as far as different module units inside the module
are concerned, but visible only inside the module

Unexported names in the primary module interface
unit are regarded as the same entity in all
implementation units of the same module

= The exact same symbol may be used in a different
module

module A;
void other_func()
{
app::variable += 10;
}

export module B;
import std;
namespace app {
int variable {};
}
export void B()
{
std::print ("{}\n",
app::variable ++);

Member of the Helmholtz Association

l) JULICH

27 October — 30 October 2025 Slide 112 Forschungszentrum

Exercise 1.22:

The folder examples/linkage contains tiny demos for internal/external linkage (intext) and module linkage
(module).
= intext: Build and run the program as is. Observe the output. Replace inline with static in the
intext/var.hh. Build and run again. Reason about any differences in the output.
= module: Build and run using the approriate compiler options. Observe how the symbol app: :variable

is regarded the same across the different files of module A, but the same symbol is regarded as an
independent object in module B

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 113 Forschungszentrum

Argument Dependent Lookup

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 114 J Forschungszentrum

Argument Dependent Lookup

1 namespace Surrounding {
2 struct AClass {};
3 void one_func(int x, int y) {
4 std::cout << "Surrounding::one_func(int, int) << "\n";
5 }
6 void another_func(int x, AClass y) {
7 std::cout << "Calling Surrounding::another_func...";
8 }
9 }
10 // Elsewhere. ..
11 Surrounding: :AClass obj; // OK
12 Surrounding: :one_func(l, 2); // OK
13 one_func(l, 2); // Error!
14 Surrounding: :another_func(l, obj); // OK
15 another_func (1, obj); // OK!
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 115 J

JULICH

Forschungszentrum

Argument Dependent Lookup

= |f a function call expression involves one or more arguments of class types, the search for the matching
function includes functions defined in the namespaces surrounding each of those classes. This is called
"Argument Dependent Lookup", or Koenig Lookup

= The functions considered have to be in the immediately surrounding namespace around a class

Calling such functions is very similar to calling our mental model of a member function, e.g., norm (x)
instead of x.norm ()

= Recommendation: Write more functions using class type objects in the surrounding namespace instead of
making them members!

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 116 Forschungszentrum

Argument Dependent Lookup

Exercise 1.23:

The notebook apw..ipynb demonstrates argument dependent lookup. This is an important class related idea.
Please go through the notebook and try out your own variations!

Exercise 1.24:

The folder examples/apL contains a series of small programs demonstrating ADL, similar to those in the
notebook above. Try them, in addition to the notebooks, as they explore the topic further.

@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 117 J

Forschungszentrum

Numeric types

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 118

IJ JULICH

Forschungszentrum

Floating point numbers

Area of a triangle of sides a, b and c...
= Heron's formula (Metrica, Heron of Alexandria, ~ 60 CE)

atb+c
2

A = \/sx(sfa)x(sfb)x(s—c)

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 119

/)

JULICH

Forschungszentrum

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf

Floating point numbers

Area of a triangle of sides a, b and c...
= Heron's formula (Metrica, Heron of Alexandria, ~ 60 CE)

atb+c
2

A = \/sx(sfa)x(sfb)x(s—c)

= Kahan's formula (Miscalculating Area and Angles of a Needle-like Triangle, W. Kahan, 2000 CE,
http://http.cs.berkeley.edu/~wkahan/Triangle.pdf)

a>b > ¢

1
A = *\/(a+(b+f))><(cf(a*b))><(C+(a*b))><(a+(b*f))
4

@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 119 J

Forschungszentrum

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf

B I N

Floating point numbers

const auto a = 5.0f;

const auto b = 4.0f;

const auto ¢ = 3.0f;

std::cout << "Heron's formula = "
<< area_heron(a,b,c) << "\n";

std::cout << "Kahan's formula = "
<< area_kahan(a,b,c) << "\n";

Heron's formula = 6
Kahan's formula

I
o

Member of the Helmholtz Association 27 October — 30 October 2025

= Mathematically, both calculate the same thing

Slide 120

/)

JULICH

Forschungszentrum

Floating point numbers

= Mathematically, both calculate the same thing

const auto a = 100'000.000'00f; . .
const auto b — 99'999.999'79f u |f t_he trllangle becomes very long and thin though,
const auto c = 0.000'29f; weird things happen

std::cout << "Heron's formula = "
<< area_heron(a,b,c) << "\n";

std::cout << "Kahan's formula = "
<< area_kahan(a,b,c) << "\n";

B I N

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 120 Forschungszentrum

Floating point numbers

1 const auto a = 100'000.000'00f£;
2 const auto b = 99'999.999'79f;
3 const auto c = 0.000'29f;
4 std::cout << "Heron's formula = "
5 << area_heron(a,b,c) << "\n";
6 std::cout << "Kahan's formula = "
7 << area_kahan(a,b,c) << "\n";
Heron's formula = 0
Kahan's formula = 14.5
Member of the Helmholtz Association 27 October — 30 October 2025

= Mathematically, both calculate the same thing

= |f the triangle becomes very long and thin though,

weird things happen

Slide 120

/)

JULICH

Forschungszentrum

B I N

Floating point numbers

= Mathematically, both calculate the same thing

const auto a = 100'000.000'00f; . .
comet ot b 9919999991795, = If the triangle becomes very long and thin though,
const auto c = 0.000'29f; weird things happen
std::cout << "Heron's formula = " .
<< area_heron(a,b,c) << "\n"; = Correct answer is 10.
std::cout << "Kahan's formula = "
<< area_kahan(a,b,c) << "\n";
Heron's formula = 0
Kahan's formula = 14.5
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 120 J Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. X t
—1° x 1.mantissa x 27"

= |t is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 121 Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. X ent
—1° x 1.mantissa x 27"

= |t is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.

= For a fixed exponent, there are 2% different floating point numbers. = There are as many £loats
between 27 and 2710 as there are between 1024 and 2048

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 121 Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. X ent
—1° x 1.mantissa x 27"

= |t is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.

= For a fixed exponent, there are 2% different floating point numbers. = There are as many £loats
between 27 and 2710 as there are between 1024 and 2048

= By contrast, integral types have a uniform density throughout their range

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 121 Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. t
—1° x 1.mantissa x 27"

= Zero = all bits 0. One ?

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 122 J Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. X t
—1° x 1.mantissa x 27"

= Zero = all bits 0. One 7
= Exponent is stored shift-127 encoded. So, 1 = [0]{01111111][00000000000000000000000]

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 122 Forschungszentrum

Representation of floating point numbers
W1 T T T T T T T T T

. X ent
—1° x 1.mantissa x 27"

= Zero = all bits 0. One 7
= Exponent is stored shift-127 encoded. So, 1 = [0]{01111111][00000000000000000000000]
= To maintain our sanity, we will write it as 1 = [0][(2°)][00000000000000000000000]

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 122 Forschungszentrum

Floating point numbers

= Mental exercise: we have two decimal numbers in scientific notation 9.78 x 102, and 1.0 x 10!, How will
you add them ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 123 Forschungszentrum

Floating point numbers

= Mental exercise: we have two decimal numbers in scientific notation 9.78 x 102, and 1.0 x 10!, How will
you add them ?

= You shift the decimal point in one of them until the exponents are the same, and then add the mantissas:
9.78 x 102 4 0.001 x 102. Digits in the smaller number are pushed to the right

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 123 Forschungszentrum

Floating point numbers

= 1 = [0][(2°)][00000000000000000000000]

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 124 Forschungszentrum

Floating point numbers

= 1 = [0][(2°)][00000000000000000000000]

= What is the smallest representable n, with n > 17

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 124 Forschungszentrum

Floating point numbers

= 1 = [0][(2°)][00000000000000000000000]
= What is the smallest representable n, with n > 17
= [0][(2°)][00000000000000000000001] with the mantissa changing by 272 = 0.0000001192092895507813

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 124 Forschungszentrum

Floating point numbers

= 1 = [0][(2°)][00000000000000000000000]
= What is the smallest representable n, with n > 17
= [0][(2°)][00000000000000000000001] with the mantissa changing by 272 = 0.0000001192092895507813

= What is 2.0 ? [0][(2")][00000000000000000000000]. What if you add these two ? What information about
the smaller number can we retain ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 124 Forschungszentrum

Floating point numbers

= What is the smallest representable n, with n > 17
= [0][(2°)][00000000000000000000001]. Mantissa changes by 272* ~ 0.0000001192092895507813.

= This quantity depends on the floating point type. In C4++, you can retrieve it
std::numeric_limits<T>::epsilon ()

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 125 Forschungszentrum

Floating point numbers

= What is the smallest representable n, with n > 17
[0][(2°)][00000000000000000000001]. Mantissa changes by 27* 2 0.0000001192092895507813.

= This quantity depends on the floating point type. In C4++, you can retrieve it
std::numeric_limits<T>::epsilon ()

= Two quantities with exponent 0 can not be distinguished in this representation, if they differ by less than

epsilon
@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 125 J Forschungszentrum

Floating point numbers

= What is the smallest representable n, with n > 1?7
[0][(2°)][00000000000000000000001]. Mantissa changes by 27* 2 0.0000001192092895507813.

= This quantity depends on the floating point type. In C4++, you can retrieve it
std::numeric_limits<T>::epsilon ()

= Two quantities with exponent 0 can not be distinguished in this representation, if they differ by less than
epsilon

= In an expression like (big+small)-big, if big and small differ by more than 23 in exponent, all
information about small is lost, and we get a 0. 22 = 8388608.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 125 Forschungszentrum

Floating point numbers

= Floating point numbers with all bits in the exponent field at 0, are said to be “denormalised” (remember the
shift-127 encoding)

= Not enough bits to represent such small quantities.

= All exponent bits being 1 indicate some special “numbers”:

= +00 : all mantissa bits 0.
= NaN : at least one mantissa bit non-zero.

l) JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 126

Exercise 1.25:
In examples/floating_fun.cc, there is a small program “simulating” a calculation involving some large
quantities adding up to 0. Eight numbers are stored in an array of floats, and their sum evaluated and printed.
The calculation is repeated by permuting the indexes of the array, so that the numbers are added in all possible
orders. Observe the output!

Exercise 1.26: std::numeric_limits

What is epsilon for £loat and double on your computer ? Find out by writing a small C++ program and
printing out the values from std: :numeric_limits. Look up the documentation of numeric_limits.
What other information can you get about numeric types from that header ?

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 127 Forschungszentrum

Maximum
Minimum
Lowest

Epsilon
Rounding error

Float: [1 — bit][8 — bits][23 — bits]

3.40282e+-38
1.17549e-38
-3.40282e4-38
1.19209e-07
0.5

Double: [1 — bit][11 — bits][52 — bits]

Maximum 1.79769e+308

Minimum 2.22507e-308

Lowest -1.79769e+308

Epsilon 2.22045e-16

Rounding error 0.5

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 128

/.

JULICH

Forschungszentrum

New floating point types in C++423

Name typeid Min Max Epsilon

double d 2.2250738585072014e-308 1.7976931348623157e+308 2.220446049250313e-16
std::float64_t DF64 2.2250738585072014e-308 1.7976931348623157e+308 2.220446049250313e-16
float f 1.1754944e-38 3.4028235e+-38 1.1920929e-07
std::float32_t DF32_ 1.1754944e-38 3.4028235e+38 1.1920929e-07
std::float16_t DF16_ 6.1035156e-05 65504 0.0009765625
std::bfloatl6_t DF16b 1.1754944e-38 3.3895314e+38 0.0078125

= Two different 16 bit floating point numbers introduced

= std::float64_t and std::float32_t with different typeids compared to built in double and
float

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 129 Forschungszentrum

Chapter 2
Cost of ...

JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 130 Forschungszentrum

Stack execution model

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 131 Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int

{ { {

auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) { } }
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132

auto h2l1l (int 1)
-> int

{

}

return -i;

/)

JULICH

Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main()
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main() f() int i=10
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main()
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main() g() inti=10
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main()
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main() h1() inti =10
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int
{ { {
auto N = 10; return (i » 1) %$12; return i * 1i;
if (E(N) < g(N)) | } }
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () -> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main() h1() inti= 10 h11() inti=10

Member of the Helmholtz Association

27 October — 30 October 2025 Slide 132

auto h2l1l (int 1)
-> int

{

}

return -i;

/)

JULICH

Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main() h1() inti =10
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

auto main() -> int auto f(int i) () —-> int auto hll (int i) () —-> int auto h2l1l (int 1)

{ { { -> int
auto N = 10; return (i » 1) %$12; return i » 1i; {
if (£(N) < g(N)) { } } return -i;
hl(N); auto g(int i) () -> int auto h2l(int i) () —-> int }
} else { { {
h2 (N); return i $ 12; return i + h211(i);
} } }
} auto hl(int i) () —> int
{
return hll (i);
}
auto h2(int i) () —> int
{
return h21(1i);
}
main()
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 132 J Forschungszentrum

Functions at run time

When a function is called, e.g., when we write

f (valuel,value2,value3) for a function £
declared as

ret_type f(typel x, type2 vy, type3 z):

= A "workbook" in memory called a stack frame is
created for the call

= The local variables x, y, z are created, as if using

instructions typel x{valuel},

main()
i4
RP:0S
auto sin(double x) -> int {

// Somehow calculate sin of x

return answer;

}

auto main() -> int {

double x{3.141592653589793};
0; i < 100;
std::cout << i % x / 100

<< sin(i * x / 100) <<"\n";

for (int i =

type2 y{value2}, type3 z{value3}.
= A return address is stored.
= The actual body of the function is executed

= When the function concludes, execution continues
i) | at the stored return address, and the stack frame is
destroyed

= Memory used for the stack frame is usually cached

Member of the Helmholtz Association

and can be accessed quickly

@) JULICH
27 October — 30 October 2025 Slide 133 J Forschungszentrum

AW N =

oW N = © 0N o w

AW N

Member of the Helmholtz Association

Member functions

class D {
int nm;
double d;
public:
void val (double x) { d = x; }
auto val () const -> double { return d; }
auto name () const { return nm; }
auto operator+ (double x1) const -> double;
Vi

auto D::operator+ (double x) const -> double
{
return d + X * X;

}

0000000000000000 <_ZNK1DplEd>:
vmulsd xmm0O, xmmO, xmmO
vaddsd xmmO, xmmO, QWORD PTR [rdi+ 0x8]
ret

27 October — 30 October 2025

= Object of class types are passed using their
addresses. The compiler uses the address of the
class type variable and offsets to its parts to find
the appropriate values to use.

= Return value is written to the type appropriate
registers, e.g., xmm0, eax...

= Execution continues at the previously stored return
address

IJ JULICH

Slide 134 Forschungszentrum

Aside: reading assembly code

The compiler explorer

Exercise 2.1:

The compiler explorer https://godbolt.org provides a great tool to quickly examine the assembly code
corresponding to a code snippet. It is possible to choose different compilers, give compiler options ... Use it to
quickly check the assembly code generated for simple functions. Compare different compilers. Try the examples
in examples/assembly. Vary the compiler and compiler options and see how the assembler changes.

= class.cc contains two functions doing the same thing. One operates one a bare double variable, and
another on a double variable wrapped in a class with simple accessor functions. How different are the
generated assembler code for the two functions ?

= axpy.cc shows an example of a simple struct with an internal array (presumably of some numeric type).
Notice how separate numeric operations, written over elements of those arrays become fused multiply-add
or vector fma operations, when compiled with more recent compilers. What happens when the compile-time
fixed length array has a size 32 or 64 instead of 167 Compare also with the assembly from older compilers!

See also: CppCon 2016: Serge Guelton “C++ Costless Abstractions: the compiler view"

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 135 Forschungszentrum

https://godbolt.org
https://www.youtube.com/watch?v=q0N9Tvf7Bz0

Stack

class V3 ({
double x{}, y{}, z{};
auto cross(const V3 &) —> V3;

auto dot (const V3 &) —-> double;
bi
auto prob(int i, const V3& x, const V3& y)
—> double
{
int j = 1 % 233;
V3 tmp{x};
for (; j < i; ++3) {
tmp = tmp.cross(y);
}

return tmp.dot (x);

Member of the Helmholtz Association

27 October — 30 October 2025

= Heavily reused memory locations

= Likely cached, therefore, fast

= All local (block scope) variables of any type, which
come into existence inside a block, and expire at

the end of the block, i.e., with automatically
managed lifetime.

IJ JULICH

Slide 136 Forschungszentrum

Global storage

auto prob(int i) -> double
{
static int c{0};
++c;
if (¢ % 1000==0) {
std::cout << "Call count reached "
<< ¢ << "\n";

}

static const double L[] = {3.14, 2.71};

o

return L[i $ 2];

Member of the Helmholtz Association

27 October — 30 October 2025

= Variables outside any function

= Variables marked with the static keyword in
functions

= Floating point constants, array initializer lists, jump
tables, virtual function tables

IJ JULICH

Slide 137 Forschungszentrum

AW N =

o o

Heap

void f ()
{
int *A = new int][
// calcul

Lations w

delete [] A;

1

o+ o

Member of the Helmholtz Association

27 October — 30 October 2025

Directly/indirectly managed memory through new,
delete, malloc or free

Best practice: managed by container types like
vector, list etc. or by smart pointers
unique_ptr or shared_ptr

Objects who come into existence with a new call,
and live until an explicit delete call

Can store very large objects which don’t fit in the
stack

Arrays whose size is not known at compile time.

C99 style variable length arrays are not standard
C++.

Slide 138 Forschungszentrum

IJ JULICH

// and
delete

Aint*)

Member of the Helmholtz Association 27 October — 30 October 2025

Must remember to free memory before all pointers
pointing to that heap block go out of scope. Those
pointers may expire either because the program
successfully runs past the } marking the end of
their lifetime, or leaves the scope by throwing an
exception. = RAII: tie the acquiring and
releasing of resources to the life time of a suitable
object.

Tends to get fragmented

Must find a suitably sized unused block, and must
keep track of what is and isn't in use —
allocation and deallocation are expensive

Objects stored one after the other may end up in
very different locations

Slower than stack storage

@) JULICH
Slide 139 J Forschungszentrum

Exercise 2.2:

In HPC, we have to carefully monitor our heap allocation/deallocation operations. In the program
examples/alloc_cost.cc, we compare two nearly identical functions, where the only difference is the use
of a heap allocated array as the returned value. We clearly see that the version without the heap allocation runs
faster. Reducing the allocation/deallocation operations inside hot code sections improves performance.

Forschungszentrum

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 140

static void StringCreation (benchmark::States state) {
for (auto _ : state) {

std::string created_string("hello");

benchmark: :DoNotOptimize (created_string) ;

}

BENCHMARK (StringCreation) ;

static void StringCopy (benchmark: :State& state) {
std::string x = "hello";

10 for (auto _ : state) {

11 std::string copy (x);

12 }

13 }

14 BENCHMARK (StringCopy) ;

Test the cost of allocation and deallocation using the microbenchmarking site quick-bench.com! Their default
example is the code given here (above), comparing string creation and copy. Note down the timings. Then add
about 20 'o’s at the end of the "hello" in each bench mark, i.e., "hello" —— "hellooo000000000000000000".
Compare the timings again! Reduce the number of o's until the timings are as in the original form. Do you
understand the timings?

1
2
3
4
5 }
6
7
8
9

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 141 Forschungszentrum

https://quick-bench.com

Resource handles

= Instead of bare heap allocation/deallocation, allocate in constructors or member functions (a)
= When the scope of the variable ends, the destructor is automatically called (b)
= Destructor should free any resources still in use (c)
= The variable can now expire (d)
The labels (a), (b), (c) and (d) refer to the figures in the following slide.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 142 Forschungszentrum

Resource handles

)

void f() {
string A{"ABC"};
cout << A;
(a) ! Stack Heap
]

char *data
void f(){ |_si
string A{"ABC"};
cout << A;
} Stack

(c)

Heap

Member of the Helmholtz Association

27 October — 30 October 2025

void f() { e_tn

string A{"ABC’
cout << A;

}

void f() {
string A{"AB!
cout << A;

(d)eo o _stack !

Slide 143

Heap

Heap

lJ JULICH

Forschungszentrum

Resource handles

ector<int>
int *data
size_tn

alarray<float>
float *data
size_tn

string
char *data
size_tn

ist<int>
istnode<int> *n.

Stack

1

/7{

/
/

L)

= STL containers (except std: :array) are

) "resource" handles

>0)
/D

Heap

= Memory management is done through constructors,
the destructor and member functions

= No legitimate use of objects of the class should result in a memory leak

= Most data is on the heap. The objects on the stack are light-weight handles.

Member of the Helmholtz Association

27 October — 30 October 2025

Slide 144

IJ JULICH

Forschungszentrum

AW N =

® N o w

Resource handles

vector<int> A (32,0);
vector<double> B(64,0.);
vector<complex<double>> C(128);
vector<bool> D (256);
cout << sizeof(A) << ", "

<< sizeof(B) << ", "

<< sizeof (C) << ", "

<< sizeof (D) << "\n";

What will the program print ?
32, 64, 128, 256
B 32, 64, 256, 64
24, 24, 24, 24

Member of the Helmholtz Association

B 24, 24, 24, depends on the library

@) JULICH
27 October — 30 October 2025 Slide 145 J Forschungszentrum

Resource handles

int *data int *data,

size_tn = -[] size_tn =
std::move std:move
" 7
vector<int>
(| int *data) ()
size_tn

ector<int> I >) ector<int> :/ﬂ

(a) Stack Heap (b) Stack Heap

= Can transfer ownership of the resources very cheaply

= Actual data on the heap need not be touched at all!

= Just some pointer re-assignments on the stack (a), (b)

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 146 J Forschungszentrum

Resource handles

vector<vector<int>> v (10, vector<int>(10,0));

for (int 1 = 0; i < 10; ++1i) {
for (int j = 0; Jj < 10; ++3) {
v[il[3] =1 + 3;
//v.operator[] (i) .operator[] (J);
// (% (x(v.dat + 1)).dat + 7)

}

ector<int>
int *data

size_tn >

ector<vector<int>>
vector<int> *data
size_tn ™~
ector<int>|¥ector<int>
int *data”] int *data
size_tn size_tn

Stack Heap

Member of the Helmholtz Association

27 October — 30 October 2025

In C4++, objects (instances of a class) can live on
the stack or on the heap

Putting resource handles like vector<int> on
the heap, while allowed, incurs the cost of
additional indirections

It is almost always possible to avoid cumbersome
beasts like vector<vector<int>> ,
vector<vector<vector<vector<int>>>>
or Antx*x**.

| wish | hadn’t seen such “multi-dimensional arrays”
in production code!

IJ JULICH

Slide 147 Forschungszentrum

If you need your own 2D, 5D etc. arrays, ...

template <class T> class array2d {
vector<T> v;
size_t nc{0}, nr{0};
public:
auto operator () (size_t i, size_t Jj) const
-> const T& { return v[i * nc + Jl; }
auto operator () (size_t i, size_t Jj)
-> T& { return v([i * nc + j]; }

© 00 NO G W N

}i

= Use a wrapper class around an STL container, like vector or valarray

= Either overload the operator () to access a given row and column ...

examples/array2d contains the class template shown here.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 148 Forschungszentrum

9 JULICH

If you need your own 2D, 5D etc. arrays, ...

template <class T> class array2d {
std: :vector<T> v;
size_t nc{ 0 }, nr{ O };
public:
template <class Self> auto&& operator([] (this Selfs&s self, size t i, size t j) {
auto&s& a = std::forward<Self> (self);
return a.v[i * a.nc + Jjl;

© 00 NO G W N

bi

= Use a wrapper class around an STL container, like vector or valarray
= Either overload the operator () to access a given row and column ...

= ...or use C++423 and overload operator[] with two indexes, and deducing this...

examples/array2d contains the class template shown here.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 148 Forschungszentrum

std::array

1
2
3
4
5 auto main() -> int
6 {
7
8
9
0

std::array A{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
std::cout << "Size of array on stack = " << sizeof(A) << "\n";
std::cout << "size() = " << A.size() << "\n";

= Resembles other STL containers, but this is not just a handle.
= Does not need a data element to store the size, as the size is "part of the name" of the type!

= Moving an std: :array has order N complexity, as each individual element needs to be moved. No
pointer swapping trick can do the job for this.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 149 Forschungszentrum

Data alighment

[]

word

byt

= Data is read or written with a unit size called word. On the most common architectures, word size is 4 or 8
bytes.

= Data alignment means, putting data on memory addresses which are integral multiples of the word size
= n-byte aligned address has >= log»(n) least significant zeros
= Access for aligned data is fast

= |f the size of a primitive type does not exceed the word size, access to aligned data of that type is also atomic

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 150 Forschungszentrum

Data alighment

= The X86 architecture is tolerant of misaligned data. Programs run, even if they can't use SSE features

= PowerPC throws a hardware exception, which may be handled by the OS. For unaligned 8 byte access, a
4,610% performance penalty has been discussed

(http://www.ibm.com/developerworks/library/pa-dalign/)

= On other systems, crashes, data corruption, incorrect results are all possibilities

Member of the Helmholtz Association 27 October — 30 October 2025

@) JULICH
Slide 151 J Forschungszentrum

http://www.ibm.com/developerworks/library/pa-dalign/

Data alighment

= Usually, primitive types are aligned by their "natural alignment": 4 byte int has 4 byte alignment, 8 byte
double has alignment of 8 and so on

= A class has a natural alignment equal to the strictest requirement of its members
= The alignof operator can be used to query the alignment of a type
= The alignas keyword can be used to set a stricter alignment requirement

Verify the above using the example program examples/alignof.cc.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 152 Forschungszentrum

Data structure padding

class D { // alignment : 8, because of d = Alignment requirement of members can necessitate
int nm; // alignment requirement 4. introduction of padding between members
double d; // Must have alignment 8.

public:

void val (double x) { d=x; }
auto val () const -> double { return d; }
auto operator+ (double x1) const -> double;
auto D::operator+ (double x) const -> double
{
return d + x * x;
D::operator+ (double) const:

vfmadd213sd xmm0, xmmO, QWORD PTR [rdi+8]
ret
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 153 J Forschungszentrum

https://www.godbolt.org/z/xcdGx9nox

Data structure padding

class D { // alignment : 8, because of d = Alignment requirement of members can necessitate
int nm; // alignment requirement 4. introduction of padding between members
double d; // Must have alignment 8. i

public: = What happens to the assembler here, if we put a

void val (double x) { d=x; }
auto val() const -> double { return d; }

2
auto operator+ (double x1) const -> double; D!
auto D::operator+ (double x) const -> double

{

comma between n and m in the name nm in class

return d + x * x;
D::operator+ (double) const:

vfmadd213sd xmm0, xmmO, QWORD PTR [rdi+8]
ret
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 153 J Forschungszentrum

https://www.godbolt.org/z/xcdGx9nox

Data structure padding

class D { // alignment : 8, because of d = Alignment requirement of members can necessitate
int nm; gnment requirement 4. introduction of padding between members
double d; // Must have ali nt 8. i

public: = What happens to the assembler here, if we put a
void val(double x) { d=x; } comma between n and m in the name nm in class
auto val() const -> double { return d; } D?
auto operator+ (double x1) const -> double; '

auto D::operator+ (double const -> double

(P (*) = What if we make it int n, m, p;? Test it using
return d + x * x; the compiler explorer! Click on the link or copy and

D::operator+ (double) const: £ d f
vEmadd213sd xmm0, xmm0, QWORD PTR [rdi+8] paste code from
ret examples/assembly/class2.cc.

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 153 J Forschungszentrum

https://www.godbolt.org/z/xcdGx9nox

o
H O ©®NOUE WN =

=
w N

Member of the Helmholtz Association

Data structure padding

class A {
char c;
double x;
int d;
}i
// Compiled as if it was
char c;
char pad[7];
double x;
int d;
char pad2([4];
// Overall a
// size of s

© 0N oA W N

o=
= o

// why 1is this here ?
ignof (double)

Jn
S

class B {
double x;
int d;
char c;

piled as if it was

double x;

int d;

char c;

char pad[3];

// Overall alignment alignof (double)
// size of struct = 16

= Due to padding, size of structures can be bigger than the sum of sizes of their elements

= C++ rules do not allow the compiler to reorder elements for space

= Carefully choosing the declaration order of class members can save memory

27 October — 30 October 2025

IJ JULICH

Slide 154 Forschungszentrum

o
H O ©®NOUE WN =

e
© 0 NO U W

Member of the Helmholtz Association

Alignment specifiers

alignas (64) double x[4]; // ok

alignas (64) vector<double> a (4);

// Pointless.

// The above simply aligns the resource
// handle, not the data on the heap

alignas (64) array<double, 4> A;
// This is fine, as std::array has
// real data in its struct

template <class T, int vecsize>
struct alignas (vecsize) simd_t
{

array<T,vecsize/sizeof (T)> data;
i
// We have requested that all objects
// of type simd_t should be aligned
// to vecsize bytes.

27 October — 30 October 2025

= The alignas keyword can specify alignment for
variables

= Can be attached to a class declaration so that all
objects of that type have a specified alignment

It is possible to attach an extended alignment
specifier to the class declaration

Be mindful about what you are aligning when you
use alignas for a resource handle like vector

alignas (64) std::vector U(100UL, 3.

// Align the vector object on the s

// The array managed by the vector

// not aligned

std: :vector<double,
tbb::cache_aligned_allocator<double>>

A(100UT, 3.14);
// Cache aligned data array on the heap

[

0N U AW N

IJ JULICH

Slide 155 Forschungszentrum

Exercise 2.7:

The examples/alignO0.cc has an example class template, which creates a data array of the right size to fill
the simd vector width irrespective of the input data type. It illustrates the use of alignof and alignas, and
variable templates.

Exercise 2.8:

The examples/alignl.cc shows that the usual mechanisms of dynamic allocation up to C++14 do not
provide any guarantees about alignment greater than the natural alignment of the type. The behaviour changed
in C++17 for types with explicitly specified extended alignment specifier like our simd_t class of the previous
example. Finally, examples/align2.cc shows the use of a new version of the new operator introduced in
C++17, which accepts an alignment argument.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 156 Forschungszentrum

Memory

= Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!

DRAM
L3 |
(L2 f|lL2 JlL2 [|lL2 |
Core Core Core Core
IJ JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 157 Forschungszentrum

Memory

= Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!

= CPUs contain a certain amount of “cache” memory,
DRAM which is faster to access, but much smaller than
RAM

Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
| the L1 cache

L3
| = When the CPU looks for data from one address in
[L2 I[L2 JlL2 J[L2 | memory, it is copied from RAM to the cache and
then used.

Core Core Core Core

@) JULICH
27 October — 30 October 2025 Slide 157 J Forschungszentrum

Member of the Helmholtz Association

Memory

= Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!

= CPUs contain a certain amount of “cache” memory,
DRAM which is faster to access, but much smaller than
RAM

Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
| the L1 cache

L3
| = When the CPU looks for data from one address in
[L2 I[L2 JlL2 J[L2 | memory, it is copied from RAM to the cache and
then used.

Core Core Core Core

@) JULICH
27 October — 30 October 2025 Slide 157 J Forschungszentrum

Member of the Helmholtz Association

Memory

Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!

= CPUs contain a certain amount of “cache” memory,

DRAM which is faster to access, but much smaller than
RAM

= Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from

| the L1 cache

L3
| = When the CPU looks for data from one address in
[L2 I[L2 JlL2 |lL2 | memory, it is copied from RAM to the cache and
then used.
Core Core Core Core
= |f it is immediately accessed again, it is in the cache, and can be used without the cost of fetching it from
RAM

= Memory is fetched in “cache lines". Successive operations on contiguous memory locations do not incur the

full cost of main memory access ‘ .
‘ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 157 Forschungszentrum

Finding out cache

root > dmidecode -t cache
3.1
Getting SMBIOS data from sysfs.
SMBIOS 3.0.0 present.
Handle 0x0007, DMI type 7, 19 bytes
Cache Information

Socket Designation: L1 Cache

information about your CPU

Configuration: Enabled, Not Socketed, Level

Operational Mode: Write Back
Location: Internal
Installed Size: 256 kB
Maximum Size: 256 kB
Supported SRAM Types:
Synchronous

Installed SRAM Type: Synchronous

Speed: Unknown
Error Correction Type: Parity
System Type: Unified

Associativity: 8-way Set-associative}

Handle 0x0008, DMI type 7, 19 bytes
Cache Information
Socket Designation: L2 Cache

Configuration: Enabled, Not Socketed, Level 2

Operational Mode: Write Back

Member of the Helmholtz Association

27 October — 30 October 2025

Location: Internal
Installed Size: 1024 kB
Maximum Size: 1024 kB

Supported SRAM Types:
Synchronous

Installed SRAM Type: Synchronous

Speed: Unknown

Error Correction Type: Single-bit ECC

System Type: Unified

Associativity: 4-way Set-associative
Handle 0x0009, DMI type 7, 19 bytes
Cache Information

Socket Designation: L3 Cache

Configuration: Enabled, Not Socketed, Level 3

Operational Mode: Write Back
Location: Internal
Installed Size: 8192 kB
Maximum Size: 8192 kB
Supported SRAM Types:
Synchronous
Installed SRAM Type: Synchronous
Speed: Unknown
Error Correction Type: Multi-bit ECC
System Type: Unified
Associativity: 16-way Set-associative

Slide 158

/)

JULICH

Forschungszentrum

CPU cache

not_root> getconf -a | grep -i cache
LEVEL1_ICACHE_SIZE 32
LEVEL1_ICACHE_ASSOC 8
LEVEL1_ICACHE_LINESIZE 6
LEVEL1_DCACHE_SIZE
LEVEL1_DCACHE_ASSOC
LEVEL1_DCACHE_LINESIZE
LEVEL2_CACHE_SIZE
LEVEL2_CACHE_ASSOC
LEVEL2_CACHE_LINESIZE
LEVEL3_CACHE_SIZE
LEVEL3_CACHE_ASSOC
LEVEL3_CACHE_LINESIZE 64
LEVEL4_CACHE_SIZE

LEVEL4_CACHE_ASSOC
LEVEL4_CACHE_LINESIZE

Member of the Helmholtz Association 27 October — 30 October 2025

= Tools : 1scpu, dnidecode, 1shw, getconf

= Different tools may aggregate information

differently (e.g., how total as opposed to per-core

cache is reported)

= L1d cache is for data, L1i is for instructions

(instructions must live somewhere in the cache

too!)

Slide 159

/)

JULICH

Forschungszentrum

CPU cache

Member of the Helmholtz Association

. 8SS8S Ss11 1111

For a 64 byte cache line, the least 6 bits of the address refer to the location inside the cache line. Not
relevant in determining parking spot in the cache

If we have 32kb of L1d cache, with a 64 byte line, we have 512 "parking spots" (lines)

An 8 way associative cache will then have 512/8 = 64 sets, and use the further 6 bits of a memory address
to assign a set

If we keep accessing random places in memory, it is very easy to run out of L1 cache: in the example here,
we have only 64 sets!

Address bits higher than the least 12 are not used in determining where in the cache a value is stored: any
two addresses separated by 22 map to the same set in the L1 cache.

Variables with memory addresses separated by setcount x linesize compete for the same cache line

For better performance, one should strive to write code utilising the whole cache line before it is evicted

@) JULICH
27 October — 30 October 2025 Slide 160 J Forschungszentrum

AW N =

o o

oA W N e

Memory access patterns

= Q: Which way of accessing the “matrix” is faster,
std::vector<int> A(N * N, 0); and by how much ?

for (size_t i = 0; 1 < N; ++1i) {

for (size_t j = 0; 3§ < N; ++3) { = A: For N=10000, my laptop takes about 0.037

} AlL = N+ 3} += 3 + 4 seconds for the row major pattern (top), and about
} 0.26 seconds for the column major pattern (middle),

and 1.86 seconds for random pattern (bottom)

for (size_t i = 0;
for (size_t j
A[j « N +

i < N; ++1) {
= 0; 3 < N; ++3) |
il 4= 3 + i;

}

for (size_t i = 0; 1 < N % N; ++1i) {
Al pos[i]] += i;
}

See also: CppCon 2016: Timur Doumler “Want fast C++? Know your hardware!”

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 161 J Forschungszentrum

https://www.youtube.com/watch?v=BP6NxVxDQIs&t=932s

Memory

1 constexpr size_t size = 2 << 26;
2 std::vector< long > A(size, 0);
3 for (size_t step = 1; step <= 2048; step *= 2) {
4 for (size_t i = 0; i < size; 1 += step) A[i]++;
5 }
Step Time) .) X
! 0.0067211 = For small step sizes, increasing the number of writes to the array does not change the
4 0.0929546 total time.
8 0.113927
1 g313aL = Multiple accesses inside a cache line has minimal extra cost.
64 0.0675447
128 0.0415029
256 0.016718
512 0.00694461
1024 0.00357155
2048 0.00178591
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 162 J Forschungszentrum

AW N =

4K aliasing

© 0N e w

1400
"Warout ——
// Layout : 1300
// x0, x1, x2 xn-1, y0, yl a
// 20, zl [, wx0, wxl 2 1200
// wy0, wyl wz0 g
% 1100
for (size_t i=0;i<npart;++i) { E
wx (1) =R (0, 0) #x (1) +R (0, 1) #y (1) +R(0,2) *z (1)) ; S 000
wy (1) =R(1,0)*x (1) +R(1,1)*y (1) +R(1,2)*z(1)); 7
Wz (1)=R(2,0) *x (1) +R(2, 1) »y (1) +R(2,2) *z (1)) ; g
=
} 800
700

440 460 480 500 520 540 560 580 600 620 640 660
Particle count

= Innocent looking code can sometimes produce weird changes in performance based on array sizes

= The spike in required time here comes for a particle count of about 512, when the different components of
the data for one particle are separated by exactly 4kB.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 163 Forschungszentrum

Exercise 2.9: Memory effects

The following examples illustrate the cache effects discussed so far:

= traverse(.cc can be used to compare contiguous and non-contiguous access of a large array
= every_nth.cc compares times for accessing every n'th element, and highlights the cache line

= transpose.cc transpose operation on a matrix, which involves lots of non-contiguous access

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 164 Forschungszentrum

l) JULICH

Recommendations

= Prefer std: :array and std: :vector for all your container needs as a default. Many libraries also
provide other containers with contiguous storage providing advantages for specific use cases. Anything with
non-contiguous storage needs to be carefully justified
= QOrganise code to maximise the use of any cache line that has been fetched:
= Collate processing of nearby memory locations
= Organise data structures so that things processed together are also stored near each other

= Keep variables as local as possible

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 165 J Forschungszentrum

Instruction pipeline

(LI rrrrra] = A processor consists of many units,
y responsible for different actions, e.g.,
: (O O O 0 fetching instructions or data from

memory, arithmetics, writing

computed results back to memory
0)
z z[0] z[1] z[2] = When executing a program, pipelining
=
= helps keep different units busy
~ s 3 = = = : :
Z = hat al = throughout, improving throughput
}3 * & * * *
2 s © = = =
=z — = — = — =
S| xto1 ylel x(11 y[1] x[21 y[2] x[3]1 y[3] x[4] yl4]
T T T T T T T T T T T T T T T L T T T T T T T T T T T T T T TTTT
Time
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 166 J Forschungszentrum

Instruction pipeline

Latency of the
operation!

= = N)

@© @© © @©

x* * * *

P P P P

N /u /ll

> P < P

NEREREERERRRREREREENERRRRRERRRRRRERRRRRRER

Time

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 167 Forschungszentrum

Instruction pipeline

Latency of the Pipelining for more
operation! throughput!

S = 9 o X B 9

@© © @© © © @© @©

x * * * * * X

X > X > > > X

I I I I I I I

X > b > X > X
EEERERERRREREREEREREERER R RRERERRRERRRERN

Time

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Forschungszentrum

Slide 168

Instruction pipeline

Laé%g?gt?ggpe Pipﬁﬂp{i}r&%ﬁ%{lwore = CPUs d9 not have to wait until one calculation is
totally finished before starting another
T - 9§ ® ¥ ©® ©] They Plpellme . !f the data required for ano'Fher
© T © ‘T © ‘T © instruction is available, that can start execution
X x * x * x x H H Tni
< - < - % - % before the first is finished
n I n I n I I = Because of pipelining, the processors are able to
< > < > x > < . L At
perform more operations in time At than
[TTTTTTTTTT T T T T T T T I T T T T T T T T T T TTTTTTd latency
Time = Data dependencies create stalls in the pipeline

= Some modern processors even execute instructions
“out of order”, to keep the pipeline busy

Exercise 2.10:

The program examples/ilp.cc demonstrates the effects of data dependencies. Two alternative versions of a loop
are given, performing the same total number of computations. One of them runs more than 5 times faster,
because it avoids dependencies between successive calculations.

@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 169 J

Forschungszentrum

Pipeline and branched code

= |nstruction fetch

Instruction decode

= |nstruction execute
= Memory access

= Register write back

Member of the Helmholtz Association

1 if (x+y>5) £();
2 else g();

27 October — 30 October 2025

= Program execution flows
through different units
responsible for different work

= Branching can introduce
holes in the pipeline without
some workaround

B request mem x
B request mem y
B cale x+y

® calcres > 5

L4

The "next instruction" depends on the outcome of an instruction.

IJ JULICH

Slide 170 Forschungszentrum

Member of the Helmholtz Association

Branch prediction

for (int 1 = 0; 1 < N; ++1i) {
if (p[il > gen()) |
bl[i] = al[i] + cl[i];
++fwd;
} else {
ali] = b[i] + c[i];
++rev;
}
}
nngb = 0;
while (a) {
dist [nngb++] = distf(a,i);

}

= For efficient execution, different units in the
pipeline must be kept busy as much as possible

27 October — 30 October 2025

= When branches are encountered, the CPU simply
guesses which way it will go, and fetches
instructions accordingly

= If the guess is right, no pipeline stall

= If it is wrong, all operations done with that guess
must be purged

l) JULICH

Slide 171 Forschungszentrum

Member of the Helmholtz Association

Branch mis-prediction penalty

for (int 1 = 0; 1 < N; ++1i) {
if (p[i] > gen()) {
ali] = (b[i] > r0 && b[i] < rl
&& c[i] < b[i]);
} else {
ali] = b[i] + c[i];
++rev;
}
}
nngb=0;
while (a) {
dist [nngb++] = distf(a,i);

}

= |f statements, switches, loops contain obvious

branches

= The ternary operator a = cond ? vl : v2is

(sometimes) a branch

27 October — 30 October 2025

= Not so obvious branches include boolean | | and

& & operators:

= In a sequence of operations like
all b || c || , the operands are
evaluated left to right until the first true value is
obtained
= |n a sequence of operations like
a && b && c && , the operands are
evaluated left to right until the first false value is
obtained

@) JULICH
Slide 172 J Forschungszentrum

AW N =

N o o

AW N

o«

Not branches

auto f(int i) -> int
{
static const int a[4]={4,3,2,1};
int ans=0;
ans += (a[l]<i)?1:2;
return ans;

0000000000000000 <_Z1fi>:
cmp edi, 0x4
setl al
movzx eax,al
inc eax
ret

Member of the Helmholtz Association 27 October — 30 October 2025

o U W N

= Conditional assignments are often reorganised as
simple sequential instructions by compilers using
special assembler instructions when available

= Loops with small loop counts may be automatically
unrolled at compile time leaving simple linear code

0000000000000000 <_zlfdpd>:

subsd
subsd
subsd
subsd
ret

xmm0, QWORD PTR [rdi]

xmm0, QWORD PTR [rdi+0x8]
xmm0, QWORD PTR [rdi+0x10]
xmm0, QWORD PTR [rdi+0x18]

IJ JULICH

Slide 173 Forschungszentrum

AW N =

o o

Not branches

auto f (double x, double A[4]) -> double
{
double a=x;
for (int 1=0;i<4;++1i) a-=A[i];
return a;
}
Member of the Helmholtz Association 27 October — 30 October 2025

o U W N

= Conditional assignments are often reorganised as
simple sequential instructions by compilers using
special assembler instructions when available

= Loops with small loop counts may be automatically
unrolled at compile time leaving simple linear code

0000000000000000 <_zlfdpd>:

subsd
subsd
subsd
subsd
ret

xmm0, QWORD PTR [rdi]

xmm0, QWORD PTR [rdi+0x8]
xmm0, QWORD PTR [rdi+0x10]
xmm0, QWORD PTR [rdi+0x18]

IJ JULICH

Slide 173 Forschungszentrum

Exercise 2.11:

Branch prediction effectiveness using the example program examples/branch_prediction.cc, compare
the processor on your own computer with the processors on JUSUF login nodes or compute nodes. The program
partitions an array of integers into 3 ranges. Running it with a command line argument (value ignored) causes it
to first sort the array and then perform the same partitioning actions. In the sorted array, the branches are easier
to predict. What do you observe ? How do different compilers compare ?

Exercise 2.12:

The program examples/branch_predictionl.cc further illustrates hardware branch prediction. Here, two
alternative kinds of calculations need to be done and accumulated separately. Depending on the value inside a
random array of numbers, we decide between the two calculations. It is impossible for the compiler to
pre-determine the branches. Adjust the threshold to shift the probability of the two branches and observe the
performance. Again, compare the 3 compilers!

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 174 Forschungszentrum

Class inheritance, virtual functions and performance

= Class hierarchies constitute a flexible and beginner Self-Operating Napkin

friendly tool kit

In a fairly wide variety of applications, such as
graphics, and many simulations, they may form the
backbone of a robust, flexible code base

Because of their success in some areas, they have
been massively overused, leading to elaborate Rube
Goldberg machines, which are neither easy to read
nor particularly fast

= In modern C++, we should explore alternative
ways to solve our problems

Understanding how it works can help us more easily
identify situations where a deep class hierarchy will

be a bad idea.
@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 175 J Forschungszentrum

Inheritance

= Inheriting class may add more data, but it retains
all the data of the base

= The base class functions, if invoked, will see a base
class object

= The derived class object is a base class object, but
with additional properties

e’

access of base
class functions

g

access of derived class functions
ualified by private, protected etc .
(q yp p) 9 JULICH

Forschungszentrum

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 176

Inheritance

= A pointer to a derived class always points to an
address which also contains a valid base class
object.

= baseptr=derivedptr is called "upcasting".
Always allowed.

= Implicit downcasting is not allowed. Explicit
downcasting is possible with static_cast and
dynamic_cast

access of base
class functions

g

access of derived class functions
(qualified by private, protected etc)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 177 Forschungszentrum

Inheritance

1 class Base {
2 public:
3 void f () {std::cout<<"Base::f ()\n";}
4 protected:
5 int i{4};
6 bi
7 class Derived : public Base {
8 int k{0};
9 public:
10 void g () {std::cout<<"Derived::g()\n";}
11 }i
12 auto main() -> int
access of base 2ol
class functions 14 Derived b;
15 Base xptr=&b;
16 ptr->g(); // Error!
17 static_cast<Derived > (ptr)->g(); //OK
18 }

access of derived class functions
(qualified by private, protected etc)

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 178 J Forschungszentrum

Class inheritance with virtual functions

auto main() -> int
{
vector<unique_ptr<Shape>> shapes;
shapes.push_back (make_unique<Circle> (0.5, Point(3,7)));
shapes.push_back (make_unique<Triangle> (Point (1,2),Point (3,3),Point(2.5,0)));

for (auto&s shape : shapes) {
std::cout << shape->area() << '\n';

}

= A [smart] pointer to a base class is allowed to point to an object of a derived class

= Here, shape[0] —>area () will call Circle: :area (), shape[l]—>area () will call
Triangle: :area ()

= But, how does it work ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 179 Forschungszentrum

Calling virtual functions: how it works

D *d=new D2;
d->f();

f() | function ptr
g() | function ptr

f() | function ptr

g() [function ptr

Member of the Helmholtz Association

f0
a0

function ptr

function

function

function

function ptr

27 October — 30 October 2025

= For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code

= There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere

= The vptr pointer points to the vtable of that
particular class

IJ JULICH

Slide 180 Forschungszentrum

Calling virtual functions: how it works

= Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body

= Branch mispredictions, cache misses ...

= For HPC applications, use of virtual functions in
hot sections will hurt performance

Member of the Helmholtz Association 27 October — 30 October 2025

0
a0

D *d=new D2;

function ptr

function ptr

f() [function ptr

g() | function ptr

Q -
a3
S

function
function
function

function ptr

function ptr

= Often, the polymorphic behaviour sought after
using virtual functions can be implemented with
CRTP without the virtual function overhead

Slide 181

IJ JULICH

Forschungszentrum

Expressing assumptions

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 182

Sometimes, relationships between function inputs can not be expressed through their types. The application
developer might know that

= the floating point input to a function is always between 0 and 1.

= two integer inputs are always ordered smaller, greater

= an array is never empty

When the compiler translates our code, such information is usually not available.

To ensure correct results, code is generated to handle all kinds of corner cases, which we are certain can not
ever happen

C++23 introduced one such way to express such relations in code: [[assume (expr)]]

[[assume ()]] expressions may be placed anywhere in the function body and allow the compiler to make
those assumptions at that point in code

This gives a license to the compiler to make those assumptions and hence possibly generate some faster
code. But faster code is not guaranteed.

If the explicitly expressed assumptions are violated at the runtime, the result is undefined behaviour.

It is usually better to use [[assume (expr)]] along with assert so that violations are detected during
debugging

IJ JULICH

Forschungszentrum

EXPLORER More ¥ Templates Share ¥ Policies (& > Other ¥

C++ source #1 & O x86-64 g (trunk) (Editor #1) £ X o X
A~ @ +- v & 2 ~ x86-64 gcc (trunk) ~ [© -std=c++23-0O3-march=skylake ~
#include <cmath> S A - V- . F o+ S
auto f(double x, double y) i(double Adotbiol:
vxorpd)
{ sub , 24
‘ return std::sqrt(x) + std::sqrt(y); IS
}

ja .L10
vsqrtsd 2

1
2
3
4
5
6
7

vxorpd
vucomisd

ja .L11
vsqrtsd .

vaddsd
add
ret

vmovsd QWORD PTR [+8],
call sqrt

vmovsd , QWORD PTR [rsp+8]
vmovapd 2,

Jmp .L4

vmovapd o

vmovsd QWORD PTR [+8],
25 call sqrt

vmovsd , QWORD PTR [+8]
27 vmovapd il

C HOutput (//0) x86-64 gcc (trunk) j - 7957ms (130548) 814" . fiered |E

Compiler License

{ :COMPI ER - - o icies @ v -
EXPLORER Add... More Templates Share Policies (# Other

C++ source #1 # O x86-64 gcc (trunk) (Editor #1) £ X
A~ B +- v £ » € c++ ~ x86-64 gcc (trunk) >y &
#include <cmath> o~ Y~ . F o+~

f(double, double):
vsqrtsd
vsqgrtsd
vaddsd
ret

auto f(double x, double y)

{
[[assume(x > 0 && y > 0)]];
return std::sqrt(x) + std::sqrt(y);

1
2
&
4
5
6
7
8

(& EOutput(/0) x86-64 gcc (trunk) i - 3224ms (11477B) ~741

lines fitered |Z Compiler License

Using notifying special functions to learn

Exercise 2.13:
The course material includes a class called Vbose where the special member functions like constructors and the
destructor emit messages when they are used. Such a class can be used to develop a better understanding of
many run time effects. Three notebooks are provided in the folder examples/. They are meant for self study and
experimentation. Open them by browsing in the left panel of your Jupyter session and double clicking on the
notebook name. Go through them in the following order:

® grow_vector.ipynb

® ref gqual_members.ipynb

m perfect_forwarding.ipynb

The ideas introduced in these notebooks will be used later.

Forschungszentrum

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 184

Reference qualified member functions

1 struct Box {

2 value_type r{};

3 auto value() const -> const value_typeé&

4 {

5 return r;

6 }

7 auto value() -> value_type& { return r; }
8 }i

Member of the Helmholtz Association 27 October — 30 October 2025

= If b is of the type Box, b.value () is a
const value_types or just value_typeé&
depending on whether b is const or not

IJ JULICH

Slide 185 Forschungszentrum

o
H O ©®NOUE WN =

o
Bw N

Reference qualified member functions

// Since C++11

struct Box {

value_type r{};
auto value() const & -> const value_type&
{
return r;
}
auto value() & —> value_type& { return r; }
auto value() const && —> const value_type&&
{
return r;
}

auto value() && -> value_type&& { return r;

Member of the Helmholtz Association

27 October — 30 October 2025

= If b is of the type Box, b.value () is a

const value_types or just value_typeé&
depending on whether b is const or not

= Since C++11, more overloads are possible: one can

have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.

IJ JULICH

Slide 185

Forschungszentrum

Reference qualified member functions

= If b is of the type Box, b.value () is a
const value_types or just value_typeé&
depending on whether b is const or not

// Since C+
struct Box {

value_type r{};

auto value() const & -> const value_type&

. = Since C++11, more overloads are possible: one can

return r; have different versions of member functions

} depending on whether the calling instance is an

auto value() & —> value_type& { return r; } L I R I £
auto value() const &«& —> const value_typess -value or an R-value rererence.

{ = Potentially quadruples the number of variations of a
return r;

} member function depending on the calling instance
auto value() && —> value_type&& { return r; }

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 185 Forschungszentrum

Reference qualified member functions

struct FileData {

bi

std::string header_text{};
std::vector<std::byte> bulk{};

auto header () const & -> const std::string&

{
return header_text;
}
auto header () & —> std::strings
{
return header_text;

}

auto header () const && —-> const std:

{

return std::move (header_text);
}
auto header () && -> std::stringé&s
{

return std::move (header_text);

}

auto readfile(std::filesystem::path fn)

:stringé&s

> FileData;

Member of the Helmholtz Association

27 October — 30 October 2025

If b is of the type Box, b.value () is a
const value_types or just value_typeé&
depending on whether b is const or not

Since C++11, more overloads are possible: one can
have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.

Potentially quadruples the number of variations of a
member function depending on the calling instance

= Sometimes, it is possible to provide some

optimisations in situations where the calling
instance is an R-value. An example demonstrating
this can be explored in the notebook

ref_qual_members.ipynb

IJ JULICH

Slide 185 Forschungszentrum

© 0N O oA W N

Member of the Helmholtz Association

struct Entity {

Entity (const Vbose& x, const Vboses y)
1{x}, r{y} {}

Entity (const Vbose& x, Vbose&& y)
1{x}, r{std::move(y)} {}

Entity (Vbose&& x, const Vbosed vy)
l1{std::move(x)}, r{y} {}

Entity (Vbose&& x, Vbose&s& y)
1{std::move(x)}, r{std::move(y)} {}

Vbose 1, r;
Vi

template <class T>
struct Entity {
template <class U, class V>
Entity (Us& x, V&& y)
1{std::forward<U> (x) },
r{std::forward<v>(y)} {}

T 1l, r;
Vi

27 October — 30 October 2025

Using templates for deduplication

In the notebook perfect_forwarding.ipynb we
explored a vaguely similar situation

Instead of the 4 constructors in the first example,
we could write a single function template, using
forwarding references and std: : forward

The forwarding references, Us& and Vs& capture
the constantness L/R-value reference
characteristics of the inputs

The std: : forward wrapping the uses of the
respective variables casts them into their fully CVR
qualified typenames.

Can we do something like that to reduce the clutter
in the previous examples?

IJ JULICH

Slide 186 Forschungszentrum

Using templates for deduplication

struct FileData { functions...
std::string header_text{};
std::vector<std::byte> bulk{};
auto header () const & -> const std::string&
{
return header_text;
}
auto header () & —> std::strings
{
return header_text;
}
auto header () const && -> const std::stringé&s
{
return std::move (header_text);
}
auto header () && —-> std::string&s
{
return std::move (header_text);
}
}i
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 187

/)

= Imagine that, instead of these class member

JULICH

Forschungszentrum

o
H O ©®NOUE WN =

T = B T S
[S R R A T)

Using templates for deduplication

= Imagine that, instead of these class member

struct FileData { functions...
std::string header_text{}; . . .
std: :vector<std: :byte> bulk{}; = we had a set of free standing functions doing the
bi , , same thing
auto header (const FileData& fd) -> const std::stringé
{
return fd.header_text;
}
auto header (FileData& fd) —> std::stringé
{
return fd.header_text;
}
auto header (const FileData&& fd) —> const std::string&s
{
return std::move (fd.header_text);
}
auto header (FileData && fd) -> std::string&s
{
return std::move (fd.header_text);
}
}i
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 187 J Forschungszentrum

Using templates for deduplication

struct FileData ({
std::string header_text{};
std::vector<std::byte> bulk{};
bi
template <class C>
requires std::same_as<FileData,
std: :remove_cvref_t<C>>
auto&s& header (Cs& £fd)
{
return std::forward<C> (fd) .header_text;

}

Member of the Helmholtz Association 27 October — 30 October 2025

= Imagine that, instead of these class member
functions...

= we had a set of free standing functions doing the
same thing

= We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

IJ JULICH

Slide 187 Forschungszentrum

Member of the Helmholtz Association

Using templates for deduplication

struct FileData {

bi

std::string header_text{};
std::vector<std::byte> bulk{};
auto header () const &

{

-> const std::string&

return header_text;
}
auto header () &

{

-> std::strings

return header_text;
}
auto header ()
{

const && —> const std::string&s

return std::move (header_text);
}
auto header () &&

{

-> std::strings&s

return std::move (header_text);

}

27 October — 30 October 2025

= Imagine that, instead of these class member

functions...

= we had a set of free standing functions doing the

same thing

= We could easily write a single template version for

all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

= Member functions don’t expose the calling instance

in the same way, since it is passed implicitly.

IJ JULICH

Slide 187 Forschungszentrum

Using templates for deduplication

struct FileData ({
std::string header_text{};
std::vector<std::byte> bulk{};
template <class Self>
autos& header (this Selfss self)
{

return std::forward<Self> (self)
.header_text;

}

bi

Member of the Helmholtz Association 27 October — 30 October 2025

Imagine that, instead of these class member
functions...

we had a set of free standing functions doing the
same thing

We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don't expose the calling instance
in the same way, since it is passed implicitly.

Good news! Since C+4+-23, they can!

@) JULICH
Slide 187 J Forschungszentrum

Using templates for deduplication

struct FileData ({
std::string header_text{};
std::vector<std::byte> bulk{};
template <class Self>
autos& header (this Selfss self)
{

return std::forward<Self> (self)
.header_text;

}

bi

Member of the Helmholtz Association 27 October — 30 October 2025

Imagine that, instead of these class member
functions...

we had a set of free standing functions doing the
same thing

We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

Member functions don't expose the calling instance
in the same way, since it is passed implicitly.

Good news! Since C+4+-23, they can!

The names Self etc are not special. You choose.

@) JULICH
Slide 187 J Forschungszentrum

Using templates for deduplication

struct FileData ({
std::string header_text{};
std::vector<std::byte> bulk{};
template <class Self>
autos& header (this Selfss self)
{

return std::forward<Self> (self)
.header_text;

}

bi

Member of the Helmholtz Association 27 October — 30 October 2025

Imagine that, instead of these class member
functions...

we had a set of free standing functions doing the
same thing

We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

Member functions don't expose the calling instance
in the same way, since it is passed implicitly.

Good news! Since C+4+-23, they can!
The names Self etc are not special. You choose.

The special syntax to explicitly name the calling
instance is shown here

@) JULICH
Slide 187 J Forschungszentrum

Using templates for deduplication

struct FileData ({
std::string header_text{};
std::vector<std::byte> bulk{};
template <class Self>
autos& header (this Selfss self)
{

return std::forward<Self> (self)
.header_text;

}

bi

Member of the Helmholtz Association 27 October — 30 October 2025

Imagine that, instead of these class member
functions...

we had a set of free standing functions doing the
same thing

We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

Member functions don't expose the calling instance
in the same way, since it is passed implicitly.

Good news! Since C+4+-23, they can!
The names Self etc are not special. You choose.

The special syntax to explicitly name the calling
instance is shown here

Can't use this in such member functions

@) JULICH
Slide 187 J Forschungszentrum

Polymorphism without virtual functions

= We have already seen how function overloading gives us a polymorphic unit : the overload set

= Different variation of a function is picked based on the type of the input parameters, or the constraints
satisfied by the input parameters

= This is one kind of static polymorphism

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 188 Forschungszentrum

Tag dispatching

o
H O ©®NOoUEWN =

o e e
oW N

struct flying {};
struct swimming {};

template <class T>

void do_something (T && t, flying)

{
}

template <class T>

t.fly(a,b);

void do_something (T && t, swimming) {...}
Y2

template <class T>

void do_something(T t)

{

}

do_something (t,

typename T::preferred_mode{});

Member of the Helmholtz Association

27 October — 30 October 2025

0N U A W N

o e e
W N = o

class Buzzard {
public:
using preferred_mode = typename flying;
i
class Whale {
public:
using preferred_mode = typename swimming;
Vi
Y/
Buzzard b;
do_something (b) ;
Whale w;
do_something (w) ;

= Logically similar operations on different types, where the operations depend on certain properties of the types

IJ JULICH

Slide 189 Forschungszentrum

Tag dispatching

1 struct flying {};
2 struct swimming {}
3 template <class T>
4 void do_something (
5 {

6 t.fly(a,b);

7 }

8 template <class T>
9 void do_something(
10 Y78

11 template <class T>
12 void do_something(
13 {

14 do_something (t,
15 }

7

T && t, flying)

T && t, swimming) {...}

T t)

typename T::preferred_mode{});

0N U A W N

o e e
W N = o

class Buzzard {
public:
using preferred_mode = typename flying;
i
class Whale {
public:
using preferred_mode = typename swimming;
Vi
Y/
Buzzard b;
do_something (b) ;
Whale w;
do_something (w) ;

= Logically similar operations on different types, where the operations depend on certain properties of the types

= “Dispatch” functions to guide the compiler to a suitable implementation based on a “tag” in the incomming

type

Member of the Helmholtz Association

27 October — 30 October 2025

IJ JULICH

Slide 189 Forschungszentrum

Tag dispatching

o
H O ©®NOoUEWN =

o e e
oW N

struct flying {};
struct swimming {};

template <class T>

void do_something (T && t, flying)

{
}

template <class T>

t.fly(a,b);

void do_something (T && t, swimming) {...}
Y2

template <class T>

void do_something(T t)

{

}

do_something (t,

typename T::preferred_mode{});

Member of the Helmholtz Association

27 October — 30 October 2025

0N U A W N

o e e
W N = o

class Buzzard {
public:
using preferred_mode = typename flying;
i
class Whale {
public:
using preferred_mode = typename swimming;
Vi
72
Buzzard b;
do_something (b) ;
Whale w;
do_something (w) ;

= Logically similar operations on different types, where the operations depend on certain properties of the types
= “Dispatch” functions to guide the compiler to a suitable implementation based on a “tag” in the incomming

type
= Does not tie the overload to a specific type: dispatches based on some property of the input type

IJ JULICH

Slide 189 Forschungszentrum

o
H O ©®NOUE WN =

T = B T S
[S R R A T)

SFINAE : Substitution Failure is not an Error

// Examples/sfinae0.cc
template <class V>
void f(const V &v, typename V::iterator = jt=0)
{
std::cout << "Container overload\n";
for (auto x : v) std::cout << x <<" ";
std::cout << "\n";
}
void f(...)
{
std::cout << "Catch all overload\n";
}
auto main() —> int
{
std::1ist L{0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
int A[4]{4, 3, 2, 1};
£(n);
£(L);
}
Member of the Helmholtz Association 27 October — 30 October 2025

Overload resolution of templates
If substitution fails, overload discarded

All parameters, expressions and the return type in
declarations

Substitution failure : ill-formed type or expression
when a substitution is made

Not in function body!

IJ JULICH

Slide 190 Forschungszentrum

o
H O ©®NOUE WN =

T T =t
I R S R N I N T €}

Member of the Helmholtz Association

enable__if

// enable_if and enable_if_t are defined

// in the namespace std. We show them

// here to explain how they are used.

template <bool B, class T> struct enable if;

template <class T> struct enable_if<true, T> {
using type=T ;

Vi
template <bool B, class T=void>

using enable_if_ t=typename enable_if<B,T>::type;

template <class T>
enable_if_ t<is_integral<T>::value, T>
Power (T x, T y) {
// Implementation suitable for
// integral number parameters
}
template <class T>
enable_if t<is_floating_point<T>::value, T>
Power (T x, T y) {
// Implementation suitable for
// floating point parameters

}

27 October — 30 October 2025

= Only if the first parameter is true, the structure

enable_1if has a member type called type set
to the second template parameter

= Using the type member of an enable_if struct

in a declaration will lead to an ill-formed expression
when the condition parameter is false. That version
of the function will then be ignored

Let's not do such things any more. We have
concepts now.

IJ JULICH

Slide 191 Forschungszentrum

Exercise 2.14:

The tag dispatching technique is demonstrated in examples/tag_dispatch.cc.

Exercise 2.15:

examples/sfinae0.cc is a simple syntax illustration for SFINAE. Knowledge of history is imporant, but let
this not be how you write your code in 2020s.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 192 J Forschungszentrum

© 0N W N

Choosing algorithm based on API

template <class C> size_t algo(C&& x)
{
if constexpr (hasAPI<C>) {
x.helper();
return x.calculateFast();
} else {
return x.calculate();
}
}
Member of the Helmholtz Association 27 October — 30 October 2025

= We want to write a general algorithm for an
operation

= |n case the function argument has a certain member
function, we have a neat and quick solution

= Otherwise, we have a fallback solution

IJ JULICH

Slide 193 Forschungszentrum

o
H O ©®NOUE WN =

]
RIS Sy)

Choosing algorithm based on API

template <class T> struct hasAPI_t ({
using basetype =
typename remove_reference<T>: :type;
template <class C>
static constexpr auto test (C * x) —>
decltype (x->calculateFast (),
x—>helper (),
bool{})
{
return true;
}
static constexpr bool test(...) {
return false;
}
static constexpr auto value =
test (static_cast<basetype*> (nullptr));
i

Member of the Helmholtz Association 27 October — 30 October 2025

= The “template function” hasAPI_t has a member
value initialized via a constexpr function,
which passes information about the templated type
to the test function

= Two variants of the test function exist, one always
returning false, to cover the “everything else” case

IJ JULICH

Slide 194 Forschungszentrum

o
H O ©®NOUE WN =

]
RIS Sy)

Choosing algorithm based on API

template <class T> struct hasAPI_t ({
using basetype =
typename remove_reference<T>: :type;
template <class C>
static constexpr auto test (C * x) —>
decltype (x->calculateFast (),
x—>helper (),
bool{})
{
return true;
}
static constexpr bool test(...) {
return false;
}
static constexpr auto value =
test (static_cast<basetype*> (nullptr));
i

Member of the Helmholtz Association 27 October — 30 October 2025

= The positive version of the test function defines
its return type using decltype, but applying it to
a comma separated list of necessary API expressions

= A comma separated list of expressions evaluates to

the last value, but each value in the list is checked
for syntax

IJ JULICH

Slide 195 Forschungszentrum

o
H O ©®NOUE WN =

]
RIS Sy)

Choosing algorithm based on API

template <class T> struct hasAPI_t ({
using basetype =
typename remove_reference<T>: :type;
template <class C>
static constexpr auto test (C * x) —>
decltype (x->calculateFast (),
x—>helper (),
bool{})
{
return true;
}
static constexpr bool test(...) {
return false;
}
static constexpr auto value =
test (static_cast<basetype*> (nullptr));
i

Member of the Helmholtz Association 27 October — 30 October 2025

= The positive version of the test function defines
its return type using decltype, but applying it to
a comma separated list of necessary API expressions

= A comma separated list of expressions evaluates to

the last value, but each value in the list is checked
for syntax

IJ JULICH

Slide 195 Forschungszentrum

API

= The positive version of the test function defines
its return type using decltype, but applying it to

Choosing algorithm based on

template <class T> struct hasAPI_t ({

o
H O ©®NOUE WN =

]
RIS Sy)

bi

using basetype =
typename remove_reference<T>: :type;
template <class C>
static constexpr auto test (C * x) —>
decltype (x->calculateFast (),
x—>helper (),
bool{})
{
return true;
}
static constexpr bool test(...) {
return false;
}
static constexpr auto value =
test (static_cast<basetype*> (nullptr));

a comma separated list of necessary API expressions

= A comma separated list of expressions evaluates to

the last value, but each value in the list is checked
for syntax

= |f the type of the argument does not have the member functions, the return type of the function can not be

Member of the Helmholtz Association

determined, and the overload is rejected

27 October — 30 October 2025

JULICH

J Forschungszentrum

Slide 195

Choosing algorithm based on API

template <class T> constexpr bool hasAPI = hasAPI_t<T>::value;
template <class C> std::enable_if_t< hasAPI<C>, size_t > algo(C && x)
{

x.helper();

return x.calculateFast();
}
template <class C> std::enable_if_ t< !'hasAPI<C>, size_t > algo(C && x)
{

return x.calculate();

© O W N O AW N

[

}

= What remains, is to make a nice wrapper template variable so that we can say hasAPI<T>, instead of
hasAPI_t<T>::value when we need it.

= The dispatch functions are written using enable_if_t, so that we pick the calculateFast function
over calculate, if it is available

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 196 Forschungszentrum

Nah!

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 197

IJ JULICH

Forschungszentrum

o e
N H O ©E O U W

==
sow

Member of the Helmholtz Association

template <class T>
concept FastCalculator = requires (T rex) {
{ rex.calculateFast () };
{ rex.helper() };
i
template <FastCalculator C> auto algo(C && x)
{
x.helper();
return x.calculateFast();
}
template <class C> auto algo(C && x)
{
return x.calculate();

}

27 October — 30 October 2025

Choosing algorithm based on API

= Write a concept describing what member
functions, inner types (like value_type for
iterators) an object should have to satisfy the API

= Overload based on whether the constraints are
satisfied!

IJ JULICH

Slide 198 Forschungszentrum

Choosing algorithm based on API

1 auto main() -> int

2 {

3 Machinery obj;

4 auto res = algo(obj);

5 std::cout << "Result = " << res << "\n";
6

Users of our great algorithm can simply call our algo () in their code

If there is a calculate function, everything will work.

If the author of the library providing Machinery goes on to implement calculateFast in the
Machinery class, without any changes on the client side, or in the algo function, the compiler will make
sure that the (hopefully) better, calculateFast function is used

@ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 199 J

Forschungszentrum

Exercise 2.16:
The folder examples/apishimming contains the example hasAPI template function used in this section, with an

application that uses it. By freeing the commented implementation of calculateFast, and recompiling, you
will see that the call to algo automatically switches to use calculateFast.

Forschungszentrum

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 200

©00O U W

Member of the Helmholtz Association

template <class T> struct hasAPI_t {
using basetype = typ remove_: <T type;
template <class C> static constexpr auto test(C * x)
decltype (x—>calculateFast (),
x->helper (),
bool{})

{
return true;
)
static constexpr bool test(...)
{
return false;
}
static constexpr auto value =
test (static_cast<basetype+> (nullptr));
Vi
template <class T>
constexpr bool hasAPI = hasAPI_t<T>::value;
template <class C>
std::enable_if_t< hasAPI<C>, size_t > algo(C && Xx)
{
x.helper ();
return x.calculateFast();
}
template <class C>
std::enable_if_t< !hasAPI<C>, size t > algo(C && x)
{
return x.calculate();
}

Will get the job done.

27 October — 30 October 2025

Lo B I N

e
B W RO ©

template <class T>
concept FastCalculator = requires (T rex) {
{ rex.calculateFast () };
{ rex.helper() };
Vi
template <FastCalculator C> auto algo(C && x)
{
x.helper();
return x.calculateFast();
}
template <class C> auto algo(C && x)
{

return x.calculate();

Will get the job done and keep you sane.

JULICH

Slide 201 Forschungszentrum

Curiously Recurring Template Pattern

= You need types A and B which have some properties in common, which can be calculated using similar data

= There are a few polymorphic functions, but conceptually A and B are so different that you don't expect to
store them in a single pointer container

= The penalty of using virtual functions seems to matter

= Option 1: implement as totally different classes, just copy and paste the common functions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 202 Forschungszentrum

Curiously Recurring Template Pattern

= You need types A and B which have some properties in common, which can be calculated using similar data

= There are a few polymorphic functions, but conceptually A and B are so different that you don't expect to
store them in a single pointer container

= The penalty of using virtual functions seems to matter

= Option 1: implement as totally different classes, just copy and paste the common functions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 202 Forschungszentrum

Curiously Recurring Template Pattern

= You need types A and B which have some properties in common, which can be calculated using similar data

= There are a few polymorphic functions, but conceptually A and B are so different that you don't expect to
store them in a single pointer container

= The penalty of using virtual functions seems to matter

= Option 1: implement as totally different classes, just copy and paste the common functions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 202 Forschungszentrum

Curiously Recurring Template Pattern

= You need types A and B which have some properties in common, which can be calculated using similar data

= There are a few polymorphic functions, but conceptually A and B are so different that you don't expect to
store them in a single pointer container

= The penalty of using virtual functions seems to matter
= Option 1: implement as totally different classes, just copy and paste the common functions
= Option 2: try the CRTP

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 202 Forschungszentrum

Curiously Recurring Template Pattern

1 template <class D> struct ViewInterface ({ 1 template <class T>

2 auto der () const -> const D * { 2 auto proc(ViewInterface<T> v) {

3 return static_cast<const D *>(this); 3 auto b = v.begin();

4 } 4 //

5 auto begin() const { 5 }

6 // Wont compile if D does not inherit 6 auto main() -> int {

7 return der () ->begin_impl (); 7 List H;

8 } 8 proc (H) ;

9 auto version() const —-> int { 9 proc (Atoi{33});
10 // Non-polymorphic "common" function 10 }
11 return 42;
12 } = A function can demand that the inputs have a
13 }i . . - .
14 struct Atoi : public ViewInterface<Atois { particular interface defined in the CRTP base
12 . auto begin_impl() const { return bg; } = Any input type inheriting from the CRTP
17 struct List : public ViewInterface<List> { base will be usable
18 auto begin_impl () const -> string {
1o return sbasenode; = Polymorphism without virtual functions
o - ! = Enforces an interface at compile time

;
= Usually faster than virtual functions
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 203 J Forschungszentrum

“Mixin”

© 0N oA W N

I I e e i ~ I S S S
I R N A T V=

// examples/crtp3.cc
template <class Derived> struct EnableCheckedAccess {
auto at (std::size_t i) const {
autox d = static_cast<const Derived«> (this);
if (1 >= d->size())
throw std::out_of_range (
std::format ("Index {} is out of range for container size {}", i, d->size()));
return (xd) [i];
}
}i
struct MyVec : EnableCheckedAccess<MyVec> {
auto operator[] (std::size_t i) const { return i x i; }
auto size() const -> std::size_t { return 5UL; }
bi

auto main (int argc, charx argv[]) -> int {
auto lim = argc > 1 ? std::stoul(argv([1l]) : 5UL;
MyVec v;
try {
for (auto i = 0UL; i < lim; ++1)
std::print ("Index = {}, value = {} \n", i, v.at(i));
} catch (std::exception& err) { std::print("{}\n", err.what()); }

}

= Statically inject functionality into classes

= No virtual dispatch required

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 204

lJ JULICH

Forschungszentrum

“Mixin”

// examples/crtp4.cc
struct EnableCheckedAccess {
template <class Self>
auto at (this Self&s self, std::size_t 1) {
if (i >= self.size())
throw std::out_of_range (
std::format ("Index {} is out of range for container size {}", i, self.size()));
return self[i];
}
}i
struct MyVec : EnableCheckedAccess {
auto operator[] (std::size_t i) const { return i x i; }
auto size() const -> std::size_t { return 5UL; }
Vi

auto main (int argc, charx argv[]) -> int {
auto lim = argc > 1 ? std::stoul(argv([1l]) : 5UL;
MyVec v;
try {
for (auto i = 0UL; i < lim; ++1)
std::print ("Index = {}, value = {} \n", i, v.at(i));
} catch (std::exception& err) { std::print("{}\n", err.what()); }

}

= Using the deducing this feature of C4++23, we can make it much less weird!

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 205

lJ JULICH

Forschungszentrum

o
H O ©®NOUE WN =

[R = I
R R R Y

Expression Templates

template <typename T>
class vec {
std: :vector<T> dat;
public:
vec (size_t n) : dat(n) {}
auto operator[] (size_t i) const -> T {
return dat[i];
}
auto operator[] (size_t i) > T & {
return dat[i];
}
size_t size() const{return dat.size();}
Vi
template <typename T>
auto operator+ (const vec<T> & vl,
const vec<T> & v2) —-> vec<T>
{
assert (vl.size() == v2.size());
auto ans = vl;
for (size_t i = 0; i1 < ans.size(); ++1)
ans[i] += v2[i];
return ans;
}
Member of the Helmholtz Association 27 October — 30 October 2025

vec<double> W(N), X(N), Y(N), Z(N);
/7.
W=ax*x X+ 2 xaxY+ 3 % ax Z;

= Naive implementation which expresses our intent

elegantly

= Each multiplication and addition creates a
temporary and does a loop over elements

= Poor performance

JULICH

Slide 206 J Forschungszentrum

Expression templates

If only we had a special class ...

= ... which stored references to X, ¥ and Z
= and had an operator[] which returns a » X[i] + 2 * a %= Y[i] + 3 % a * 2Z[i]

= We could equip our vec class with a special assignment operator taking this special class as the right hand

side
1 template <typename T>
2 class vec {
3 template <class XPR>
4 auto operator=(const XPR & r) > vec &
5 {

6 for (size_t i = 0; 1 < size(); ++1i) {
7 dat[i] = r[i]l; // and r[i] returns a*X[i]+2x*a*Y[i]+3*a+Z[1]
8 } // One single loop, temporaries
9 return xthis;

10 }

11 }i

= We need a different special class for every expression we have to evaluate

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 207 Forschungszentrum

Expression templates

= If we make a class like :

template <typename LHS, typename RHS>
class vecsum {

const LHS & lhs;

const RHS & rhs;
public:

vecsum (const LHS & 1, const RHS & r)
assert (l.size() ==

lhs{l}, rhs{r} {
r.size());
}

auto operator[] (size_t i) const { return lhs[i]
auto size() const {

+ rhs[i]; }
return lhs.size(); }

bi

= We can define the sum of two vec objects to be a vecsum type
template <typename LHS, typename RHS>
auto operator+ (const LHS& vl,

const RHS& v2)
{

—-> vecsum<LHS, RHS>

return vecsum<LHS, RHS>(vl, v2);
}

Member of the Helmholtz Association

@ » JULICH
27 October — 30 October 2025 Slide 208 J

Forschungszentrum

Expression templates

= If we try vecl+vec2, no evaluation happens, and we get a vecsum<vec, vec> object, we can call []
on this object and cause the calculation to happen.

= But, if we try vecl + 54 or 34 + "dino", we get nonsensical compound objects

= If we write our operator+ like :
template <typename LHS, typename RHS>

auto operator+ (const expr<LHS> & vl, const expr<RHS> & v2)

—> vecsum<LHS, RHS> const
{

return vecsum<LHS, RHS>(vl, v2);
}
, We can restrict the template to objects which match the pattern expr<something>

= If we further want composability of the operations, we need vecsum<LHS, RHS> to also match the pattern
expr<something>

Member of the Helmholtz Association

IJ JULICH

27 October — 30 October 2025 Slide 209 Forschungszentrum

Expression templates
Design with CRTP

= CRTP: a base template vecxpr to use as a base for all expressions of vec objects
template <typename X> struct vecxpr {
X& der () noexcept { return sstatic_cast<X+>(this); }
const X& der () const { return rstatic_cast<const X*>(this); }
bi

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 210 Forschungszentrum

Expression templates
Design with CRTP

= We make our expression classes like vecsum inherit from the template vecxpr instantiated on themselves:

1 template <typename T1l, typename T2> class vecsum : public vecxpr<vecsum<T1l,T2>> ({

2 const Tl & lhs;

3 const T2 & rhs;

4 public:

5 using value_type = typename Tl::value_type;

6 vecsum (const vecxpr<Tl> & 1, const vecxpr<T2> & r) : lhs{ l.der() }, rhs{ r.der() } {

7 assert (lhs.size() == rhs.size());

8 }

9 const auto operator[] (size_t i) const { return lhs[i] + rhs[i]; }

10 size_t size() const { return lhs.size(); }

11 Y

.
@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 211 J Forschungszentrum

Expression templates
Design with CRTP

= operator+ can now be written as:

1 template <typename T1l, typename T2>
2 auto operator+ (const vecxpr<Tl> & vl, const vecxpr<T2> & v2)
3 —-> const vecsum<Tl, T2> {
4 return vecsum<T1l, T2>{ 1, r };
5 }
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 212 J Forschungszentrum

Expression templates
Design with CRTP

= We also make the original vec class inherit from vecxpr

1 template <typename T> class vec : public vecxpr<vec<T>> {
2 std::vector<T> dat;
3 public:
4 using value_type = T;
5 vec (size_t n) : dat(n) {}
6 auto operator([] (size_t i) const -> const T& { return dat[i]; }
7 auto operator([] (size_t i) -> T& { return dat[i]; }
8 size_t size() const { return dat.size(); }
9 size t n_ops() const { return 0; }
10 template <typename X>
11 auto operator=(const vecxpr<X> & y) —-> vec & {
12 dat.resize(y.der().size());
13 for (size_ t i = 0; 1 < y.size(); ++1i)
14 dat[i] = y.der() [i];
15 return *this;
16 }
17 Vi
.
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 213 J Forschungszentrum

Expression templates
Design with CRTP

= We also make the original vec class inherit from vecxpr

1 template <typename T> class vec : public vecxpr<vec<T>> {
2 std::vector<T> dat;

3 public:

4 using value_type = T;

5 vec (size_t n) : dat(n) {}

6 auto operator([] (size_t i) const -> const T& { return dat[i]; }
7 auto operator([] (size_t i) -> T& { return dat[i]; }

8 size_t size() const { return dat.size(); }

9 size t n_ops() const { return 0; }

10 template <typename X>

11 auto operator=(const vecxpr<X> & y) —-> vec & {

12 dat.resize(y.der().size());

13 for (size_ t i = 0; 1 < y.size(); ++1i)

14 dat[i] = y.der() [i];

15 return *this;

16 }

17}

= Notice the special assignment operator from an expression!

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 213 Forschungszentrum

Expression templates

Qe
.% an

a* X+ bxY+ Z;

vecsum<
vecsum<
vecscl<vec<double>>,
vecscl<vec<double>>
>!
vec<double>> ({{a,X},{b,Y}},2
// Let's call this type EXPR

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 214 J Forschungszentrum

Expression templates
vec<double> &

. vec<double>: :operator=(const EXPR & E)
{

dat.resize(E.size());
for (size t i = 0; i < E.size(); ++1i)
dat[i] = E[i];

return xthis;
}
0.3 2

W=a=x*X+Db Y+ Z;

Member of the Helmholtz Association

lJ JULICH

Forschungszentrum

27 October — 30 October 2025 Slide 214

Expression templates
®

do e

W=a X+ b Y+ Z;

Member of the Helmholtz Association

27 October — 30 October 2025

vec<double> &
vec<double>: :operator=(const EXPR & E)
{
dat.resize(E.size());
for (size t i = 0; i < E.size(); ++1i)
dat [i] E[i];

const auto vecsum<L,R>::operator([] (size_t i)

return lhs[i] + rhs[i];

}

Slide 214 J

const {

JULICH

Forschungszentrum

Expression templates
.

W=a=x*X+Db Y+ Z;

Member of the Helmholtz Association

27 October — 30 October 2025 Slide 214

vec<double> &
vec<double>: :operator=(const EXPR & E)
{
dat.resize(E.size());
for (size_t i = 0; 1 < E.size(); ++1)
dat[i] = E[1];
const auto vecsum<L,R>::operator(] (size_t
const auto vecscl<T>::operator[] (size_t 1)
return lhs % rhs[i];

i) const {
const {

lJ JULICH

Forschungszentrum

Expression templates

vec<double> &

vec<double>: :operator=(const EXPR & E)
- {
U dat.resize (E.size());
/% i"m for (size t i = 0; i < E.size(); ++1i)
dat[i] = E[1i];
U y const auto vecsum<L,R>::operator[] (size_t i) const {
f const auto vecscl<T>::operator[] (size_t i) const {
. il .[il const auto vec<T>::operator[] (size_t i) const ({
W=ax*X+Db*x Y + Z; return datal[i];
}
‘ .o
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 214 J grscuhunLgslzgrﬂ

Expression templates

= Elegant high level syntax
= Reduce temporaries

= Loop fusion
= Delayed evaluation: apply algorithmic optimizations on the entire expression, e.g.,

s Evaluate Matrixl » Matrix2 % Vector as Matrixl » (Matrix2 x Vector)
= Detect and eliminate cancelling operations, e.g., Matrix_xprl.transpose () .transpose ()
= Use optimized low level kernels with assembler, intrinsics, calls to vendor libraries etc to do the work

= However, can greatly increase compilation times

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 215 Forschungszentrum

l) JULICH

Exercise 2.17:
In examples/xtmpO, you will find a program which takes two numbers N and a as command line arguments,
and creates 4 arrays W, X, Y, Z of size N (user defined array type vec). It fills X, Y and Z with random
numbers and then calculates W = a* X +2xa* Y + 3 x a* Z, and times this operation by repeating the
calculation 10 times. Two implementations of the user defined array type vec can be found: naive_vec.hh
and xtmp_vec0.hh. Compile and run the program by alternating between the two headers. Study the code in
xtmp_vecO.hh, which illustrates the ideas presented here about expression templates. The xtmp_vecl.hh
implementation is almost the same, except using aligned allocation to store the arrays in the vec type. Test that
as well.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 216 J Forschungszentrum

Introduce your own matrix class in the set up used in examples/xtmp0, so that matrix vector multiplications
can be parts of vector expressions and M1 «M2 «v is evaluated as two matrix vector products rather than a
matrix-matrix product followed by a matrix vector product.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 217 Forschungszentrum

SIMD registers and operations

a

a*e

vmulsd xmmO0, xmmO0, xmm?1

Member of the Helmholtz Association

vmulpd ymmO0, ymmO, ymm1

27 October — 30 October 2025

a/b/c d
*

e f|9 h

a*e | b*f | c*g | d*h

Slide 218

/.

JULICH

Forschungszentrum

SIMD registers and operations

l a3

|

a2

|

al

a0

a3 a2 al a0 ‘ a3 ‘ a2 ‘ al ‘ a0 ‘
[| 2 | m | b0 | i S L [[w2 | & | b |
c3 c2 cl c0
‘ c3 ‘ c2 ‘ cl | c0 | 1 0 0 1 ‘ m3 ‘ m2 ‘ m1 ‘ m0 ‘

fmadd213pd source1, source2, source3

fmadd213pd source1, source2, source3, mask

vblendpd source1, source2, mask

| a3#03+c3 | a2*b2+c2 [at*bivct | a0b0+co |

(b33 | a2 [a1 [a0wbosco |

m3 753 : a3lm2 7 b2: a2m1 b1 : a0[m0 7 b0 : a0)

= Increasingly sophisticated instructions in newer CPUs

= Arithmatics, logical operations, shuffles, masked operations, trigonometry, cryptography ...

Member of the Helmholtz Association

27 October — 30 October 2025 Slide 219

IJ JULICH

Forschungszentrum

SIMD registers and operations

, zmm
, ymm

J float|float | float |float
4 bytes double | double

Xmm

= xmm0, xmml, ...xmm7 (SSE)
xmm0 ...xmml5, ymmO ...ymm1l5 (AVX, AVX2, FMA)
s xmm0 ...xmm31, ymmO ...ymm31, zmmO ...zmm31 (AVX512)

Member of the Helmholtz Association 27 October — 30 October 2025

IJ JULICH

Slide 220 Forschungszentrum

SIMD registers and operations

ynmO [[[T]
ynml [[TT]

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 221 J Forschungszentrum

SIMD registers and operations

ynmO [[T[]
ynml [T TT]

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 221 J Forschungszentrum

SIMD registers and operations

ynmO [[[T]

*=

ynml [T [T]

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 221 J Forschungszentrum

SIMD registers and operations

ynmO [[[T]
ynml [T [T]

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 221 J Forschungszentrum

Automatic vectorization

= Compilers try to automatically identify opportunities to use SIMD instructions and generate appropriate code
= We write code exactly (or at least more or less) as before, and the vectorizer brings more speed

= Sometimes you may have to be careful about alignment of the arrays (alignas (),
std::assume_aligned())

= Sometimes you might need to indicate to the compiler that the multiple arrays involved in a loop do not
overlap, can be assumed to be independent (#pragma ivdep)

= You may want to allow the compiler to proceed with the assumption that floating point arithmetic is
associative (-fassociative-math)

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 222 Forschungszentrum

Automatic vectorization

void f (double x[], double y[], unsigned N)
{

1

2

3 for (unsigned i=0U; i<N; ++i) x[i] = 5. * x[i] + y[i];
4}

= Compiler asks : Can this loop be run in blocks of 4 or 8 for all inputs x and y ? What, if y = x+1!

= Then it makes careful decisions so that the results are correct for every possible input

= Sometimes, we don't care about every possible input. Our functions are often mere cogs in a bigger
machine, and their contract is more limited

Member of the Helmholtz Association

l) JULICH

27 October — 30 October 2025 Slide 223 Forschungszentrum

OpenMP SIMD directives

Reorganize loop to run in chunks suitable for SIMD
execution

Syntax in C and C++ :

#pragma omp simd [clause [,clause] ...]
for (...) {}

Often possible to call straight forward inline
functions or vector enabled functions
#pragma omp declare simd

Can only be a traditional for loop. Loop count
must be possible to determine at entry. No breaks.

For an excellent overview, search for “Michael Klemm, Intel, SIMD Vectorization with OpenMP"”

Member of the Helmholtz Association

27 October — 30 October 2025

© 0N U W N

o e
= o

template <typename T>

auto Vexv (T r2, T sigsal2) -> T {
auto sg2
= static_cast<T> (sqr (Lambda * sigsal2));
auto a
= static_cast<T>(icut2 % sqr(sigsal2));
a =a x a * a;
a = a x aj
auto b = static_cast<T>(sixdivLLcut2 * a);
a="7.0 % a;
T r6 = sg2 / r2;
ré6 = r6 * r6 * ré6;
return ksa * (r6 = r6 + a + b * r2);
}
auto addup(___) —> double {
double tot{};
#pragma omp simd reduction (+:tot)
for (size_t i=vec_size; i<R2.size(); ++1)

tot += Vexv(R2[1i],
return tot;

S12[i]);

JULICH

J Forschungszentrum

Slide 224

COMPILER [: :
add..~ | More~ Sharew | Other = | Policies =
EXPLORER
Covsource#1 X 005 | sat-68 o 2 (or 1., Compllr 1) 600 X 8664 o 190.1 Eator 1, Compier #2)Cre. X 86.6¢ clang () (Eeor#1, Compler #3)Cre. X
A~ B +- = [¥86-64 90082 T ® -03- ¥86-641c2 19.0.1 T ® -stdecs | v ¥86-64 clang (rurk) T @ -std=c++17-03 -
1 vold f(double x[1, double y[], | L
2 pnsignea lang n) A~ A~ A~
3
3 pragna onp sind . . o
5 for (auto i=oul; i<h; ++i) O1o10 ALX0: Olib.f: \s+ 011010 ©&.LX0: Olib.f: \s+ E 011010 &.LX0: Olib.f: /- O\st Mintel
6 YIE = 0.5 % x[1] + y[1] o)
7 B Libraries~ 4 Addnew..~ &% Addtool...~ E Libraries ~ +Add new... v B Libraries~ 4 Add new...~ g Add tool.
8 oo R -
(U L) - Tea rex, QoRD FTR Ursisraxes] un.28 i P wov rad, ried
G L s1019: 7 preds o135 - 51 ! p e s
- e £ . h 61 test ro, ro
: e Vfmaddz13sd X1, xmmo, QWORD FTR [rox+rs®s] #4 o Je LBo_12
s [elett, Vmovsd QuORD PTR [rdisra%e], xmmi #4.9 I & oy eox, 1
o | o cop 18, rox #3.5 o lea 1o, [ra + rex]
: T e v Jb ..BL.19 # Prob a2% #3.5 P aga ro, 1
o e [rir] Jmp ..B1.27 # Prob 100% #3.5 67 xor ecx, ecx
ol B1.21: 4 Preds ..81.4 ..81.2 e Vbroadcastsd zmne, quord prr [rip + .LCPI6_6] 4 7nm:
11 xor eax, eax .
ol mov rex, rdx #1.6 6o .LBR0_14 # =>This Tnner Loop He
. xor réd, réd #3.5 70 movupd Znm1, Zmmiord prr [rdi + 8*rex]
15 | vmovupd yme, YHINORD PTR [rdt+rax] mov r9d, 1 #3.5 I Vmovupd zmn2, zmmiord per [rdi + 8*rcx + 64]
14 vinadd213pd ynne, ymni, YMMWORD PTR [rsitrax] ! .
Bl s B T, xor eax, eax #4.9 7 movupd zmn, zmmiord pur [rdi + 8*rcx + 128]
16 | add rax, 22 s rex, 1#1.6 7 movupd zmna, zmmiord pur [rdi + 8*rcx + 192]
7 emp rax, rex Je ..B1.25 # Prob 9% £3.5 " Vinada2idpd | zmnd, zwe, zmmord pr [rsi+ 8%rcx]
i & v vmovsd ximno, Qwom) PTR uuunua(packe(.e[mp] 75 vfmadd213pd Znm2, znm0, zmaword ptr [rsi + 8frex +
Ine . 81 ..B1.23: # Pre 012 7 Vimadd213pd zmn2, zmo, zmmword ptr [rsi+ @frcx +
oy = o o e D P [Ez = IR e, o, e (i [6 e £
| v | dncre 4 \movupa zmmord per [rdi + Serce], zmmd
2 | oo S —— o v omerd e b s S
e 56 vmovsd xmm2, QUORD PTR [8+raxtrdi] #4.22 80 vmovupd zmmaord per [rdi + 8%rcx + 128], zmnd
o PP 89 vmovsd QWORD PTR [raxtrdi], xmmi #4.9 81 vmovupd zmmword ptr [rdi + B*rcx + 192], zmma
oo . 90 vfmadd213sd xmm2, xmo, GMORD PTR [#+raxtrsi] 44 w Vmovupd znm1, zmmiord ptr [rdi + 8*rcx + 256]
| Db (e (o) o1 | vmovsd QuORD PTR [B#rax+rdi], xmn2 #3.9 u movupd zmnz, zmmiord ptr [rdi + 8*rcx + 326]
7 Yty " 92 | add rax, 16 #3.5 8 movupd zmns, zmmiord ptr [rdi + 8*rcx + 384]
) - - 53 | omp s, rox #3.5 as movupd znna, zmmiord ptr [rdi + 8*rcx + 448]
Gl B Sy s e T e 94| Jb ..B1.23 # Prob 63% #3.5 P Viwaddz1apd | zmwl, zme, zneword)ptr [rsii+ efrcx 4
o) I P i o %5 | lea 1o, quono FIR [rerore] #4.9 o Viaddoiagd| smc) omms,) smmvard pr [rel s Btrex 4
» B 96 ..BL2S: # Preds ..B1.24 ..B1.21 o Vimadd213pd znm2, zmmo, zmmiord ptr [rsi + frcx +
» BB 97 | lea rax, QUORD PR [-1#r9] #3.5 89 Vrmardoaapd [2and’\ zmtl zammiard) RPN [kasl ¢ X rex s
e 95 | cmp rax, rdx #2.5 % movupd zmmord per [rdi + @¥rcx + 256], znml
o XT"”',”W”R‘; s DR 99 | jae ..B1.27 # Prob 9% #3.5 o1 movupd Zmmord per [rdi + B*rcx + 3201, zmm2
i e P A S L b 22 Viovupd Zmmiord prr [rdi + Bircx + 3841, znn3
Xmm, XnwO, QORD PTR [rs:
. e Rt P e e | o add | rox, 64
T B oD P o], xoms 103 | VIOVSG QUORD PIR [-8+Tdi+r9%a], xmml #4.9 o add o2
s | cmp rdx, rax 104 ..B1.27: # Preds ..B1.19 ..B1.25 «.B1.1 ..B117 ..8 o6 jne .Lbpo_14

a9 | e

Forschungszentrum

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 225

S
= O ©mNO U AW N

-
N

==
N

15

o=
N o

Digging deeper

double pairwise (unsigned i, unsigned j,
SOA * particle_record)
{
// very clever calculations
}
auto energy() —>
{
double ans = 0.;
for (auto i = 0; 1 < npt;
#r na omp pl = vectorize
for (auto j =1 + 1; j < npt;
ans +=
pairwise (i, j,

double

++1i) |
++3) |

my_particle_record);
}

}

return ans;

}

Member of the Helmholtz Association

27 October — 30 October 2025

Convenient. But what are we not doing ?

= Coding to load groups of 2 or 4 or 8 numbers,
working with them and storing the results

= Comparing different ways to use SIMD instructions
to solve the problem for our actual inputs

= Choosing to use relaxed assumptions about floating
point arithmetic at specific places in the code

Deviate only for special situations!

As HPC C++ programmers, we should know how to
take full control of vectorization. But automatic or
OpenMP based vectorization should be your first choice
for production code. Most often they provide a cleaner,
easier path. Sometimes, when the easier way does not
provide enough low level access, we have ways to go
beyond them.

Slide 226

IJ JULICH

Forschungszentrum

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 227 Forschungszentrum

Introduction to intrinsics

= Recognizing how numbers are stored and manipulated in the computer opens up new opportunities

= Computer arithmetic has more "fundamental" operations than normal mathematics : +, —, =, /, %, &, |,
<<, >>

1 auto morton_plain (unsigned long x, 1 auto morton (unsigned long x, unsigned long vy,
2 unsigned long vy, 2 unsigned long z)
3 unsigned long z) 3 {
4 { 4 constexpr unsigned long mask[] {
5 auto ans = 0UL; 5 0x9249249249249249, // 0b100100100...1001001
6 unsigned long i=0; 6 0x2492492492492492,// 0b001001001...0010010
7 while (i<22) { 7 0x4924924924924924 // 0b010010010...0100100
8 unsigned long bx = (x & (1 << 1i)); 8 }i
9 unsigned long by = (y & (1 << 1)); 9 // On x86
10 unsigned long bz = (z & (1 << 1)); 10 return _pdep_u64(x, mask[0])
11 auto j = 2+i; 11 | _pdep_u64(y, mask[1])
12 ans = ans | (bx << j) 12 | _pdep_u64(z, mask[2]);
13 | (by << (3+1)) 13 }
14 | (bz << (3+2));
15 ++1;
16 }
17 return ans;
18 }
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 228 J Forschungszentrum

Intrinsics : high(er) level interface to CPU instructions

Interface to SSE and AVX registers Interface to SSE and AVX operations
= include "nmmintrin.h" (SSE 4.2) or "immintrin.h" = _mm_add_ps(__ ml28, _ ml28)
(AVX) s _mm_sub_ps(,), _mm_sqgrt_ps() ...
= _ ml28i : integer register with 128 bits = _mm256_add_pd(__m256d, _ m256d)
= _ ml128 : 128 bits with 4 packed floats = Convention:
= _ ml128d : 128 bits with 2 doubles e O el s el B B o)
o) . . = sizecode is mm for SSE, mm256 for AVX and
= _ m256i : 256 bit octint mm512 for AVX512
- m256 - octfloat = operation is "add", "sub", "mul" etc.
— = suffix indicates data type in the register arguments.
= _ m256d : quaddouble ps => float, pd => double, epi32 => 32 bit

signed int, epu32 => 32 bit unsigned int

= Intel x86 optimization manual

= Intel intrinsics guide

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 229 Forschungszentrum

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide

AW N =

N o o

Example: direct use of intrinsics

float sprod_sane(size_t n,
const floatb[]) {

double res{};

for (size_t i=0UL; i<n;

res += al[i]
return res;

* bli];

const float al[],

++1)

= (RHS) Feels C++ish, but commits too much to

machine level details

= This is just an example to show what bare intrinsics

based code looks like. It is almost never a good
idea to use raw intrinsics in application code. It's

lazy and dangerous, and ends up costing you more

time anyway.

© 0N oA W N

e e
N Wk W= O

18

float sse_sprod(size_t n,

}

const float b[]) {

assert (0 == n % 4);// si

_ ml28 res, prd, ma, mb;
res = _mm_setzero_ps();
for (size_t 1=0; i<n; 1

ma = _mm_loadu_ps (&a

b= 4) |
[i1);

mb = _mm_loadu_ps (&b[il);
prd = _mm_mul_ps (ma,

res = _mm_add_ps (prd,

}

prd = _mm_setzero_ps();

res = _mm_hadd_ps (res,
res = _mm_hadd_ps(res,

float tmp;
_mm_store_ss (&tmp,
return tmp;

res);

mb) ;

res);

prd);
prd); //

const float al],

not a typo!

= Beware of persistant superstition surrounding abstractions. Overreaching advice against compile time
abstractions such as static polymorphism, template or constexpr metaprogramming is usually bad advice.

Always check.

Member of the Helmholtz Association

27 October — 30 October 2025

Slide 230

/)

JULICH

Forschungszentrum

Wrapping intrinsics in zero (/low) cost abstractions

1 #include <immintrin.h>
2 union alignas (32) QuadDouble {
3 __m256d mm;
4 double d[4];
5 QuadDouble (__m256d oth) : mm{oth} {}
6 constexpr QuadDouble (double x, double y,double z=0., double t=0.) : d{x, y, z, t} {}
7
8 void aligned_load(double * v) {
9 assert (get_alignment (v) >= 32);
10 mm = _mm256_load_pd(v);
11 }
12 void unaligned_load(double % v) { mm = _mm256_loadu_pd(v); }
13
14 [[nodiscard] Jauto operator[] (unsigned i) const -> double { return d[i%4]; }
15 auto operator[] (unsigned i) -> double & { return d[i%4]; }
16
17 void operator=(double x) { mm = _mm256_broadcast_sd(&x); }
18 [[nodiscard]] auto horizontal_add() const -> double { return d[0] + d[l] + d[2] + d[3]; }
19 bi
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 231 J Forschungszentrum

Wrapping intrinsics in zero (/low) cost abstractions

1 auto get_alignment (void x var) {

2 auto n = reinterpret_cast<unsigned long> (var);

3 return (-n) & n;

4 }

5 auto operator+ (QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_add_pd(a.mm, b.mm);}

6 auto operator- (QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_sub_pd(a.mm, b.mm);}

7 auto operatorx (QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_mul_pd(a.mm, b.mm);}

8 auto operator/ (QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_div_pd(a.mm, b.mm);}

9

10 auto main() -> int

11 {

12 QuadDouble a{3.1}, b{0.2, 5.4, 2.1, 9.8};

13 auto ¢ = a » b - (a / b);

14 return c([2] < -1.;

15 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 232 J Forschungszentrum

Wrapping intrinsics in zero(/low) cost abstractions

= Notational simplification, more readable and maintainable code, at no (or rather low) run time cost
= Need to wrap all operations used by your application (but only those)

= Need to hide vendor specific differences

auto operatorx (QuadDouble a, QuadDouble b) > QuadDouble
{

return _mm256_mul_pd(a.mm, b.mm);

}

1 # wWith Clang 7

2 operatorx (QuadDouble, QuadDouble): # @operator#*(Qua
3 vmulpd ymmO, ymmO, ymml

4 ret

Note on alignment: Dynamically allocated arrays of our abstraction can cause unexpected crashes for C++98
... C4++14, as the new operator could not align “over aligned” types on the heap. This was fixed in C4++17,
and optionally provided for C++11 and C++14 with compiler flags (GCC: -faligned-new Clang:

—faligned—allocation).

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 233 Forschungszentrum

E RN [
Gresource #1 X
A- B +- =
st
59 return _mm256_mul_pd(a.mm, b.mm);
60}
61 inline operator /(| a, b)
62 {
63 return _n256_div_pd(a.m, b.nn);
61 3
65
65 void test(QuadDouble py4, QuadDouble pxd,
67 Quadbouble & oyd, Quadbouble ox4)
68 {
69 const Quadbouble Xoffsa{0.55};
70 By4 * pyd -pxd*pxd + xoffsd);
no3
2
73 void silly(_n256d pyd, _m256d
7 n256d & oyd, Py ox4)
n o {
76 constexpr double cxoff = 0.55;
1 const __m256d xuffsA{JmZSG broadcast_sd(&cxoff)} ;
78 oy4 = _mm256_sub_pd(
79 _m256_setzero_pd(),
80 _nn256_add_pd(
81 nn256_sub_|
82 _nm256_mul_pd(py4, py4),
83 _nm256_mul_pd(pxd, pxd)
84 .
85 xoffs4
86)
87)i
a8 3
89
9%
91
92
9
94
95

Member of the Helmholtz Association

X86-64 g 8.2 (Editor #1, Compiler #1) G+ X

8684 goc 8.2

s
T @ -03-std=c++ t‘

Other ~

Policies

Sharev

X664 clang (1unk) (Editor #1, Compiler #3) G+ X o

X86-64 clang (trunk)

T @ -std=c++17-03 L

A~ A~
011010 Lx0: Olib.f: \s+ Mintel 311010 LX0: Olibf: M text |
B Libraries~ 4 Add new. B Libraries~ <4 Add new... ¥ %% Add tool... ¥
1 get_alignment (void const”): g 1 get_alignment(void const*): # Gget_alignnen’ &
2 blsi eax, edi 2 i eax, edi 5
3 ret 3
4 test(Quaddouble, QuadDouble, QuadDoubled, Quadbouble): 4
5 vmovapd ymml, YHMORD PTR [rsps! 5 .quad 4603129179135383962 # double 0.5500000000(
6 vmovapd ymnd, YUMIORD PTR [rsp+40] 6 test(QuadDoubleg,)
7 vmulpd yomi, yont, ymi 7 wmulpd yan, ymn1, yon
8 vfimadd132pd ymo, ymml, ynmo 8 Vfnsub23lpd yml, ymmo, ynm # ymml = (ymmO * ynm(
9 vbroadcastsd ynni, QWORD PTR .LCA[rip] 9 vaddpd ymnd, yami, qword ptr [rip + .LCPT1_0]{1tod}
10| vaddpd ymo, ynme, ynmi 10 vxorpd xami, xnmi, xmmi
11 vxorpd xmml, xmmil, xmnl 1 vsubpd ymno, ymnl, ymmo
12 vsubpd ymmo, ymmi, ynmo 12 vmovapd ymmaord ptr [rdi], ynno
13 vmovapd YHMIORD PTR [rdil, ynno 13 vzeroupper
14 vzeroupper a ret
5 ret 15 .LcP12 6
16 silly(double _vector(4), double _vector(4), double _vect 6 .quad 4603129179135383962 # double 0.5500000000(
17 push rbp 17 silly(double _vector(4), double _vector(4), double _vector
18 vmulpd ynmo, ymo, ymmo 1 vmulpd ymml, yml, ynmi
19 mov rbp, rsp 19 Vfnsub23lpd ymml, ymo, ynme # ymml = (ymmO * ynm(
20 , 20 vaddpd ym0, ymml, quord ptr [rip + .LCPI2_0]{1to}
21 vfimadd23lpd ymo, ymml, ynml 2 St o
22 vbroadcastsd ynmi, QORD PTR .LCB[rip] 2 vsubpd ymn, ymm,
25 vaddpd ymmo, ymmo, ymi 23 T V) [un], ymo
24 vxorpd xmmi, xmml, xnml 2 vzeroupper
25 vsubpd ymmo, ymit, ymmo 25 ret
26 vmovapd YMMORD PTR [rdi], ymo
27 vzeroupper
28 leave
29 ret
30 .Lco:
31 .long 2576980378
32 .long 1071749529
@) JULICH
27 October — 30 October 2025 Slide 234 J Forschungszentrum

Using our DIY SIMD librar
T T T T T T T T T T T P T T T T T T T T T T T T T T P T T T T T

total loop count !

' vectorized range !
—

1 // examples/diy/daxpy.cc

2 void daxpy_explicit (const std::vector<double> & x, std::vector<double> & y, double a) {

3 QuadDouble bx{0.}, by{0.};

4 const QuadDouble ba{a}l;

5 unsigned long vsize = x.size() - x.size() % 4;

6 const double * xptr0 = x.data();

7 const double x xptrl = x.data() + vsize;

8 double * yptr = y.data();

9 for (; xptrO != xptrl; xptr0 += 4, yptr += 4) {

10 bx.unaligned_load (xptr0);

11 by.unaligned_load (yptr);

12 by = by + bx % ba;

13 by.unaligned_store (yptr);

14 }

15 for (auto i=vsize; i<x.size(); ++1i) y[i] += a» x[i];

16 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 235 J Forschungszentrum

Using our DIY SIMD library

T T T T T T T T T I T i

© 0 ND U W N

e R S S
o Uk WN RO

Member of the Helmholtz Association

total loop count

' vectorized range

Remainder| ——

// examples/diy/sprod.cc
#include "QuadDouble.hh"
auto sprod_explicit (size_t n, const double x[],
QuadDouble bx{0.}, by{0.}, tot{0.};
unsigned long vsize = n - n % 4;
const double * xptr0 = x;
const double x xptrl = x + vsize;
for (; xptrO != xptrl; xptr0 += 4,
bx.unaligned_load (xptr0);
by.unaligned_load(y);
tot = tot + bx x by;

y += 4)

}

auto res = tot.horizontal_add();
for (auto i = vsize; 1 < x.size();
return res;

++1)

res += x[i]

const double y[]) —> double {

* y[il;

27 October — 30 October 2025

JULICH

J Forschungszentrum

Slide 236

Conditional selection using masks and blend
CITTTTTTTIT B = Various kinds of conditional selection can be

if (X[i] S 3_1) executed as single instructions: picking out the
SIMD ? . larger of the corresponding elements between two
! do_one_thing(); arrays
else
ymmo [TTT] do_something_else();

ymml [TTT]

= Different lanes in a SIMD register can not execute
different instructions = problems with general
branched code

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 237 Forschungszentrum

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection using masks and blend

CITTTTTTITT B |
if (x[i] > ylil)

}vmaxpd ymmX, ymmY, ymmZ Z[il = x{il;
else

ymm0 [T} z[i] = yIil;
ymm1 [T 1] -mm256_max_pd(_, _)

= Different lanes in a SIMD register can not execute
different instructions = problems with general
branched code

Member of the Helmholtz Association 27 October — 30 October 2025

Various kinds of conditional selection can be
executed as single instructions: picking out the
larger of the corresponding elements between two
arrays

Large number of “masked” instructions, e.g.,
_mm256_mask_ [op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The

..maskz. .. variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask. .. variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.

l) JULICH

Slide 237 Forschungszentrum

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection using masks and blend

a3 a2 al a0

b3 b2 b1 bo

c3 c2 c1 c0
1 0 0 1

fmadd213pd source1, source2, source3, mask

a3*b3+c3 a2 al a0*b0+c0

= Different lanes in a SIMD register can not execute
different instructions = problems with general

branched code

Member of the Helmholtz Association

27 October — 30 October 2025

= Various kinds of conditional selection can be

executed as single instructions: picking out the
larger of the corresponding elements between two
arrays

Large number of “masked” instructions, e.g.,
_mm256_mask_ [op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The

..maskz. .. variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask. .. variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.

Masked selection between two alternatives is also
possible using “blend instructions’ .

Slide 237 Forschungszentrum

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection

a3 a2 al a0
b3 b2 b1 b0
m3 m2 m1 m0

vblendpd source1, source2, mask

m3 ?b3:a3m2?b2:a2\m1?b1:a0m0?b0:ad

Member of the Helmholtz Association

= Different lanes in a SIMD register can not execute
different instructions = problems with general
branched code

27 October — 30 October 2025

using masks and blend

= Various kinds of conditional selection can be

executed as single instructions: picking out the
larger of the corresponding elements between two
arrays

Large number of “masked” instructions, e.g.,
_mm256_mask_ [op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The

..maskz. .. variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask. .. variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.

Masked selection between two alternatives is also
possible using “blend instructions’ .

Slide 237 Forschungszentrum

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Creating and manipulating masks

= Masks are bit fields. Conceptually they are like arrays of boolean variables with the same number of
elements as the corresponding SIMD register

= Many SIMD functions return mask types:
= _mm256_cmpeq_epi32_mask (__m256i, _ _m256i) : element wise comparison. All corresponding bits of

the mask set if equality comparison returns true for an element
= _mm256_cmplt_epi32_mask (__m256i, _ m2561i) : As with cmpeq, but for “less than” comparison

= Masks can be combined with usual bit wise operations _mm256_and_pd, _m256_or_pd etc.

1 auto ml = _mm256_cmpge_epi32_mask (vi, vj);

2 auto m2 = _mm256_cmpeq_epi32_mask (vk, _mm256_setzero_epi32());
3 auto mask = _mm256_and_si256 (ml, m2);

4 res = _mm256_fmask_fmadd_pd(x, mask, y, z);

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 238 Forschungszentrum

Great! Now, what about AVX512 ? Power ? ARM ?

= Application code can operate using the abstraction
= Architecture specific details can be hidden inside the SIMD library

= No run-time indirection is needed. The compiler can be made to choose one specific version (macros,
template specializations ...)

= The author(s) of the SIMD library have to deal with the available capabilities in different instruction sets

= The library can also provide additional benefits: SIMD implementation of widely used functions, e.g.,
trigonometric, exponential functions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 239 Forschungszentrum

XSIMD

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 240

= C++ wrappers for SIMD intrinsics from “QuantStack”. Include only. BSD-3-Clause license.
git clone https://github.com/QuantStack/xsimd.git

Abstractions for batches of values for SIMD calculations, e.g.,

xsimd: :batch<double, xsimd::avx2>
using Arch = xsimd::avx2;
xsimd: :batch<double, Arch> x{1.,2.,3.,4.}, y{4.,3.,2.,1.};
std::cout << x + y << "\n";

The second template argument can be left out. The default value: target architecture

Vectorized forms of commonly used mathematical functions, such as trigonometric, exponential functions,
error functions, e.g., xsimd: :asin (xsimd: :batch<double, Arch>),

xsimd: :exp (xsimd: :batch<double, Arch>)

Regular arithmatic operations along with fma functions, e.g., xsimd: : fma (a, x, y)

Auto-detection and parametrisation based on available instruction set, e.g., based on vector width,
xsimd: :batch<double, xsimd::avx2>

Aligned allocator:
template <class T> using myvector = std:
myvector<double> V (1000000, 1.2); // :

:vector<T, xsimd::aligned_allocator<T>>;
gned to cache line

IJ JULICH

Forschungszentrum

https://xsimd.readthedocs.io/en/latest/index.html

XSIMD

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 241

= Useful to write with a placeholder tag type Arch, to allow runtime architecture selection

We will be using an alias using btype = xsimd::batch<double, Arch> in the following.
Depending on the architecture, it may represent a batch of 2, 4 or 8 double values

To load from an address in memory xptr, use auto xb = btype::load_unaligned (xptr). If you
know that the address is properly aligned for the batch, you can use

auto xb = btype::load_aligned (xptr). You can not load from an unaligned address using
load_aligned.

Loading can be controlled using a tag type: auto xb = btype::load(xptr, alignment_tag),
where alignment_tag is an object of one of the tag types xsimd: :aligned_mode or

xsimd: :unaligned_mode.

You can broadcast a scalar value to all positions in a SIMD batch like this:

auto ab = btype::broadcast (a);

Batch objects can be combined using arithmetic operators, used in XSIMD mathematical functions etc to
produce other batch objects

To store the result to a location in memory, use the appropriate member function:
xb.store_unaligned (xptr), xb.store_aligned (xptr) or

xb.store (xptr, alignment_tag).

IJ JULICH

Forschungszentrum

XSIMD

1 void daxpy (double a, std::span<const double> x, std::span<const double> vy,

2 std: :span<double> res) {

3 for (size_t i = 0UL; 1 < x.size(); ++1) {

4 res[i] = a » x[1] + y[i];

5 }

6 }

7 void daxpy_xsimd(double a, std::span<const double> x, std::span<const double> vy,

8 std: :span<double> res) {

9 using btype = batch<double>;

10 constexpr auto vwidth = btype::size;

11 const auto ablk = btype::broadcast (a);

12 const auto vreps = x.size() - x.size() % vwidth;

13 for (size_t i = 0UL; i < vreps; i += vwidth) {

14 auto xblk = btype::load unallgned &x[1)

15 auto yblk = btype::load_unaligned(&y[i]),

16 auto zblk = a » xblk + yblk;

17 zblk.store_unaligned(&res[i]);

18 }

19 for (size_t i = vreps; i < x.size(); ++i) { res[i] = a » x[1i] + y[i]; }

20 }

@) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 242 J Forschungszentrum

Alignment and SIMD operations

=
BT T TP T T T T T T 771
x[
o
BT T T T T T TT 771
y — peel
vl @ — aligned, vectorized loop
Peel a few from the front and start aligned loads...
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 243 Forschungszentrum

Alignment and SIMD operations

How many elements would you peel now ?

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 243 J Forschungszentrum

Alignment and SIMD operations

HITTTTT T TTE TT I TTETT]

}
X[

15 A
f

yll unaligned load/store : vmovupd

On Intel processors > Haswell, penalty low

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 243 J Forschungszentrum

SIMD with complex numbers

= std::complex<T> has a fixed data layout,
(real,imag) to be compatible with C

= Arrays of complex numbers have the real parts at
non-adjacent, but statically predictable, locations

1
2
3 u
4 using namespace std;
)) ; 5 void caxpy_xsimd(complex<double> a,
(same applies to the imaginary parts) 6 span<complex<double>> x,
7 span<const complex<double>> y)
8
9
0
1

= Many ways to code vectorized operations on

complex numbers using b_type =
xsimd: :batch<complex<double>>;

1
= XSIMD (batch<complex<double>, Arch>) b_type c - b_type::broadcast (a);

has abstractions for working with complex numbers 12 b_type x1, yl;
13 for (size_t 1=0; i<x.size();
= Without such abstractions to aid us, explicit SIMD 14 it=b_type::size) {
. . 15 x1.load_unaligned(&x[i]);
programming wﬂzh complex number would be 1o 1. load unaligned (sy[1]) :
needlessly complicated 17 xl = ¢ + x1 + yl;
18 xl.store_unaligned (&x[i]);
19 }
20 }
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 244 J Forschungszentrum

XSIMD: architectures and dispatching

= |t is possible to write programs for multiple

architectures 1

2

= An appropriate instruction set is chosen based on 3
architectures available at runtime ;‘

= Architecture adapted (“dispatched”) functions are ¢
generated using xsimd: :dispatch () ;

= Recipe: 9
= Implement the function for a task as a functional 1?

with a template call operator 12

= The template parameter Arch for the call operator 3
serves the same purpose as our placeholder in the 14
examples so far. 15

= Generate a dispatched function using 16

xsimd: :dispatch (functional) 1;
= Use the return value of the dispatch function as a |

callable object with a signature without the Arch 54
parameter. 21

Member of the Helmholtz Association 27 October — 30 October 2025

struct daxpy_xsimd_t {
template <class Arch>
void operator () (Arch,

}
}i

std: :span<const double> x,
std: :span<double> vy,
double a) const

using b_type = xsimd::batch<double, Arch>;
b_type bx{}, by{};

const b_type ba{b_type::broadcast (a)};

//

on...

inline auto daxpy_xsimd

= xsimd::dispatch (daxpy_xsimd_t{});

void elsewhere ()

{

std::vector a(100UL,
std::vector b(100UL,
daxpy_xsimd(a, b, 8.0

IJ JULICH

Slide 245 Forschungszentrum

Exercise 2.19:

In the folder examples/simp, you will find several versions of a few short functions.
= Many examples here are not full programs and do not have main function.
= The DIY version does not require any libraries to compile, although it does need immintrin.h, which
should be found in your system
= You should compile with the best available instruction set on your system (-march=native for GCC and
Clang) and with optimization for speed

= The examples with XSIMD are in the next exercise.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 246 Forschungszentrum

Exercise 2.20:
examples/SIMD/xsimd: XSIMD demos

= For the examples with XSIMD, you will need to pass -I /path/to/xsimdroot/include to the
compiler. There is nothing to link.

Example compile command :

$ g++ —-std=c++23 -03 -march=native -I $XSIMD_INCLUDE_DIR exvoll.cc -o exvoll.g

The examples x0.cc, x1.cc and x2 . cc show the basic syntax. x0.cc shows an explicitly set architecture. But
x1.cc and x2.cc use the default batch. Build them with and without -march=native and run them, to
understand the role of the compiler option. The examples exvol1.cc and daxpyl.cc demonstrate architecture
dispatching. The remaining two examples, brighten.cc and nn_relu.cc show two tiny applications:
brighten.cc brightens the pixels of an image. The nn_relu.cc shows a single layer feed forward neural
network with a reLU activation function.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 247 Forschungszentrum

Exercise 2.21:

The folder examples/sIMp/stdx_simd contains the corresponding implementation for the programs in the XSIMD
exercise, implemented using the proposed C++ standard library SIMD functionality. This is currently part of the
so called parrallelism TS-2, and not really standard. But, there are partial implementations in both GCC and
Clang. The README file in the directory contains lots of comments about the programs. Learn how to use
SIMD functionality from std::experimental namespace using the files in this example.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 248 Forschungszentrum

Summary

= Directly coding with SIMD types exposes algorithmic challenges concerning vectorization

= We are much more directly in control

Quite often, correctly done OpenMP will bring you most of the benefits, but, knowing how to work with
intrinsics gives you a fallback option when the simple approach fails. At the very least, when you try to
vectorize yourself, you might see why OpenMP didn’t do as you had hoped.

= If you work with C++, use its strengths: strive for zero-overhead abstractions instead of resigning to a life
of verbose and error-prone misery
= Alternatively, use a SIMD library with a compatible license

= They aleady exist, and others have already created the necessary abstractions
= They support multiple instruction sets and CPU architectures
= Often come with vectorized versions of common mathematical functions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 249 Forschungszentrum

Chapter 3
Lessons from matrix multiplication

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 250 J Forschungszentrum

Lessons from matrix multiplication

In the examples folder, you will find a MatMul subfolder, containing a written lesson called sessionMatrix.pdf.
This file contains 8 stages organised as exercises starting with a naive implementation of a matrix type in C++,
and ending with something with reasonably respectable performance (comparable to what is possible with, e.g.,
Eigen, or other BLAS libraries) on a single node on JUSUF. It only uses concepts introduced in this course, and
does not call any linear algebra library function. Work through the exercises and test the different stages on

JUSUF!

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 251 Forschungszentrum

Chapter 4

Parallelisation using PSTL and TBB

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 252 J Forschungszentrum

Parallel computing

= Engineering (power consumption) challenges make
processors with higher and higher clock rates
impractical

= Computers in the last 20 years have instead
increased processing power by adding more
hardware for parallel processing

@) JULICH
27 October — 30 October 2025 Slide 253 J Forschungszentrum

Member of the Helmholtz Association

Parallel computing

= Engineering (power consumption) challenges make
processors with higher and higher clock rates

auto gcd(unsigned s, unsigned 1) -> unsigned
{

if (s > 1) impractical
whilzt?;:fzag)(s’{ by = Computers in the last 20 years have instead
auto r = 1 2 s; increased processing power by adding more
=i hardware for parallel processing
} c Y = A sequence of dependent operations on a small set
return 1;

Member of the Helmholtz Association

27 October — 30 October 2025

of entities is ill-suited for processing with many
workers

l) JULICH

Slide 253

Forschungszentrum

Parallel computing

d
d

d P [
‘ ‘ "
p d
o, e °
P .

L P’
[P [

Member of the Helmholtz Association

27 October — 30 October 2025

Engineering (power consumption) challenges make
processors with higher and higher clock rates
impractical

Computers in the last 20 years have instead
increased processing power by adding more
hardware for parallel processing

A sequence of dependent operations on a small set
of entities is ill-suited for processing with many
workers

Given a large amount of information to be
processed, or a task with a large number of
independent sub-tasks, it is possible to reduce the
overall processing time.

IJ JULICH

Slide 253 Forschungszentrum

Parallel computing

What mechanisms do we have in C++ to exploit available parallelism in hardware?

= Threads, mutexes, atomic operations

= RAII for resource management

= Libraries to partition and assign work to workers

= Templates, lambda functions, CTAD

= High-level STL style algorithms abstracting common programming building blocks

= Containers and allocators for more efficient (and corrrect) parallel processing

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 254 J Forschungszentrum

o
H O ©®NOUE WN =

[~y
SIS)

Threads

auto calcl = [=]() {
auto totl = 0.;
for (auto i = 0UL; i < N;
auto ang = 2 x 1 x pi
totl += std::cos(ang)
}
Vi
auto calc2 = [=]() {
auto totl = 0.;
for (auto i = 0UL; i < N;
auto ang = 2 x 1 % pi
totl += std::sin(ang)
}
}i

std: :jthread jl { calcl };
std::jthread j2 { calc2 };

++1i) |
/ N;
* std::cos(ang);

++1i) |
/ N;
« std::sin(ang);

Member of the Helmholtz Association

27 October — 30 October 2025

std: :thread, std: :async ... since C++11
Parallel algorithms since C++417

std::jthread, std: :stop_token since
C++20

std: : jthread joins in the destructor

auto tot=0.;

{
std::jthread j1{calc1};

std::jthread j2{ca|c2};\\’

calct; calc2;

// other calc tot += x;

tot += x;

IJ JULICH

Slide 255 Forschungszentrum

Threads

o
H O ©®NOUE WN =

[~y
SIS)

» std: :thread, std

auto calcl = [=]
auto totl = ;
for (auto i 0UL; i < N;
auto ang = 2 x 1 x pi

totl += std::cos(ang)

) |

o~

}
Vi
auto calc2 = [=]() {
auto totl = 0.;
for (auto i = 0UL; 1 < N;
auto ang = 2 % 1 x pi
totl += std::sin(ang)
}
}i

std: :jthread jl { calcl };
std::jthread j2 { calc2 };

::async ... since C++11

= Parallel algorithms since C++-17

++1i) | -
/ N;
* std::cos(ang);

std::jthread, st
C++20

= std::jthread join

auto tot=10.;
++1i) |
/ N;
« std::sin(ang);

{
std:jthread j1{calc1};
std::jthread j2{calc2};

// other calc

Member of the Helmholtz Association

27 October — 30 October 2025 Slide 255

d: :stop_token since

s in the destructor

May run on different cores,
if resources are available.

LN

calct; calc2;

tot +=x;

tot += x;

JULICH

Forschungszentrum

/)

Threads

o
H O ©®NOUE WN =

[~y
SRS)

auto tot = 0.;

{
std::jthread jl1 { [&]() {
for (auto i = 0UL; 1 < N; ++1) {
auto ang = 2 « i » pi / N;
tot += std::cos(ang) * std::cos(ang);
}
oy
std::jthread j2 { [&] () {
for (auto i = 0UL; i < N; ++i) {
auto ang = 2 « i » pi / N;
tot += std::sin(ang) * std::sin(ang);
}
by
}
std::cout << "Total " << tot << "\n";

Member of the Helmholtz Association

27 October — 30 October 2025

auto tot =0.;

{
std:jthread j1{calc1};
std::jthread j2{calc2};

// other calc

—
calct;

tot +=x;

—

load old value
modify value
store new value

calc2;

tot +=x;

= Modification of data at the same address from
multiple threads can lead to “data races”

Slide 256

/)

JULICH

Forschungszentrum

Threads

o
H O ©®NOUE WN =

[~y
SRS)

auto tot = 0.;

{
std::jthread jl1 { [&]() {
for (auto i = 0UL; 1 < N; ++1) {
auto ang = 2 « i » pi / N;
tot += std::cos(ang) * std::cos(ang);
}
oy
std::jthread j2 { [&] () {
for (auto i = 0UL; i < N; ++i) {
auto ang = 2 « i » pi / N;
tot += std::sin(ang) * std::sin(ang);
}
by
}
std::cout << "Total " << tot << "\n";

Member of the Helmholtz Association

27 October — 30 October 2025

auto tot =0.;

{ +=
std:jthread j1{calc1};
std::JthreadJZ{caICZ};\

calct;
// other calc tot += x;

—

= The result can be incorrect, since the

load old value
modify value

calc2;

tot +=x;

store new value

load-modify-commit operations from the two

threads can overlap

Slide 256

/)

JULICH

Forschungszentrum

Threads

o
H O ©®NOUE WN =

o R e e e e
©® N oUW N

std::mutex totmutex;
{
std::jthread jl1 { [&]() {
for (auto i = 0UL; 1 < N; ++1) {
auto ang = 2 * i * pi / N;
std: :scoped_lock lck { totmutex };
tot += std::cos(ang) * std::cos(ang);
}
}odi
std::Jjthread j2 { [&] () |
for (auto i = 0UL; 1 < N; ++1) {
auto ang = 2 * i « pi / N;
std: :scoped_lock lck { totmutex };
tot += std::sin(ang) =+ std::sin(ang);
}
bt
}

std::cout << "Total " << tot << "\n";

Member of the Helmholtz Association

27 October — 30 October 2025

{
std::jthread j1{calc1};

auto tot=0.; load old value

+= modify value
store new value
std::JthreadJZ{caICZ};\

calct; calc2;

// other calc

tot +=x; tot +=Xx;

—

= Fix 1: std: :mutex: A resource which can be

acquired by only one thread at a time. Must be
released by the acquiring thread.

std: :scoped_lock manages mutex
acquisition/release using RAII

IJ JULICH

Slide 256 Forschungszentrum

o
H O ©®NOUE WN =

e e
SRS)

Threads

std::atomic<double> tot {};

{
std::jthread jl1 { [&]() {
for (auto i = 0UL; i < N; ++1i) {
auto ang = 2 * i « pi / N;
tot += std::cos(ang) * std::cos(ang);
}
oy
std::jthread j2 { [&] () {
for (auto i = OUL; 1 < N; ++1i) {
auto ang = 2 * i « pi / N;
tot += std::sin(ang) * std::sin(ang);
}
by
}
std::cout << "Total " << tot << "\n";

Member of the Helmholtz Association

27 October — 30 October 2025

auto tot=0.; load old value

{ += modify value
std:jthread j1{calc1}; store new value

std::JthreadJZ{caICZ};\

calct; calc2;

// other calc

tot+=x; ! tot +=x;

= std::atomic<T> gives us “atomic”
load-modify-commit operations

IJ JULICH

Slide 256 Forschungszentrum

Threads

= Even when threads write to

1 struct wrappedl { different addresses, there can

2 int 1 ; . ™

s int val {} be a significant slowdown
;

4 template <class W> because of “false sharing

5 struct func {

6 void operator () (volatile W+ var)

7 {

8 for (unsigned i = 0; i < WORKLOAD / PARALLEL; ++i) {

9 var->val = var->val + 1;

10 }

11 }

12 }i

13 {

14 std: :array<wrapped2, PARALLEL> arr {};

15 {

16 std::array<std::jthread, PARALLEL> threads;

17 for (unsigned i = 0U; i < PARALLEL; ++i) {

18 threads([i] =

19 std::Jjthread(func<wrapped2>{}, &arr[i]);

20 }

21 }

22 }

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 257 J Forschungszentrum

Threads

= Even when threads write to

1 struct align_as(std::hardware_destructive_interference_size) different addresses, there can
2 wrappedl { s e
5 int val (}; be a significant slowdown
) because of “false sharing”
5 template <class W> ..) .
6 struct func { = Mitigation: alignment or
7 void operator () (volatile Wx var) padding
8 {
9 for (unsigned i = 0; i1 < WORKLOAD / PARALLEL; ++i) {
10 var->val = var->val + 1;
11 }
12 }
13 };
14 {
15 std::array<wrapped2, PARALLEL> arr {};
16 {
17 std::array<std::jthread, PARALLEL> threads;
18 for (unsigned i = 0U; i < PARALLEL; ++i) {
19 threads[i] =
20 std::Jjthread (func<wrapped2>{}, &arr[i]);
21 }
22 }
23 ! oo
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 257 J Forschungszentrum

Parallel STL

Parallel versions of the high-level building blocks

such as std: :sort, std: :reduce etc. 1 std::sort(std::execution::par,
i 2 points.begin(), points.end(),
s C++417 parallel STL provides a way to express that s [] (auto pl, auto p2) {
something can be done in parallel, but does not ;1 . return pl.x() < p2.x();
mandate implementation Strategy 6 std: :for_eaclrd (std::execution: :par_unseq,
= Programs already written using algorithms will offer ; Tfl(;ﬁi;bfg;?(){' points.end(),
many opportunities for exploiting parallelism 9 p.norm(1);

[
S}

= A TBB based implementation is used since GCC N

9.1. Intel and Microsoft compilers have their
implementations as well.

= As of GCC 15.2, to compile programs using parallel
algorithms, we need to link with 1ibtbb and

= std::sort sorts. libtbbmalloc, €.g.,
std::sort (std::execution: :par, ...) G par_user.cc -ltbb -ltbbmalloc
sorts in parallel = As of Clang 19.1, parallel STL remains an

= std::reduce adds up elements from a range. experimental feature in 1ibc++, and must be
std::reduce (std::execution::par, ...) enabled through —fexperimental-library

adds up elements in parallel

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 258

IJ JULICH

Forschungszentrum

Execution policies

= std::execution: :sequenced_policy : Parallel algorithm's execution may not be parallelised.
Element wise operations are indeterminately sequenced in the calling thread. An instance called,
std: :execution: :seq is usually used to disambiguate overload resolution

= std::execution: :parallel_policy : May be parallelised. Element wise operations can happen in
the calling thread, or on another. Relative sequencing is indeterminate. Convenience instance:
std::execution: :par

= std::execution: :parallel_unsequenced_policy May be parallelised and vectorised. Element
wise operations can run in unspecified threads, and can be unordered in each thread.
std::execution: :par_unseq

= std::execution: :unsequenced_policy Only vectorised. std: :execution: :unseq

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 259 Forschungszentrum

Parallel STL examples

Exercise 5.1:

The program examples/pstl/inner_product.cc demonstrates the use of the parallel STL library,
performing a simple inner product calculation. Use ~1tbb -ltbbmalloc for linking, or use the CMake file in
the directory.

Exercise 5.2:

The program examples/pstl/transform_reduce.cc creates a vector of random points in 2D, and then
calculates the moment of inertia using STL algorithms. Just switching the execution policy parameter, the
ptogram can be parallelised and vectorised. Test!

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 260 Forschungszentrum

Parallel STL examples

Parallelise the program exercises/pstl/mandelbrot0.cc using parallel STL.

Exercise 5.4:
At what size of a group of random strangers does the chance of two people sharing a birthday become greater
than 0.57 The program birthday_problem.cc solves it using a crude, brute force Monte Carlo simulation.

Parallelise it using parallel STL.

Examples in this section can be done with both GCC and Clang, with some caveats when using Clang.

clang++ —-std=c++23 -stdlib=libc++ —-fexpermental-library -03 -march=native cc
and
clang++ -std=c++23 -stdlib=libstdc++ -03 -march=native .cc

will both will work. As of October 2025, 1ibc++ hasn't optimised performance when using parallel algorithms.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 261 Forschungszentrum

TBB: Threading Building Blocks |

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 262

Provides utilities like parallel_for, parallel_reduce to simplify the most commonly used
structures in parallel programs

Provides scalable concurrent containers such as vectors, hash tables and queues for use in multi-threaded
environments

No direct support for vector parallelism. But can be combined with auto-parallelisation and
#pragma omp simd etc or explicit SIMD with a SIMD library

Supports complex models such as pipelines, data flow and unstructured task graphs
Scalable memory allocation, avoidance of false sharing, thread local storage

Low level synchronisation tools like mutexes and atomics

Work stealing task scheduler

http://www.threadingbuildingblocks.org

Structured Parallel Programming, Michael McCool, Arch D. Robinson, James Reinders

l) JULICH

Forschungszentrum

http://www.threadingbuildingblocks.org

Using TBB

= Public names are available under the namespaces tbb and tbb: : flow
= You indicate "available parallelism", scheduler may run it in parallel if resources are available

= Unnecessary parallelism will be ignored

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 263 Forschungszentrum

parallel invoke

void prep (Population &p);

void iomanage () ;

tbb: :parallel_invoke (

[&] {

noise_w (0., pars.sigma, wns);

std::copy(wns.begin(), wns.end(), wnoisemat.begin());

}
&1 |
noise_phi (0., pars.sigma, phins);
std: :copy (phins.begin(), phins.end(), phinoisemat.begin());

o
O © 0000 Ok W=

= A few adhoc tasks which do not depend on each
other

Exercise 5.5: examples/tbb/parallel_invoke.cc

Compile with = Runs them in parallel

G parallel_invoke.cc -ltbb —-ltbbmalloc « waits until all of them are finished

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 264 Forschungszentrum

© 0N W N

[
o

TBB task groups

struct Equation ({
void solve();
}i

std::list<Equation> equations;

tbb::task_group g;

for (auto eq : equations)
g.run([]l{eg.solve();});

g.wait ();

Member of the Helmholtz Association

27 October — 30 October 2025

= Run an arbitrary number of callable objects in
parallel

= In case an exception is thrown, the task group is
cancelled

IJ JULICH

Slide 265 Forschungszentrum

Member of the Helmholtz Association

TBB task arena

auto main(int argc, char rargv([]) -> int
{
size_t nthreads=std::stoul (argv([1]);
tbb::task_arena main_executor;
main_executor.initialize (nthreads);
main_executor.execute ([&] {
haha () ;
1)
}
void haha ()
{

tbb::parallel_invoke(a,b,c,d,e);
}
void a()
{
tbb::parallel_for(...);
}

27 October — 30 October 2025

Task arena to manage tasks, maps them to threads
etc.

Number of threads in an arena limited by its
concurrency level

Execute function, with a function object as
argument.

Returns the same thing as the function it is
executing.

IJ JULICH

Slide 266 Forschungszentrum

Parallel for loops

= Template function modelled after the for loops,
like many STL algorithms

= Takes a callable object as the third argument

= Using lambda functions, you can expose parallelism
in sections of your code

Member of the Helmholtz Association 27 October — 30 October 2025

© 0N oA W N

e e
I U)

tbb::parallel_for (first, last, f);
lel equivalent of

// for (auto i=first;i<last;++i) f(i);

tbb: parallel for(flrst last,stride, f);

tbb::parallel_for (first, last,
[captures] (anything) {
//Code that can run in parallel

i

IJ JULICH

Slide 267 Forschungszentrum

Parallel for with ranges

= Splits range into smaller ranges, and applies f to

them in parallel 1 tbb::parallel_for (0,1000000,f);
. L 2 // One parallel invocation for each 1i!
= Possible to optimize f for sub-ranges rather than a 3 tbb::parallel_for (range, f);
single index 4
g 5 // A type R can be a range 1if the
= Any type satisfying a few design conditions can be 6 // £ are available
d 7 R::R(const R &);
used as a range 8 R:ioR();:
= Multidimensional ranges possible 9 bool R::is divisible() const;
10 bool R::empty() const;
11 R::R(R & x,split); //Split constructor

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 268 Forschungszentrum

Parallel for with ranges

tbb::blocked_range<int> r{0,30,20};
assert (r.is_divisible());

blocked range<1nt> s{r};

//Spl 19 C u
assert(’r is_divisible());
assert (!s.is_divisible());

N o O AW N

= tbb: :blocked_range<int> (0, 4) represents an integer range 0..4
= tbb: :blocked_range<int> (0, 50, 30) represents two ranges, 0..25 and 26..50
= So long as the size of the range is bigger than the "grain size" (third argument), the range is split

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 269

IJ JULICH

Forschungszentrum

Parallel for with ranges

void dasxpcy_tbb (double a, std::span<const double> x, std::span<double> y) {
tbb::parallel_for (tbb::blocked_range<int> (0, x.size()),
[&] (tbb: :blocked_range<int> r) {
for (size_t i = r.begin(); 1 != r.end(); ++i) {
y[i] = a » sin(x[i]) + cos(y[i]);

0N U AW N

parallel_for with a range uses split constructor to split the range as far as possible, and then calls
f(range), where £ is the functional given to parallel_for

It is unlikely that you wrote your useful functions with ranges compatible with parallel_ for as
arguments

= But with lambda functions, it is easy to fit the parts!

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 270

IJ JULICH

Forschungszentrum

Exercise 5.6: TBB parallel for demo

The program examples/dasxpcy .cc demonstrates the use of parallel for in TBB. It is a slightly modified
version of the commonly used DAXPY demos. Instead of calculating y = a % x + y for scalar a and large vectors
x and y, we calculate y = a x sin(x) + cos(y). To compile, you need to load your compiler and TBB modules,
and use them like this:

1 G dasxpcy.cc —ltbb -ltbbmalloc

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 271 Forschungszentrum

2D ranges

1 void f(size_t i, size_t j);

2 tbb::blocked_range2d<size_t> r{0, N, 0, N};

3 tbb::parallel_for(r, [&] (tbb::blocked _range2d<size_t> r) {

4 for (auto i r.rows () .begin(); 1 != r.rows().end(); ++i) {

5 for (auto j = r.cols().begin(); j != r.cols().end(); ++3J) {
6 £(1, J);

7

8

9

1)

rows () is an object with a begin () and an end () returning just the integer row values in the range.
Similarly: cols ()

2D range can also be split

The callable object argument should assume that the original 2D range has been split many times, and we
are operating on a smaller range, whose properties can be accessed with these functions.

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 272 Forschungszentrum

Parallel reductions with ranges

1 T result = tbb::parallel_reduce (range, identity, subrange_reduction, combine);

= range : As with parallel for
= identity : ldentity element of type T. The type determines the type used to accumulate the result
= subrange_reduction : Functor taking a "subrange" and an initial value, returning reduction

= combine : Functor taking two arguments of type T and returning reduction over them over the subrange.
Must be associative, but not necessarily commutative.

Member of the Helmholtz Association 27 October — 30 October 2025

@) JULICH
Slide 273 J Forschungszentrum

Parallel reduce with ranges

double inner_prod_tbb(std::span<const double> x, std::span<double> y) {

return tbb::parallel_reduce (
tbb::blocked_range<int> (0, n), // range
double{}, // identity
[&] (tbb::blocked_range<int> &r, float in) {

return std::inner_product (x.begin() + r.begin(), x.begin() + r.end(),
y.begin() + r.begin(), in);

}, // subrange reduction

std: :plus<double>{} // comb

e

H O © W N OAWN R

o

= With TBB ranges, we can use blocked implementations with hopefully vectorisable calculations in subranges
= Two functors are required, either of which could be lambda functions

= Important to add the contribution of initial value in subrange reductions

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 274 Forschungszentrum

Exercise 5.7: TBB parallel reduce
The program tbbreduce.cc is a demo program to calculate an integral using tbb: :parallel_reduce
What kind of speed up do you see relative to the serial version ? Does it make sense considering the number of

physical cores in your computer ?

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 275 Forschungszentrum

Atomic variables

= "Instantaneous" updates

H H std::array<double, N> A;
= Lock-free synchronization otd: iatomic<int> index:
= For std::atomic<T>, T can be integral, enum

or pointer type, and since C++20, also floating

point, std: :shared_ptr and std: :weak_ptr

void append (double val)
{

Alindex++] = val;

N o U A W N e

}

= If index.load () == k simultaneous calls to
index++ by n threads will increase index to
k + n. Each thread will use a distinct value
between k and k + n

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 276 J Forschungszentrum

Atomic variables

= "Instantaneous" updates

H H std::array<double, N> A;

= Lock-free synchronization otd: iatomic<int> index:

= For std::atomic<T>, T can be integral, enum
or pointer type, and since C++20, also floating

point, std: :shared_ptr and std: :weak_ptr

void append (double val)
{

Alindex++] = val;

N o U A W N e

}

= If index.load () == k simultaneous calls to
index++ by n threads will increase index to
k + n. Each thread will use a distinct value
between k and k + n

But it is important that we use the return value of
index++ in the threads!

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 276 J Forschungszentrum

Enumerable thread specific

1 tbb: :enumerable_thread_specific<double> E;

2 double Eglob=0;

3 double f (size_t i, size_t j);

4 tbb::blocked_range2d<size_t> r{0, N, 0, N};

5 tbb::parallel_for(r, [&] (tbb::blocked range2d<size_ t> r) {

6 auto & eloc = E.local();

7 for (size_t i = r.rows().begin(); i != r.rows().end(); ++i) {
8 for (size_t j = r.cols().begin();j != r.cols().end(); ++3)
9 if (j > i) eloc += f(i,3);

10 }

11 }

12 }) g

13 Eglob = 0;

14 for (auto& v : E) {Eglob += v; v = 0;}

= Thread local "views" of a variable
= behaves like an STL container of those views

= Member function 1ocal () gives a reference to the local view in the current thread

= Any thread can access all views by treating it as an STL container

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 277

IJ JULICH

Forschungszentrum

TBB allocators

= Dynamic memory allocation in a multithreaded program must avoid conflicts from new calls from different
threads

= Global memory lock

TBB allocators

= Interface like std: :allocator, so that it can be used with STL containers. E.g.,
std: :vector<T, tbb::cache_aligned_allocator<T>>

= tbb::scalable_allocator<T> : general purpose scalable allocator type, for rapid allocation from
multiple threads

= tbb::cache_aligned_allocator<T> : Allocates with cache line alignment. As a consequence,
objects allocated in different threads are guaranteed to be in different cache lines.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 278 Forschungszentrum

Concurrent containers

#include <tbb/conc

"rent_vector.h>

auto v tbb::concurrent_vector<int> (N, 0);

tbb::parallel_for (v.range (), [&] (tbb::concurrent_vector::range_type r) {
/S

N o O AW N

1)

= Random access by index
= Multiple threads can grow container and add elements concurrently
= Growing the container does not invalidate any iterators or indexes

= Has a range () member function for use with parallel_for etc.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 279 Forschungszentrum

Chapter 5
Linear algebra with Eigen

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 280 J Forschungszentrum

Linear algebra

= Operations on matrices, vectors, linear systems etc.

= Data parallel, simple numerical calculations

= Can be hand coded, but taking proper account of available CPU instructions, memory hierarchy etc is hard
= Libraries with standardized syntax for wide applicability

= Excellent vendor libraries are available on HPC systems

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 281 J Forschungszentrum

Eigen: A C++4 template library for linear algebra

= Include only library. Download from
http://eigen.tuxfamily.org/, unpack in a
location of your choice, and use. Nothing to link.

= Small fixed size to large dense/sparse matrices
= Matrix operations, numerical solvers, tensors ...

= Expression templates: lazy evaluation, smart
removal of temporaries

Member of the Helmholtz Association 27 October — 30 October 2025

amples/Eigen/eiger
ide <iostre
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main ()
{
MatrixXd m=MatrixXd::Random(3,3);
m = (m + MatrixXd::Constant (3, 3, 1.2)) * 50;
cout << "m =" << "\n" << m << "\n";
VectorXd v (3);
v << 1, 2, 3;
cout << "m % v =" << "\n" << m x* v << "\n";

G eigenl.cc

= Explicit vectorization

= Elegant API
@) JULICH
Slide 282 Forschungszentrum

http://eigen.tuxfamily.org/

Eigen: matrix types

= MatirxXd : matrix of arbitrary dimensions

= Matrix3d : fixed size 3 X 3 matrix

= Vector3d : fixed size 3d vector

= Element access m (i, j)

= Qutput std::cout << m << "\n";

= Constant : MatrixXd: :Constant (a, b, c)

= Random : MatrixXd: :Random (n,n)

= Products : m » vorml x m2

= Expressions: 3 * m * m » vl + u v2 + m *x m * m % v3

= Column major matrix : Matrix<float, 3, 10, Eigen::ColMajor>

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 283 J Forschungszentrum

Eigen: matrix operations

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
auto main() -> int {
Matrix3f A;
Vector3f b;
A << 1,2,3, 4,5,6, 7,8,10;
b << 3, 3, 4;
std::cout << "Here is the matrix A:\n" << A << "\n";
std::cout << "Here is the vector b:\n" << b << "\n";
11 Vector3f x = A.colPivHouseholderQr () .solve (b);
12 std::cout << "The solution is:\n" << x << "\n";
13 }

© 0w NG A W N

-
(=]

= Blocks m.block (start_r, start_c, nr, nc), orm.block<nr,nc>(start_r, start_c)

1 SelfAdjointEigenSolver<Matrix2f> eigensolver (A);
2 if (eigensolver.info() != Success) abort();
3 std::cout << "Eigenvalues " << eigensolver.eigenvalues() << "\n";
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 284 J Forschungszentrum

Eigen: examples

Exercise 6.1:

There are a few example programs using Eigen in the folder examples/Eigen. Read the programs
eigenO.cc and eigenl.cc. To compile, use G program.cc.

Exercise 6.2:

The folder examples/Eigen contains a matrix multiplication example, matmul . cc using Eigen. Compare
with a naive version of a matrix multiplication program, matmul_naive.cc, by compiling and running both
programs. Try different matrix sizes. Then, you can use a parallel version of the Eigen matrix multiplication by
recompiling with —fopenmp.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 285 J Forschungszentrum

The file exercises/PCA has a data file with tabular data. Each column represents all measurements of a
particular type, while each row is a different trial. In each row, the first column, xjo, represents a pseudo-time
variable. Write a program using Eigen to perform a Principal Component Analysis on this data set, ignoring the
first column. Hint:

if Xi = [xi1, Xi2, ...Xim] is the data of row i, the covariance matrix is defined as,

1
Cap = m ; XkaXkb

The principal components of the data are obtained by right multiplying the data matrix by the matrix whose
columns are the eigen vectors of the matrix C,5, conventionally ordered by decreasing eigenvalues.

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 286 Forschungszentrum

Chapter 6
GPU programming

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 287 Forschungszentrum

Data parallelism

.
Bus/motorcycle analogy and figure stolen from GPU course/lecture slides by Andreas Herten (JSC) J U L l c H

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 288 Forschungszentrum

Priorities

= [][]]|l
ALU = [][]]][]
= [][]]|
=]

DRAM DRAM

CPU GPU

= CPU: faster clock speed, more cache, more sophisticated instructions and scheduling
= GPU: More chip area dedicated to floating point computations

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 289 J

ALU

A separate device

Could you sort p[] for me ?

Do what with what ?!

= Separate memories. GPU does not automatically know the state of any object in the memory of the CPU.
= Must transfer data.

= Must tell what to do with the data.

= Must retrieve results with another information transfer.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 290 Forschungszentrum

Can run C++ functions

= A program running on a CPU can call special functions
designed to run on the GPU

1 _ _device__ auto shuf (int id)
= The GPU understands a different set of hardware instructions 2 !) Coay e 000
B 3 return (id + 1723) % 2000;
than the CPU, so any human readable function meant for the 4
GPU must be compiled to a different kind of hardware 5 —‘_JcllObalf— (int .id roned 1)
. . . 6 voi ufunc (int *ids, unsigne
instructions than code compiled for the CPU. T ”® g
= A set of function “execution space specifiers” are provided as 2 1/(?13[1] = shuf (ids[il);
language extensions : __global__, _ device__ and 10 Y
__host__. These indicate to a CUDA aware compiler which 1* !)
. 12 auto cpufunc() -> int
parts to translate to the CPU language and which parts to the ;; |
GPU |anguage_ 14 gpufunc<<<l, 100>>>(p, 3000);
15 }
= A function running on the GPU can call other functions 16

compiled for the GPU, leading to a call tree on the device side.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 291 J Forschungszentrum

Execution space specifiers

= _ device__ : the function runs on the device, and it can only be called from the device
= __host__ : the function runs on the host, and it can only be called form the host
= __global__: the function is a “kernel”. It runs on the device, and can be called from the host, or from

device (compute capability >= 3.2)

= Must have void return type

= Can not be a member function

= It is asynchronous : the function returns before the device performs its work

= Must be called along with an “execution configuration” e.g., gpufunc<<<1, 100>>>(p, 3000)

= _ device__ and __host__ can both be used for a function, in which case, it is compiled for both the host
and the device.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 292 Forschungszentrum

Kernel call syntax

= Kernel functions are called with the <<<Gridspec, BlockSpec>>>
notation, i.e., potentially in a large number of threads, arranged in

blocks
EEEEEEEN
= BlockSpec denotes a 3 dimensional object, 3 integers, specifying EEEEEEEN
. EEEEEEEN
the arrangement of threads in a thread block EEEEEEEE

= GridSpec denotes a 3 dimensional object, 3 integers, specifying how

blocks are arranged in a grid

= Each thread running a kernel function has a built in variable,
threadIdx, specifying the position of the thread in its block, and A block of threads
another variable blockIdx to identify the block in the grid, and
blockDim = number of threads in a block

Overall x index: blockIdx.x * blockDim.x + threadIdx.x
etc. The grid of blocks

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 293 Forschungszentrum

Kernel call syntax

© 0N U W

e e e
I A I S =)

Member of the Helmholtz Association

__global__ wvoid MatAdd (float A[N] [N]
float C[N] [N]
{

)

float B[N] [N],

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y % blockDim.y + threadIdx.y;

if (1 < N && J < N)
Clil[J] = A[i)[3] + BIi][3];
}

auto main() -> int

{

// Kernel ocation

dim3 threadsPerBlock{16, 16};

dim3 numBlocks{N / threadsPerBlock.x,
N / threadsPerBlock.y};
MatAdd<<<numBlocks, threadsPerBlock>>> (A, B,

C)i

27 October — 30 October 2025

Slide 294

The block and grid properties are often
chosen to reflect properties of the
problem being solved.

In this example, the threads are

organized in a 2D lattice: a natural fit
for a matrix sum

Each thread only needs to process one
element!

There is a maximum number of threads
allowed in a block: a limit coming from
hardware properties

It is therefore necessary to arrange
blocks into a grid

IJ JULICH

Forschungszentrum

Kernel call syntax

= Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?

Tteration space

Iteration space

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 295 Forschungszentrum

Kernel call syntax

= Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?

= Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space

Tteration space

Iteration space

@) JULICH
27 October — 30 October 2025 Slide 295 J Forschungszentrum

Member of the Helmholtz Association

Kernel call syntax

= Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?

= Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space

Tteration space

= We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware
availability, multiple blocks will run in parallel

Iteration space

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 295 Forschungszentrum

Kernel call syntax

= Remember how you had to process an array of aEEEEEEE EammmmmEE

double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?

= Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space

= We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware

availability, multiple blocks will run in parallel - "

2 = blockDim.x * gridDim.x

= |If the iteration space is much larger then the total number of GPU threads, it is sometimes helpful to do
grid stride loops in the kernels. You have to take into account that gridDim._ * blockDim._ GPU
threads in the whole grid, which are processing lots of indexes together. That's how many indexes you
would now jump over as a “stride”

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 295 Forschungszentrum

Information transfer to and from the device

= Any data the kernel needs to process
must be transferred using CUDA
memory transfer functions

= Pointer/reference values received as
input parameters in a function are
interpreted on the same side of the
host-device boundary

Member of the Helmholtz Association

0N oUW N e

27 October — 30 October 2025

float +d_A,
auto size = N »*
cudaMalloc (&d_A,
cudaMalloc (&d_B,
cudaMalloc (&d_C,

«d_B, =d_C;
size);
size);

) .

size);

sizeof (float) ;

float value = 3.14f;

cudaMemcpyToSymbol (devData,

cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_B, h_B, size, cudaMemcpyHostToDevice);
__device__ float devData;

&value, sizeof (float));

Slide 296

IJ JULICH

Forschungszentrum

Information transfer to

Any data the kernel needs to process
must be transferred using CUDA
memory transfer functions

= Pointer/reference values received as
input parameters in a function are
interpreted on the same side of the
host-device boundary

= Allocations on unified memory are
accessible from both the host and the
device.

= Any data transfer required between the
physically separate host and device
memory happens automatically when
using unified memory

Member of the Helmholtz Association

27 October — 30 October 2025

and from the device

float *u_A, »u_B, *u_C;

auto size = N » sizeof (float
cudaMallocManaged (&u_A, size
cudaMallocManaged (&u_B, size
cudaMallocManaged (&u_C, size

7

)
y;
)
)

BN e

;
;

o

7

1 template <class T>
2 auto malloc_usm(size_t N,

3 std::optional<T> init
4

5 T+ ans{};

6 cudaMallocManaged (&ans, N
7 if (init) {

8 _
9

for (size_t i
ans[i] =

= 0UL;
*init;
10 }

return ans;

i < N;

std::nullopt)

*» sizeof (T));

++1)

-> Tx

Slide 296

/)

JULICH

Forschungszentrum

Device side memory hierarchy and memory space specifiers

= "Local memory" -> per thread memory = Memory address specifier __device _ declares a

= "Shared memory" -> private to a block, but shared variable which lives on the device

among the threads inside a block = _ constant__ declares a variable to be stored in

= "Global memory" -> visible from all threads in all constant cache

blocks = _ shared__ : variable for the shared memory inside

= "Constant memory" -> also in the device space a block, and has the lifetime of the block

and cached in the constant cache = _managed__: A variable declared with managed
storage specifier can be accessed from both the
host and the device, We can determine its address,
and it can be read/written from both the host and
the device. Since the host and device memories are
physically separate, this behaviour is achieved by
transferring memory implicitly

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 297 Forschungszentrum

Example

double *C, size_t N) {

2048u;

= 1.1}

N / ThreadsPerBlock.y};

1 __global__ void mul (const double A, const double *B,
2 auto i = threadIdx.x + blockIdx.x * blockDim.x;

3 auto j = threadIdx.y + blockIdx.y * blockDim.y;

4 double res{};

5 if (i < N && J < N)

6 for (size_t k = Oul; k < N; ++k)

7 res += A[N % i + k] » B[N = k +j];

8 C[Nxi + j] = res;

9 }

10 auto main(int argc, char xargv[]) -> int {

11 const unsigned N = (argc > 1) ? std::stoul(argv[l]
12 auto a = malloc_usm<double> (N * N);

13 auto b = malloc_usm<double> (N * N);

14 auto ¢ = malloc_usm<double> (N * N);

15 for (size_t 1 = 0UL; 1 < N % N; ++i) { a[i] = b[i]
16 auto t0 = std::chrono::high_resolution_clock::now();
17 dim3 ThreadsPerBlock{1l6, 16};

18 dim3 NumBlocks{N / ThreadsPerBlock.x,

19 mul<<<NumBlocks, ThreadsPerBlock>>>(a, b, c, N);
20 cudaDeviceSynchronize () ;

This is simply a syntax demonstration! Not a particularly clever implementation!

Member of the Helmholtz Association

27 October — 30 October 2025

JULICH

J Forschungszentrum

Slide 298

Compiling CUDA code

= With nvce :

nvcc [-—-extended-lambda] [-std=__] source.cu

= With clang++ :

clang++ [-std=__] -stdlib=libstdc++ source.cc --cuda-gpu-arch= \
-I /path/to/CUDA/include \
-L /path/to/CUDA/1ib64 -lcudart_static -1dl1 -1lrt -lpthread

In the classroom setup on JUSUF, the GPU architecture parameter should be given as sm_70. The -1 and -1
options may be skipped.

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 299 Forschungszentrum

CUDA and C++

= Except in some ancient versions, CUDA is parsed = Execution space specifiers, execution configuration
by the rules of the C++ language. Many perfectly etc. are language extensions
valid code in C, e.g., using class, new, using
etc. as variable names can not be part of CUDA

= This sometimes means additional rules are
necessary before a new language feature can be
programs used with CUDA. E.g., how do we make a lambda
= Valid C++ code, can often not be used, for a function device ? Should host etc.
variety of reasons: o vy . o
= Generally, the NVIDIA implementation of newer
language features arrives a few years after
standardization
= Some language features may have to be modified
for use in the context of GPUs
= CUDA 12 supports most of C++20. Our working
environment is based on CUDA 12.6.
= No modules. No coroutines in device code. A few
other smaller restrictions
= consteval functions defined for the host can be
invoked in the device code context: after all those
are supposed to be immediately evaluated by the

be considered parts of the functions signature or
not ? nvcc and clang++ disagree !

compler @ » JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 300 J Forschungszentrum

0 NG A W N

I T T e e
S © WO A WNRO©

Member of the Helmholtz Association

NVIDIA Thrust

7l
using namespace thrust;
auto main() -> int

{

<thrust/host_vector.h>

<thrust/device_vector.h>
<t]
<th

ust/sort.h>
/copy.h>
lude <cstdlib>

// generate 32 M random numbers on
// the host

host_vector<int> h_vec (32 << 20);
generate (h_vec.begin(), h_vec.end(),

// transfer data to the device

device_vector<int> d_vec = h_vec;
sort (d_vec.begin(), d_vec.end());
// transfer data back to the host

copy (d_vec.begin(), d_vec.end(), h_vec.begin());

rand) ;

27 October — 30 October 2025

Template library like STL or TBB for CUDA
Elegant high level syntax (STL like iterator
interface for algorithms, clever use of operator
overloading ...) to clearly express the intent
of the programmer

The compiler translates the stated intents to
efficient code for the GPU

Primarily NVIDIA GPUs

IJ JULICH

Slide 301 Forschungszentrum

NVIDIA Thrust

= Example: thrust: :host_vector and
thrust: :device_vector use the
assignment operator to transfer data between
the CPU and the GPU

1 #include <thrust/host_vector.h>

2 #include <thrust/device_vector.h>

3 #include <thrust/generate.h>

4 #include <thrust/sort.h>

5 #include <thrust/copy.h>

6 #include <cstdlib>

7 using namespace thrust;

8 auto main() -> int

9 {

10 // generate 32 M random numbers on

11 // the host

12 host_vector<int> h_vec (32 << 20);

13 generate (h_vec.begin(), h_vec.end(), rand);
14

15 // transfer data to the device

16 device_vector<int> d_vec = h_vec;

17 sort (d_vec.begin(), d_vec.end());

18 // transfer data back to the host

19 copy (d_vec.begin(), d_vec.end(), h_vec.begin());
20 }

Member of the Helmholtz Association

27 October — 30 October 2025 Slide 302

/)

JULICH

Forschungszentrum

NVIDIA Thrust

0 NG A W N

I T T e e
S © WO A WNRO©

Member of the Helmholtz Association

<thrust/host_vector.h>
<thrust/device vector.h>
<thrust/generate.h>
<thrust/sort.h>

<tl t/copy.h>
<cstdlib>

using namespace thrust;
auto main() -> int

{

// generate 32 M random numbers on
// the host

host_vector<int> h_vec (32 << 20);
generate (h_vec.begin(), h_vec.end(),

// transfer data to the device

device_vector<int> d_vec = h_vec;
sort (d_vec.begin(), d_vec.end());
// transfer data back to the host

copy (d_vec.begin(), d_vec.end(), h_vec.begin());

27 October — 30 October 2025

= Example: thrust::host_vector and

thrust: :device_vector use the

assignment operator to transfer data between

the CPU and the GPU

= Thrust algorithms like thrust: :sort have

syntax like STL algorithms

JULICH

Slide 302 J Forschungszentrum

NVIDIA Thrust

0 NG A W N

I T T e e
S © WO A WNRO©

Member of the Helmholtz Association

<thrust/host_vector.h>
<thrust/device_vector.h>
<thrust/gen te.h>
<thrust/sort

using namespace thrust;
auto main() -> int

{

// generate 32 M random numbers on
// the host

host_vector<int> h_vec (32 << 20);
generate (h_vec.begin(), h_vec.end(),

// transfer data to the device

device_vector<int> d_vec = h_vec;
sort (d_vec.begin(), d_vec.end());
// transfer data back to the host

= Example: thrust::host_vector and

thrust: :device_vector use the
assignment operator to transfer data between

the CPU and the GPU

= Thrust algorithms like thrust: :sort have
syntax like STL algorithms

= Many data parallel general operations have
their own algorithms: transform, reduce,

inclusive_scan

rand) ;

copy (d_vec.begin(), d_vec.end(), h_vec.begin());

27 October — 30 October 2025 Slide 302

IJ JULICH

Forschungszentrum

o
H O ©®NOUE WN =

I S T T e
I R S R N I N T €}

Host and device vectors

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>
auto main() -> int
{
thrust::host_vector<int> H(4);
for (int i = 0; i < 4; ++1i) H[i] =
// resize H
H.resize (2);
std::cout << "H now has size "
<< H.size() << "\n";
// Copy host_vector H to
// device vector D
thrust::device_vector<int> D = H;
// elements of D can be modified
D[O] = 99;
D[1] = 88;
// print contents of D
for(int i = 0; i < D.size(); ++1i)
std::cout << "D[" << 1 << "] =
<< D[1i] << "\n";

Member of the Helmholtz Association

27 October — 30 October 2025

= Containers host_vector and device_vector
are designed similar to std: : vector, but, do not
have initializer list constructors or new member
functions of std: :vector like emplace_back

IJ JULICH

Slide 303 Forschungszentrum

o
H O ©®NOUE WN =

T T =t
I R S R N I N T €}

Host and device vectors

= Containers host_vector and device_vector

<thrust/host_vector.h> are designed similar to std: : vector, but, do not
e “thrust/device vector.h have initializer list constructors or new member
#include <iostream>
auto main() -> int functions of std: :vector like emplace_back
{ thrust::host_vector<int> H(4); = The overloaded assignment operators can copy data
for (int i = 0; i < 4; ++i) H[i] = i; across devices
// resize H
H.resize (2);
std::cout << "H now has size "
<< H.size() << "\n";
// Copy host_vector H to
// device vector D
thrus device_vector<int> D = H;
// el nts of D can be modified
D[O] = 99;
D[1] = 88;
// print contents of D
for(int i = 0; i < D.size(); ++1i)
std::cout << "D[" << i << "] ="
<< D[1i] << "\n";
}
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 303 J Forschungszentrum

Other initialization options

= Many algorithms to provide initial values,

1 // alize all ten integers to 1

2 thrust::device_vector<int> D (10,)

3 // set the first seven elements to 9

4 thrust::fill (D.begin(), D.begin() + 7, 9);

5 // init ize a host_vector with

6 // the first five elements of D

7 thrust::host_vector<int> H(D.begin(), D.begin|()
8 // set elements of H to 0, 1, 2,

9 thrust::sequence (H.begin(), H.end());

to serve different purposes.

= There is also thrust: :generate which
can call a functional for every element of

the vector

K = The type of the iterators tell the compiler

which version of the respective algorithms

Member of the Helmholtz Association

27 October — 30 October 2025

to use. No run-time overhead

IJ JULICH

Slide 304 Forschungszentrum

The example programs examples/thrust0.cu and examples/thrustl.cu contain the thrust code in the
previous slides. Run them on JUSUF using the following steps:

= Load the NVidia HPC module: m1 nvapc

= Compile using the nvcc or the nvc++ compiler: nvec thrust0.cu

= Try changing the file name to thrust0.cc and compiling

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 305 Forschungszentrum

Thrust algorithms

o
H O ©®NOUE WN =

o e e e e
N0 Uk W

device_vector<int> X (10), Y(10), Z(10);

// initialize X to 0, 1, 2, 3,

sequence (X.begin (), X.end());

// compute Y = -X

thrust::transform(X.begin(), X.end()

Y.begin(), thrust::negate<int>())

// fill Z with twos

thrust::fill (Z.begin(), Z.end(), 2);

// compute Y = X mod 2

thrust::transform(X.begin(), X.end()
Z.begin(), Y.begin(),
thrust: :modulus<int>());

// replace all the ones in Y with 10

7

thrust::replace(Y.begin(), Y.end(), 1,

// print Y
thrust::copy (Y.begin(), Y.end()

std::ostream_iterator<int> (cout, "\n"));

Member of the Helmholtz Association

27 October — 30 October 2025

= Host and device versions

= A set of elementary functionals are available in
thrust/functional.h

= Notice the copy from a device vector to the
ostream iterator!

IJ JULICH

Slide 306 Forschungszentrum

Universal vectors

1 // examples/thrust_usm.cc

2 #include <thrust/universal_vector.h>

3 #include <thrust/sort.h>

4 #include <iostream>

5 auto main() -> int

6 {

7 thrust::universal_vector<int> h_vec (1l << 22);

8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate (thrust::host, h_vec.begin(), h_vec.end(), rand);
10 std::cout << "Done.\n";

11

12 std::cout << "Sorting vector on device\n";

13 thrust::sort (thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";

15 }

= thrust::universal_vector is similar to thrust: :host_vector and
thrust::device_vector, but uses unified memory for storage

lJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 307 Forschungszentrum

Universal vectors

1 // examples/thrust m.cc

2 #include <thrust/universal_vector.h>

3 include <thrust/sort.h>

4 #include <iostream>

5 auto main () > int

6 {

7 thrust::universal_vector<int> h_vec (1l << 22);

8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate (thrust::host, h_vec.begin(), h_vec.end(), rand);
10 std::cout << "Done.\n";

11

12 std::cout << "Sorting vector on device\n";

13 thrust::sort (thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";

15 }

= thrust::universal_vector is similar to thrust: :host_vector and
thrust::device_vector, but uses unified memory for storage

= Data does not need to be moved explicitly between host and device

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 307 Forschungszentrum

Universal vectors

1 // examples/tl}

2 #inc 1 h>

3

4

5 auto main ()

6 {

7 thrust::universal_vector<int> h_vec (1l << 22);

8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate (thrust::host, h_vec.begin(), h_vec.end(), rand);
10 std::cout << "Done.\n";

11

12 std::cout << "Sorting vector on device\n";

13 thrust::sort (thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";

15 }

= thrust::universal_vector is similar to thrust: :host_vector and
thrust::device_vector, but uses unified memory for storage

= Data does not need to be moved explicitly between host and device
= Algorithms need to be told whether they are meant for host or device explicitly

IJ JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 307 Forschungszentrum

o
H O ©®NOUE WN =

-
S

13

Member of the Helmholtz Association

struct saxpy_ functor {
const float a;
saxpy_functor (float _a) : a(
__host___ __device___
auto operator () (const floaté& x,
const float& y) const
return a » x + y;

—a) {1}

> float ({

}
}i
void saxpy_fast (float A,
const thrust::device_vector<float>s X,
thrust::device_vector<float>& Y)
{
// Y <= A x X + Y
thrust::transform(X.begin(), X.end(),
Y.begin(), Y.begin(),
saxpy_~functor (A));

27 October — 30 October 2025

Custom functionals for transforms

= When pre-defined operations in
thrust/functional.h do not suffice, we can
write our own function objects

= The overloaded operator () must be marked

with __host_ _ device_
IJ JULICH
Slide 308 Forschungszentrum

Custom functionals using placehoders

= For very simple operations, custom functionals can be generated inline using the thrust: :placehoders
namespace.

= _1, _2 ... are placehoders

© 0N A W N

void saxpy_fast (float A,
thrust : :device vector<float>s X,] Expre.55|or.1$ involving placeholde.rs yield a functional
thrust::device_vector<float>s Y) mapping its arguments sequencially to _1, _2 ...

{

// Y <= A x X + Y

thrust::transform(X.begin(), X.end(),
Y.begin(), Y.begin(),
(A « _1 + _2));

}

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 309 J Forschungszentrum

Custom functionals using lambda functions

void saxpy_fast (float A,
thrust::device_vector<float>s& X,
thrust::device_vector<float>s Y)

// Y <= A x X + Y
thrust::transform(X.begin(), X.end(), Y.begin(), Y.begin(),
[A] __host__ _ _device__ (double x, double y) {
return A * x + y;
)i

© O W N O AW N

[

nvcc —--extended-lambda saxpy0O.cu

= Note where we mark the lambda function to be for the host and device

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 310 J Forschungszentrum

Exercise 4.2: Placeholders and lambda functions

The example examples/saxpy0.cu shows how to use the placehoders with thrust algorithms for simple
inline functionality. There is also a commented out version of the same thing done using a lambda function. The

placeholder version is more compact, but the lambda version can have multiple statements, like a normal
function.

Member of the Helmholtz Association

@ » JULICH
27 October — 30 October 2025 Slide 311 J

Forschungszentrum

Exercise 4.3: Mandelbrot set

The Mandelbrot set is the set of complex numbers ¢ for which the function f(z) = z* + ¢ does not diverge when
iterated from z = 0. An image representing the set can be created by generating the sequence z, = z2_; + ¢ for
each pixel in the image, by treating the x and y values of the pixel as the real and imaginary components of c.
The sequence can be taken to have diverged if the magnitude of z exceeds 2. The program
exercises/mandelbrot_cpu.cc does it, using the standard C++ library. A modified version using
thrust, mandelbrot_gpu.cu is also present. Build nvcc and ciang++ and run. Figure out the code differences
and why they are needed.

@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 312 J Forschungszentrum

STDPAR: standard C++ for GPUs

= NVC++, the NVIDIA HPC SDK C++ compiler

= No <<< >>> no__device___ etc. Just plain C++ written with STL algorithms
= std::execution: :par regions automatically translated into GPU code!

= There are restrictions, but they will likely be fewer and fewer in the future

std::transform_reduce (std::execution::par, R2.begin(),
R2.end (), Sl2.begin(), 0., std::plus<double>({},
[] (auto r2, auto sl2){
return Vexv(r2, sl2);
P

nvc++ -03 -std=c++23 -stdpar exvol.cc -o exvol.nv

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 313

IJ JULICH

Forschungszentrum

STDPAR: standard C++4 for GPUs

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 314

Only inline functions or function templates. nvc++ selects functions for GPU execution on its own, and that
only works if it can see the definitions

CUDA Unified Memory for all data movement between CPU and GPU: presently, only heap allocated
objects in CPU code compiled by nvc++ —stdpar can be automatically managed. Stack and global
storage not accessible. Even heap allocations from portions of CPU code not compiled by

nvc++ —stdpar are not visible.

Pointers dereferenced in the parallel algorithms must point to heap locations. References used must be of
heap objects.

Lambda captures by references can often entail pointer dereferencing for stack entities, which should not
occur in parallel algorithm regions

No function pointers: functions are compiled for CPU and GPU. Pointer can only point to one. Inside GPU
code, there will then be the danger of accessing a pointer to a function with CPU code. Pass function
objects or lambdas as arguments to the algorithms instead.

Only random access iterators

catch clauses in GPU code ignored. Fine inside CPU code.

IJ JULICH

Forschungszentrum

Exercise 4.4:
The programs stdpardemo0.cc and stdpardemol . cc are simple short programs using parallel algorithms. The
second one is a slighly modified version of the exvol.cc program we used in connection with SIMD
programming. Compile them with nvc++ and run them on a GPU node on JUSUF.

Exercise 4.5:

The program jacobi.cc is in your examples folder. Identify the part which can be parallelized using STL
parallel algorithms, and do the necessary code changs. It can be compiled for the GPU using nvc++, without any
code changes. Try this new way of CPU/GPU programming where the exact same code runs on both!

l) JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 315 Forschungszentrum

SYCL

= General model for heterogeneous computing: CPU,

GPU, FPGA... 1 template <class T>
2 using usm_alloc_t = sycl::usm_allocator<T,
= Can create queues for different devices 3 sycl::usm::alloc: :shared>;
. . 4 template <class T>
- Smgle source, portable, but not necessarlly 5 using my_vector = std::vector<T, usm_alloc_t<T>>;
performance portable 6 auto main() -> int
7 {
= Open standard from Khronos 8 using std::numbers: :pi;
9 constexpr auto N = 1UL << 20UL;
= Ref: Data Parallel C++ 10 sycl: :qﬁeue @ !
11
12 usm_alloc_t<double> usmg;
13 myvector<double> v{N, usmq};
14
15 autox vraw = v.get();
16
17 g.submit ([&] (sycl::handlers& h) {
18 h.parallel for (N, [=](auto i) {
19 v[i] =2 x pi » 1 / N;
20 1)
21 }) .wait ();
22 }
@) JULICH
Member of the Helmholtz Association 27 October — 30 October 2025 Slide 316 J Forschungszentrum

https://link.springer.com/book/10.1007/978-1-4842-5574-2

SYCL

Use sycl::usm_allocator along with
std::vector to create USM vectors to be used in
kernels

Alternatively USM sycl::malloc and
sycl: :free calls in an RAIl helper class, similar
to a unique pointer

Need at least one queue, e.g., sycl: :queue qj;.
For more control,

sycl::queue g_gpu{gpu_selector{}};
Submit tasks to the queues, containing parallel
algorithm calls.

The task functional submitted should accept a
sycl::handleré&, a command group handler, as
the argument

Member of the Helmholtz Association 27 October — 30 October 2025

template <class T>

using usm_alloc_t = sycl::usm_allocator<T,
sycl::usm::alloc: :shared>;

template <class T>

using my_vector = std::vector<T, usm_alloc_t<T>>;

EAS I I

ml AdaptiveCPP/git-20.1.0b
acpp -std=c++20 -03 prog.cc -0 prog.ex

Run it on a CPU or a GPU!

l) JULICH

Slide 317 Forschungszentrum

Exercise 4.6:

Example programs examples/conv_sycl_usm.cc and examples/gblur_sycl.cc demonstrate iteration over a 1D
and 2D space using SYCL. They both perform a calculation similar to a convolution as a demo. The later one
also demonstrates how to receive information about the hardware. Build it using the AdaptiveCPP compiler as
shown and try to run the generated executable with the patch_run command for a CPU run and the
batch_run_gpu command for a GPU run.

9 JULICH

Member of the Helmholtz Association 27 October — 30 October 2025 Slide 318 Forschungszentrum

	Chapter 1: Introduction
	HPC, C++ and scientific computing
	A brief introduction to C++20 and C++23
	Designated initialisers
	Text formatting
	std::span

	Concepts
	Defining concepts
	Using concepts
	Overloading with concepts

	Ranges
	The range concept
	Views
	View adaptors
	Recap of elementary features with an example

	Modules
	A new project organization
	Compilation process
	Writing a module
	Interface and implementation units
	Module partitions
	Build process with CMake
	Converting an older header based project

	Linkage
	Argument Dependent Lookup
	Numeric types
	Floating point numbers

	Chapter 2: Cost of ...
	Revisiting programming basics for performance
	Functions, stack and heap
	Resource handles and heap allocated data
	Alignment
	Cache effects

	Pipeline
	Dependencies
	Branching

	Inheritance with virtual functions
	Virtual functions

	Expressing assumptions
	Deducing this
	Polymorphism without virtual functions
	Tag dispatching
	SFINAE
	API shimming
	Curiously Recurring Template Pattern

	Expression Templates
	Vectorization
	Intrinsics
	Open source SIMD libraries

	Chapter 3: Lessons from matrix multiplication
	Fast matrix multiplication from scratch

	Chapter 4: Parallelisation using PSTL and TBB
	Parallel computing
	Parallel STL
	Threading Building Blocks
	Parallel Invoke
	Task groups
	TBB task arena
	Parallel for loops
	Range
	Parallel reductions
	Atomics
	Enumerable thread specific
	TBB allocators
	Concurrent containers

	Chapter 5: Linear algebra with Eigen
	Linear Algebra
	Eigen

	Chapter 6: GPU programming
	GPU programming with CUDA
	Thrust
	Host and device side vectors
	Thrust algorithms
	Universal vectors

	Standard C++ parallelism for GPUs
	SYCL: heterogeneous computing

