
High performance scientific computing in C++
HPC C++ Course 2025
27 October – 30 October 2025 Sandipan Mohanty Forschungszentrum Jülich, Germany

Member of the Helmholtz Association

Chapter 1

Introduction

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 1

HPC and C++ in scientific computing

Handle complexity and do it fast
Reliablity: catch implementation logic errors before
the program runs
Efficient machine code based on the source:
application return time may decide whether or not
a research problem is even considered

Smart algorithms
Hardware aware translation of ideas into code
Profiling and tuning

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 2

C++: elegant and efficient abstractions
General purpose: no specialization to specific usage areas
Compiler as a friend: in a large project, static type checking, data ownership control, const-ness guarantees
and user defined compile time checks preclude a lot of possible errors
No over simplification that precludes direct expert level use of hardware
Leave no room for a lower level language
You don’t pay for features you don’t use

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 3

C++ : high level and low level
High level abstractions to facilitate fast development
Direct access to low level features when you want them

Outline of themes
A “quick” recap of C++20 and C++23
Revisiting language fundamentals for high performance code
Expression templates
Explicit SIMD programming
Multi-threaded programs using standard parallel algorithms and Intel (R) Threading Building Blocks
Lessons from writing a matrix multiplication program
Linear algebra with EIGEN
GPU programming with NVidia CUDA and Thrust
Introduction to single source heterogeneous computing using SYCL and OneAPI

The default C++ standard for code samples, examples exercises etc. is C++23, but a few examples will
require older standards.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 4

C++20
Important refreshing of the language, similar to C++11.

Concepts
Ranges
Modules
Coroutines
auto function parameters to implicitly declare
function templates
Explicit template syntax for lambdas
Class non-type template parameters
try ... catch and virtual functions in
constexpr functions
consteval and constinit

<=>

<ranges>

<concepts>

std::atomic<double>

constexpr algorithms
std::assume_aligned

constexpr numeric algorithms

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 5

C++23

(Interesting changes are mostly concentrated in the standard library.)

Multi-dimensional subscript operators
Deducing this

Static operator() and operator[]

[[assume(expr)]]

import std;

<expected>

ranges::to, views::zip
<stacktrace>

std::byteswap

std::mdspan

Formatting ranges and containers
<print>

std::forward_like

std::generator: synchronous coroutine
generator

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 6

First: a couple of small, but interesting changes...
std::osyncstream

1 #include <iostream>
2 #include <omp.h>
3
4 auto main() -> int
5 {
6 #pragma omp parallel for
7 for (auto i = 0UL; i < 100UL; ++i) {
8 std::cout << "counter = " << i << " on thread "
9 << omp_get_thread_num() << "\n";

10 }
11 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 7

First: a couple of small, but interesting changes...
std::osyncstream

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 7

First: a couple of small, but interesting changes...
std::osyncstream

1 #include <iostream>
2 #include <syncstream>
3 #include <omp.h>
4
5 auto main() -> int
6 {
7 #pragma omp parallel for
8 for (auto i = 0UL; i < 100UL; ++i) {
9 std::osyncstream{std::cout} << "counter = " << i << " on thread "

10 << omp_get_thread_num() << "\n";
11 }
12 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 7

First: a couple of small, but interesting changes...
std::osyncstream

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 7

Exercise 1.1:
To work on the examples, please copy the examples folder into the work folder of your private work space. Do
not modify the content in the orig folder, since that is where the course material will be updated. The update
does not succeed if any file is modified in the orig folder. Suggested work flow...

$ cd $cxx2025/work
$ cp -r ../orig/day1/examples ./d1examples
$ cd d1examples
$ G syncstream.cc -fopenmp -o syncstream.g
$./syncstream.g

examples/garbled.cc and examples/syncstream.cc demonstrate the use of std::osyncstream as shown
above. examples/syncstream_mpi.cc demonstrates that the synchronisation of output stream also works with
output from different MPI processes.

$ mpicxx -std=c++23 -O3 -fopenmp syncstream_mpi.cc -o syncstream.mpi
$ OMP_NUM_THREADS=4 batch_run --ntasks=32 --cpus-per-task=4 ./syncstream.mpi

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 8

Immediate functions
1 // examples/immediate.cc
2 constexpr auto cxpr_sqr(auto x) { return x * x; }
3 consteval auto cevl_sqr(auto x) { return x * x; }
4
5 auto main(int argc, char* argv[]) -> int
6 {
7 std::array<double, cxpr_sqr(14)> A;
8 std::array<double, cevl_sqr(14)> B;
9 std::cout << cxpr_sqr(argc) << "\n";

10 std::cout << cevl_sqr(argc) << "\n";
11 }

constexpr functions with compile time constant
arguments are evaluated at compile time, if the
result is needed to initialise a constexpr variable
constexpr functions remain available for use
with non-constant objects at run-time. This is
sometimes desirable, but it also makes certain
accidental uses possible, when we intend compile
time evaluation but get something else.
The new consteval specifier creates “immediate”
functions. It is possible to use them in the compile
time context. But it is an error to use them with
non-constant arguments.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 9

Designated initialisers
1 // examples/desig2.cc
2 struct v3 { double x, y, z; };
3 struct pars { int offset; v3 velocity; };
4 auto operator<<(std::ostream & os, const v3 & v) -> std::ostream&
5 {
6 return os << v.x << ", " << v.y << ", " << v.z << " ";
7 }
8 void example_func(pars p)
9 {

10 std::cout << p.offset << " with velocity " << p.velocity << "\n";
11 }
12 auto main() -> int
13 {
14 example_func({.offset = 5, .velocity = {.x=1., .y = 2., .z=3.}});
15 }

Simple struct type objects can be initialised by designated initialisers for each field.
Can be used to implement a kind of "keyword arguments" for functions. But remember, at least upto
C++23, the field order can not be shuffled.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 10

Couple of small, but interesting changes... I
You can now write auto in function parameter lists, e.g.,
auto add(auto x, auto y) { return x + y; }, to create a function template

template <class T, class U> auto add(T x, U y) { return x + y; }

You can now use explicit template parameters in lambda functions
[]<class T>(T x, const std::vector<T>& v) {

for (auto el : v) x += el;
return x;

};

std::string can now reserve() memory
S.starts_with("pre") checks if a string S starts with the prefix "pre". Similarly for ends_with()
M.contains("key") answers whether a certain key "key" is present in an associative container. Cleaner
than try { M.at("key"); } catch (auto& err) { }, or

1 if (auto it = find_if(M.begin(), M.end(), [](auto&& el){ return el.first == "key"; });
2 it != M.end()) { ... }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 11

Couple of small, but interesting changes... II
std::erase(C, element) and std::erase_if(C, predicate) erase elements equal to a given
element or elements satisfying a given predicate from a container C. Same behaviour for different containers.
std::lerp(min, max, t) : linear interpolation, std::midpoint(a, b) : overflow aware
mid-point calculation
std::assume_aligned<16>(dptr) returns the input pointer, but the compiler then assumes that the
pointer is aligned to a given number of bytes.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 12

Couple of small, but interesting changes...
std::span<T> is a new non-owning view type for contiguous ranges of arbitrary element types T. It is
like the string_view, but for other array like entities such as vector<T>, array<T,N>,
valarray<T> or even C-style arrays. Can be used to encapsulate the (pointer, size) pairs often used as
function arguments. Benefit: it gives us an STL style interface for the (pointer, size) pair, so that they can
be directly used with C++ algorithms.
Signed size of containers: std::ssize(C), where C is a container, returns a signed integer (number of
elements in container). Containers like std::vector, std::list, std::map have member functions
ssize() for the same purpose. Signed sizes are useful, for instance, when iterating backwards through the
container.
Safe integer comparisons: functions like cmp_less(i1, i2) will perform integer comparisons without
conversions. cmp_less(-1, 1U) will return true, where as, -1 < 1U returns false. Similarly, we
have, cmp_less_equal, cmp_greater, cmp_not_equal and cmp_equal.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 13

Couple of small, but interesting changes...
Bit manipulation:

std::bit_cast<>: bit_cast<uint64_t>(3.141592653) reinterprets the bits in the object
representation of the input and returns an object of a required type so that the corresponding bits match
has_single_bit(UnsignedInteger): answers if only one of the bits in the input is 1, while the rest
are 0
std::rotl(UnsignedInteger, amount), std::rotr(UnsignedInteger, amount): Rotates
the bits in an unsigned integer left or right by a given amount
std::bit_floor(UnsignedInteger): Largest power of two not greater than input
std::bit_ceil(UnsignedInteger): Smallest power of two not smaller than input
Count consecutive 0 bits from the left countl_zero or right countr_zero, and similarly for 1 bits
popcount, count the total number of 1 bits in the entire input

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 14

Exercise 1.2:
Some example programs about the minor new features of C++20 and C++23 are desig.cc, desig2.cc,
cxpr_algo0.cc, immediate.cc, intcmp.cc, and bit0.cc, in the examples/ directory. Check them, change them in
small ways, ask related questions!
Alternatively, double click on the Jupyter Notebook in the examples directory called MiscSmallFeatures.ipynb,
and work through the notebook.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 15

Formatted output
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and
extensible, the interface of ostream objects
like std::cout isn’t by itself conducive to
regular well-formatted output

C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible
C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax
C++20 introduced the <format> header,
which introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 16

Formatted output
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << "i = " << i
3 << ", E_1 = " << cos(i * wn)
4 << ", E_2 = " << sin(i * wn)
5 << "\n";
6 }

i = 5, E_1 = 0.55557, E_2 = 0.83147
i = 6, E_1 = 0.382683, E_2 = 0.92388
i = 7, E_1 = 0.19509, E_2 = 0.980785
i = 8, E_1 = 6.12323e-17, E_2 = 1
i = 9, E_1 = -0.19509, E_2 = 0.980785
i = 10, E_1 = -0.382683, E_2 = 0.92388
i = 11, E_1 = -0.55557, E_2 = 0.83147

While convenient and type safe and
extensible, the interface of ostream objects
like std::cout isn’t by itself conducive to
regular well-formatted output
C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible
C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax

C++20 introduced the <format> header,
which introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 16

Formatted output
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

While convenient and type safe and
extensible, the interface of ostream objects
like std::cout isn’t by itself conducive to
regular well-formatted output
C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible
C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax
C++20 introduced the <format> header,
which introduces Python like string formatting
Based on the open source fmt library.

Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 16

Formatted output
1 for (auto i = 0UL; i < 100UL; ++i) {
2 std::cout << format(
3 "i = {:>4d}, E_1 = {:< 12.8f}, "
4 "E_2 = {:< 12.8f}\n",
5 i, cos(i * wn), sin(i * wn));
6 }

i = 5, E_1 = 0.55557023 , E_2 = 0.83146961
i = 6, E_1 = 0.38268343 , E_2 = 0.92387953
i = 7, E_1 = 0.19509032 , E_2 = 0.98078528
i = 8, E_1 = 0.00000000 , E_2 = 1.00000000
i = 9, E_1 = -0.19509032 , E_2 = 0.98078528
i = 10, E_1 = -0.38268343 , E_2 = 0.92387953
i = 11, E_1 = -0.55557023 , E_2 = 0.83146961

Perfectly aligned, as all numeric output should be.

While convenient and type safe and
extensible, the interface of ostream objects
like std::cout isn’t by itself conducive to
regular well-formatted output
C printf often has a simpler path towards
visually uniform columnar output, although it
is neither type safe nor extensible
C++ <iomanip> header allows formatting
with a great deal of control, but has a
verbose and inconsistent syntax
C++20 introduced the <format> header,
which introduces Python like string formatting
Based on the open source fmt library.
Elegant. Safe. Fast. Extensible.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 16

Formatted output
std::format("format string {}, {} etc.", args...) takes a compile time constant format
string and a parameter pack to produce a formatted output string
std::vformat can be used if the format string is not known at compilation time
If instead of receiving output as a newly created string, output into a container or string is desired,
std::format_to or std::format_to_n are available
The format string contains python style placeholder braces to be filled with formatted values from the
argument list
The braces can optionally contain id : spec descriptors. id is a 0 based index to choose an argument
from args... for that slot. spec controls how the value is to be written: width, precision, alignment,
padding, base of numerals etc. Details of the format specifiers can be found here!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 17

https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_specification

std::print
Introduced in C++23
Formats using the std::format syntax, but then
directs the output to stdout, as if you had written
std::cout << std::format(...);

Formatting capabilities were extended to containers
(ranges in general), date/time utilities

1 std::print("Hello world!\n");
2 std::print("answer = {: >12.8f}\n", d);
3 std::print("{}\n", v);
4 std::print("{}\n", t1 - t0);

Exercise 1.3:
A simple example demonstrating the text formatting library of C++20 is in examples/format1.cc. Replace
cout+format by the equivalent use of std::print!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 18

Optional values
1 #include <optional>
2 auto f(double x) -> std::optional<double> {
3 std::optional<double> ans;
4 const auto eps2 = 1.0e-24;
5 if (x >= 0) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 ans = r1;
13 }
14 return ans;
15 }
16 // Elsewhere...
17 std::cout << "Enter number : ";
18 std::cin >> x;
19 if (auto r = f(x); r.has_value()) {
20 std::cout << "The result is "
21 << r.value() << '\n';
22 }

std::optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all
If created without any initialisers, the box is empty
You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a true
outcome if there is an object inside, irrespective of
the value of that object
Empty box evaluates to false

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 19

Optional values
1 #include <optional>
2 auto f(double x) -> std::optional<double> {
3 std::optional<double> ans;
4 const auto eps2 = 1.0e-24;
5 if (x >= 0) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 ans = r1;
13 }
14 return ans;
15 }
16 // Elsewhere...
17 std::cout << "Enter number : ";
18 std::cin >> x;
19 if (auto r = f(x); r) {
20 std::cout << "The result is "
21 << *r << '\n';
22 }

std::optional<T> is analogous to a box
containing exactly one object of type T or nothing
at all
If created without any initialisers, the box is empty
You store something in the box by assigning to the
optional

Evaluating the optional as a boolean gives a true
outcome if there is an object inside, irrespective of
the value of that object
Empty box evaluates to false

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 19

C++23 std::expected
1 #include <expected>
2 auto mysqrt(double x) -> std::expected<double, std::string> {
3 const auto eps = 1.0e-12;
4 const auto eps2 = eps * eps;
5 if (x >= 0.) {
6 auto r0 = 0.5 * (1. + x);
7 auto r1 = x / r0;
8 while ((r0 - r1) * (r0 - r1) > eps2) {
9 r0 = 0.5 * (r0 + r1);

10 r1 = x / r0;
11 }
12 return { r1 };
13 } else {
14 return std::unexpected { "Unexpected input!" };
15 }
16 }
17 // Elsewhere...
18 if (auto rm = mysqrt(x); rm) std::cout << "Square root = " << rm.value() << "\n";
19 else std::cout << "Error: " << rm.error() << "\n";

Similar to std::optional, but has more capacity to describe the error
The unexpected value can be of a type of our choosing, making it very flexible

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 20

std::span (C++20)
std::vector

operator[]

size() and ssize()

begin()

end()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 21

std::span (C++20)
std::vector

operator[]

size() and ssize()

begin()

end()

std::span
operator[]

size() and ssize()

begin()

end()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 21

std::span (C++20)
std::vector

operator[]

size() and ssize()

begin()

end()

std::span
operator[]

size() and ssize()

begin()

end()

Contiguous containers
RAII

span: address and size of pre-existing data
No resource ownership or management

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 21

std::span (C++20)
std::vector

operator[]

size() and ssize()

begin()

end()

std::span
operator[]

size() and ssize()

begin()

end()

Contiguous containers
As long as container exists, elements can be
accessed

span: address and size of pre-existing data
Even if span exists, accessibility of data is not
guaranteed

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 21

std::span (C++20)
std::vector

operator[]

size() and ssize()

begin()

end()

std::span
operator[]

size() and ssize()

begin()

end()

Contiguous containers
When container has expired, references / pointers /
iterators to elements are invalidated

span: address and size of pre-existing data
When span has expired, references / pointers /
iterators to elements may remain valid

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 21

span
1 using std::transform_reduce;
2 using std::plus;
3 using std::multiplies;
4 using std::vector;
5
6
7 auto compute(const vector<double>& u,
8 const vector<double>& v) -> double
9 {

10 return transform_reduce(
11 u.begin(), u.end(),
12 v.begin(), 0., plus<double>{},
13 multiplies<double>{});
14 }
15 void elsewhere()
16 {
17 vector<double> A(100UL, 0.34);
18 vector<double> B(100UL, 0.87);
19 std::cout << compute(A, B) << "\n";
20 }

We can avoid needlessly restrictive interfaces

As written here, std::valarray wouldn’t be an
acceptable input
As written here, even std::vector with a
different allocator wouldn’t be an acceptable input
With std::span we can write a concrete function,
which can be used with any contiguous container!
Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

1 template <class NoBueno>
2 auto compute(std::span<NoBueno> s) {...}
3 void elsewhere(const VT& v) {
4 compute(v);
5 } // Template argument deduction failed!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 22

span
1 using std::transform_reduce;
2 using std::plus;
3 using std::multiplies;
4 using std::vector;
5 using std::valarray;
6
7 auto compute(const vector<double>& u,
8 const vector<double>& v) -> double
9 {

10 return transform_reduce(
11 u.begin(), u.end(),
12 v.begin(), 0., plus<double>{},
13 multiplies<double>{});
14 }
15 void elsewhere()
16 {
17 vector<double> A(100UL, 0.34);
18 valarray<double> B(100UL, 0.87);
19 std::cout << compute(A, B) << "\n";
20 }

We can avoid needlessly restrictive interfaces
As written here, std::valarray wouldn’t be an
acceptable input

As written here, even std::vector with a
different allocator wouldn’t be an acceptable input
With std::span we can write a concrete function,
which can be used with any contiguous container!
Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

1 template <class NoBueno>
2 auto compute(std::span<NoBueno> s) {...}
3 void elsewhere(const VT& v) {
4 compute(v);
5 } // Template argument deduction failed!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 22

span
1 using std::transform_reduce;
2 using std::plus;
3 using std::multiplies;
4 using std::vector;
5 template <class T>
6 using VT = vector<T, tbb::scalable_allocator<T>>;
7
8 auto compute(const vector<double>& u,
9 const vector<double>& v) -> double

10 {
11 return transform_reduce(
12 u.begin(), u.end(),
13 v.begin(), 0., plus<double>{},
14 multiplies<double>{});
15 }
16 void elsewhere()
17 {
18 vector<double> A(100UL, 0.34);
19 VT<double> B(100UL, 0.87);
20 std::cout << compute(A, B) << "\n";
21 }

We can avoid needlessly restrictive interfaces
As written here, std::valarray wouldn’t be an
acceptable input
As written here, even std::vector with a
different allocator wouldn’t be an acceptable input

With std::span we can write a concrete function,
which can be used with any contiguous container!
Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

1 template <class NoBueno>
2 auto compute(std::span<NoBueno> s) {...}
3 void elsewhere(const VT& v) {
4 compute(v);
5 } // Template argument deduction failed!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 22

span
1 using std::transform_reduce;
2 using std::plus;
3 using std::multiplies;
4 using std::vector;
5 template <class T>
6 using VT = vector<T, tbb::scalable_allocator<T>>;
7 using std::span;
8 auto compute(span<const double> u,
9 span<const double> v) -> double

10 {
11 return transform_reduce(
12 u.begin(), u.end(),
13 v.begin(), 0., plus<double>{},
14 multiplies<double>{});
15 }
16 void elsewhere()
17 {
18 vector<double> A(100UL, 0.34);
19 VT<double> B(100UL, 0.87);
20 std::cout << compute(A, B) << "\n";
21 }

We can avoid needlessly restrictive interfaces
As written here, std::valarray wouldn’t be an
acceptable input
As written here, even std::vector with a
different allocator wouldn’t be an acceptable input
With std::span we can write a concrete function,
which can be used with any contiguous container!

Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

1 template <class NoBueno>
2 auto compute(std::span<NoBueno> s) {...}
3 void elsewhere(const VT& v) {
4 compute(v);
5 } // Template argument deduction failed!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 22

span
1 using std::transform_reduce;
2 using std::plus;
3 using std::multiplies;
4 using std::vector;
5 template <class T>
6 using VT = vector<T, tbb::scalable_allocator<T>>;
7 using std::span;
8 auto compute(span<const double> u,
9 span<const double> v) -> double

10 {
11 return transform_reduce(
12 u.begin(), u.end(),
13 v.begin(), 0., plus<double>{},
14 multiplies<double>{});
15 }
16 void elsewhere(const double* A, size_t N)
17 {
18 VT<double> B(N, 0.87);
19 std::cout << compute(span(A, N), B) << "\n";
20 }

We can avoid needlessly restrictive interfaces
As written here, std::valarray wouldn’t be an
acceptable input
As written here, even std::vector with a
different allocator wouldn’t be an acceptable input
With std::span we can write a concrete function,
which can be used with any contiguous container!
Contiguous data stored anywhere, even C-style
arrays, can be easily used for the same function

1 template <class NoBueno>
2 auto compute(std::span<NoBueno> s) {...}
3 void elsewhere(const VT& v) {
4 compute(v);
5 } // Template argument deduction failed!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 22

span
1 using std::span;
2 using std::transform_reduce;
3 using std::plus;
4 using std::multiplies;
5 auto compute(span<const double> u,
6 span<const double> v) -> double
7 {
8 return transform_reduce(
9 u.begin(), u.end(),

10 v.begin(), 0., plus<double>{},
11 multiplies<double>{});
12 }
13
14 void elsewhere(double* x, double* y,
15 unsigned N)
16 {
17 return compute(span(x, N), span(y, N));
18 }

Non-owning view type for a contiguous range
No memory management
Numeric operations can often be expressed in terms
of existing arrays in memory, irrespective of how
they got there and who cleans up after they expire
span is designed to be that input for such
functions
Cheap to copy: essentially a pointer and a size
STL container like interface

Exercise 1.4:
examples/spans is a directory containing the compute
function as shown here. Notice how this function is used
directly using C++ array types as arguments instead of
spans, and indirectly when we only have pointers.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 23

The 4 big changes
Concepts: Named constraints on templates
Ranges

A concept of an iterable range of entities demarcated by an iterator-sentinel pair, e.g., all STL containers, views
(like string_views and spans), adapted ranges, any containers you might write so long as they have some
characteristics
Views: ranges which have constant time copy, move and assignment
Range adaptors : lazily evaluated functionals taking viewable ranges and producing views.
Important consequence: UNIX pipe like syntax for composing simple easily verified components for non-trivial
functionality

Modules : Move away from header files, even for template/concepts based code. Consequences: faster build
times, easier and more fine grained control over the exposed interface
Coroutines: functions which can suspend and resume from the middle. Stackless. Consequences:
asynchronous sequential code, lazily evaluated sequences, ... departure from pure stack trees at run time.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 24

Concepts

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 25

Constrained templates
Overloaded functions: different strategies for different input types

auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

Function templates: same steps for different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
Is there any way to impose conditions for a given function template to be selected instead of blindly
substituting T with the type of the input ? Perhaps, something like this ?

template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

We can.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 26

Constrained templates
Overloaded functions: different strategies for different input types

auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

Function templates: same steps for different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?

Is there any way to impose conditions for a given function template to be selected instead of blindly
substituting T with the type of the input ? Perhaps, something like this ?

template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

We can.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 26

Constrained templates
Overloaded functions: different strategies for different input types

auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

Function templates: same steps for different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
Is there any way to impose conditions for a given function template to be selected instead of blindly
substituting T with the type of the input ? Perhaps, something like this ?

template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

We can.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 26

Constrained templates
Overloaded functions: different strategies for different input types

auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

Function templates: same steps for different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
Is there any way to impose conditions for a given function template to be selected instead of blindly
substituting T with the type of the input ? Perhaps, something like this ?

template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

We can.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 26

Constrained templates
Overloaded functions: different strategies for different input types

auto power(double x, double y) -> double ;
auto power(double x, int i) -> double ;

Function templates: same steps for different types, e.g.,
template <class T> auto power(double x, T i) -> double ;

Can we combine the two, so that we have two (or more) function templates, both looking like the above,
but one is automatically selected whenever T is an integral type and the other whenever T is a floating point
type ?
Is there any way to impose conditions for a given function template to be selected instead of blindly
substituting T with the type of the input ? Perhaps, something like this ?

template <class T> auto power(double x, T i) -> double requires floating_point<T>;
template <class T> auto power(double x, T i) -> double requires integer<T>;

We can. Or rather, we always could with C++ templates. But now the syntax is easier.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 26

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = (X != 0 && (X & (X-1)) == 0);

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
constexpr auto flag1 = PowerOfTwo<2048U>; // Compiler sets flag1 to True
constexpr auto flag2 = PowerOfTwo<2056U>; // Compiler sets flag2 to False

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T, unsigned N> requires PowerOfTwo<N>
struct MyMatrix {

// code which assumes that the square matrix size is a power of two
};

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T, unsigned N> requires PowerOfTwo<N>
struct MyMatrix {

// code which assumes that the square matrix size is a power of two
};
auto main() -> int
{

auto m = MyMatrix<double, 16U>{};
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T, unsigned N> requires PowerOfTwo<N>
struct MyMatrix {

// code which assumes that the square matrix size is a power of two
};
auto main() -> int
{

auto m = MyMatrix<double, 17U>{};
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 27

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T> concept Number = std::integral<T> or std::floating_point<T>;

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 28

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T> concept Number = std::integral<T> or std::floating_point<T>;
template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>
struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type
};

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 28

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T> concept Number = std::integral<T> or std::floating_point<T>;
template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>
struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type
};
auto main() -> int
{

auto m = MyMatrix<double, 16U>{};
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 28

Concepts
Named requirements on template parameters

template <unsigned X> concept PowerOfTwo = std::has_single_bit(X);
template <class T> concept Number = std::integral<T> or std::floating_point<T>;
template <class T, unsigned N> requires Number<T> && PowerOfTwo<N>
struct MyMatrix {

// assume that the square matrix size is a power of two, and T is a numeric type
};
auto main() -> int
{

auto m = MyMatrix<double*, 16U>{};
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 28

Concepts
Named requirements on template parameters

concepts are named requirements on template parameters, such as floating_point,
contiguous_range

If MyAPI is a concept, and T is a template parameter, MyAPI<T> evaluates at compile time to either
true or false.
Concepts can be combined using conjunctions (&&) and disjunctions (||) to make other concepts.
A requires clause introduces a constraint or requirement on a template type

A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 29

Creating concepts
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of_v<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 30

Creating concepts
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of_v<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 30

Creating concepts
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of_v<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 30

Creating concepts
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of_v<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements

requires expression: Parameter list and a brace
enclosed sequence of requirements:

type requirements, e.g.,
typename T::value_type;
simple requirements as shown on the left
compound requirements with optional return type
constraints, e.g.,
{ A[0UL] } -> convertible_to<int>;

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 30

Creating concepts
template <template-pars>
concept conceptname = constraint_expr;

template <class T>
concept Integer = std::is_integral_v<T>;
template <class D, class B>
concept Derived = std::is_base_of_v<B, D>;

class Counters;
template <class T>
concept Integer_ish = Integer<T> ||

Derived<T,Counters>;

template <class T>
concept Addable = requires (T a, T b) {

{ a + b };
};
template <class T>
concept Indexable = requires(T A) {

{ A[0UL] };
};

Out of a simple type_traits style boolean
expression
Combine with logical operators to create more
complex requirements
The requires expression allows creation of
syntactic requirements

1 // Usage example...
2 template <class T> requires Indexable<T>
3 auto f(T&& x) -> unsigned long;
4 void elsewhere() {
5 std::vector<Protein> v;
6 std::array<NucleicAcidType, 4> NA;
7 f(v); // OK
8 f(NA); // OK
9 f(4); // No match!

10 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 30

Using concepts
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list
Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 31

Using concepts
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list
Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 31

Using concepts
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list
Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 31

Using concepts
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list
Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 31

Using concepts
template <class T>
requires Integer_ish<T>
auto categ0(T&& i, double x) -> T;

template <class T>
auto categ1(T&& i, double x) -> T

requires Integer_ish<T>;

template <Integer_ish T>
auto categ2(T&& i, double x) -> T;

void erase(Integer_ish auto&& i)

To constrain template parameters, one can
place a requires clause immediately after the
template parameter list
place a requires clause after the function header
Use the concept name in place of class or
typename in the template parameter list
Use ConceptName auto in the function
parameter list

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 31

Declaring function input parameters with auto
1 template <class T>
2 auto sqr(const T& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...

Functions with auto in their parameter list are
implicitly function templates

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 32

Declaring function input parameters with auto
1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 32

Declaring function input parameters with auto
1
2 auto sqr(const auto& x) { return x * x; }

Because of syntax introduced for functions with
constrained templates in C++20, we have a new
way to write fully unconstrained function
templates...
Functions with auto in their parameter list are
implicitly function templates

Exercise 1.9:
The program examples/concepts/gcd_w_concepts.cc shows a very small concept definition and its use in a
function calculating the greatest common divisor of two integers.

Exercise 1.10:
The series of programs examples/concepts/generic_func1.cc through generic_func4.cc shows some trivial
functions implemented with templates with and without constraints. The files contain plenty of comments
explaining the rationale and use of concepts.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 32

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4
5
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9

10
11
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.

The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts

The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”

During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.

Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships

Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.

Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Overloading based on concepts
1 template <class N>
2 concept Number = std::floating_point<N>
3 or std::integral<N>;
4 template <class N>
5 concept NotNumber = not Number<N>;
6 void proc(Number auto&& x) {
7 std::cout << "Called proc for numbers";
8 }
9 void proc(NotNumber auto&& x) {

10 std::cout << "Called proc for non-numbers";
11 }
12 auto main() -> int {
13 proc(-1);
14 proc(88UL);
15 proc("0118 999 88199 9119725 3");
16 proc(3.141);
17 proc("eighty"s);
18 }

Constraints on template parameters are not just
“documentation” or decoration or annotation.
The compiler can choose between different versions
of a function based on concepts
The version of a function chosen depends on
properties of the input types, rather than their
identities. “It’s not who you are underneath, it’s
what you (can) do that defines you.”
During overload resolution, in case multiple
matches are found, the most constrained overload
is chosen.
Not based on any inheritance relationships
Not a “quack like a duck, or bust” approach either.
Entirely compile time mechanism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 33

Selecting a code path based on input properties
1 template <class T>
2 concept hasAPI = requires(T x) {
3 typename T::value_type;
4 typename T::block_type;
5 { x[0UL] };
6 { x.block(0UL) };
7 };
8
9 template <class C> auto algo(C && x) -> size_t

10 {
11 if constexpr (hasAPI<C>) {
12 // Use x.block() etc to calculate
13 // using vector blocks
14 } else {
15 // Some general method, quick to
16 // develop but perhaps slow to run
17 }
18 }

1 #include "algo.hh"
2 #include "Machinery.hh"
3
4 auto main() -> int
5 {
6 Machinery obj;
7 auto res = algo(obj);
8 std::cout << "Result = " << res << "\n";
9 }

General algorithms can be implemented such that a
faster method is selected whenever the input has
specific properties
No requirement of any inheritance relationships for
the user of the algorithms

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 34

Constraining non-template members of class templates
1 template <class T> struct ClassTemp {
2 auto operator++() -> std::enable_if_t<std::is_integral_v<T>, ClassTemp&> {
3 ++obj;
4 return *this;
5 }
6 auto other() -> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9 };

10 auto main() -> int {
11 ClassTemp<int> x;
12 std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }

$ g++ -std=c++20 nontempconstr.cc
$

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 35

Constraining non-template members of class templates
1 template <class T> struct ClassTemp {
2 auto operator++() -> std::enable_if_t<std::is_integral_v<T>, ClassTemp&> {
3 ++obj;
4 return *this;
5 }
6 auto other() -> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9 };

10 auto main() -> int {
11 ClassTemp<double> x;
12 std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }

$ g++ -std=c++20 nontempconstr.cc
error: no type named ‘type’ in ‘struct std::enable_if<false, ClassTemp<double>&>’
2614 | using enable_if_t = typename enable_if<_Cond, _Tp>::type;

| ^~~~~~~~~~~
nontempconstr1.cc: In function ‘int main()’:
nontempconstr1.cc:19:19: error: no match for ‘operator++’ (operand type is
‘ClassTemp<double>’)
$

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 35

Constraining non-template members of class templates
1 template <class T> struct ClassTemp {
2 auto operator++() -> std::enable_if_t<std::is_integral_v<T>, ClassTemp&> {
3 ++obj;
4 return *this;
5 }
6 auto other() -> std::string { return "something else"; }
7 auto val() const -> T { return obj; }
8 T obj{};
9 };

10 auto main() -> int {
11 ClassTemp<double> x;
12 // std::cout << (++x).val() << "\n";
13 std::cout << x.other() << "\n";
14 }

$ g++ -std=c++20 nontempconstr.cc
error: no type named ‘type’ in ‘struct std::enable_if<false, ClassTemp<double>&>’
2614 | using enable_if_t = typename enable_if<_Cond, _Tp>::type;
$

std::enable_if can not be used to disable non-template members of class templates.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 35

Constraining non-template members of class templates
1 template <class N> concept Number = std::integral<N> std::floating_point<N>;
2 template <class N> concept Integer = Number<N> && std::integral<N>;
3
4 template <class T> struct ClassTemp {
5 auto operator++() -> ClassTemp& requires Integer<T> {
6 ++obj;
7 return *this;
8 }
9 auto other() -> std::string { return "something else"; }

10 auto val() const -> T { return obj; }
11 T obj{};
12 };
13 auto main() -> int {
14 ClassTemp<double> x;
15 // std::cout << (++x).val() << "\n";
16 std::cout << x.other() << "\n";
17 }

$ g++ -std=c++20 nontempconstr.cc
$

But concepts can be used as restraints on non-template members of class templates.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 35

Concepts: summary

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 36

Exercise 1.11:
Build and run the examples conceptint.cc, concept_type.cc, overload_w_concepts.cc, nontempconstr.cc,
and cpp_sum_2.cc. In some cases the programs illustrate specific types of programming error. The
demonstration is that compiler finds them and gives us useful error messages. Example compilation:

clang++ -std=c++20 -stdlib=libc++ overload_w_concepts.cc
a.out

Alternatively, you could use one of the shortcuts provided with the course material.

C overload_w_concepts.cc -o overload_w_concepts.l && ./overload_w_concepts.l

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 37

Predefined useful concepts
Many concepts useful in building our own concepts are available in the standard library header <concepts>.

same_as

convertible_to

signed_ingegral, unsigned_integral
floating_point

assignable_from

swappable, swappable_with

derived_from

move_constructible,
copy_constructible

invocable

predicate

relation

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 38

Ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 39

The range concept
1 def python_sum(Container, start=0):
2 res = start
3 for x in Container:
4 res += x
5 return res

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 auto sum(auto&& Container, auto start = 0) {
2 for (auto&& el : Container) start += el;
3 return start;
4 }

A C++ version can be as compact as the python version, but then it will also have the same problems:

We did not ensure that the first parameter is a container. Just calling it Container isn’t good enough
We did not ensure that the type of the second parameter was the data type of the first

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 template <class T> requires has_referenceable_begin_end<T>
2 auto sum(T&& Container, element_type_of<T> start = 0) {
3 for (auto&& el : Container) start += el;
4 return start;
5 }

As compact as the python version, but with the same problems:

Use concepts to put constraints on the function template!
What matters for the code inside sum to work is the presence of begin and end functions, which return
iterator types
The type of the second parameter should somehow be obtained from the first using some kind of
meta-function

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 template <class T> using cleanup = std::remove_cvref_t<T>;
2 template <class T> using element = std::iter_value_t<cleanup<T>>;
3 template <class T> requires std::ranges::forward_range<T>
4 auto sum(T&& a, element<T> start) {
5 for (auto&& el : a) start += el;
6 return start;
7 }

Using definitions in the ranges header, we have a few more lines, but:
Only available when T really is a sequence where forward iteration is possible
The second parameter must be the element type of the first one

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 template <class T> using cleanup = std::remove_cvref_t<T>;
2 template <class T> using element = std::iter_value_t<cleanup<T>>;
3 template <class T> requires std::ranges::forward_range<T>
4 auto sum(T&& a, element<T> start) {
5 for (auto&& el : a) start += el;
6 return start;
7 }
8 template <class ... T, class U> requires ((std::same_as<T, U>) && ...)
9 auto sum(U&& start, T&& ... a) { return (start + ... + a); }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 template <class T> using cleanup = std::remove_cvref_t<T>;
2 template <class T> using element = std::iter_value_t<cleanup<T>>;
3 template <class T> requires std::ranges::forward_range<T>
4 auto sum(T&& a, element<T> start) {
5 for (auto&& el : a) start += el;
6 return start;
7 }
8 template <class ... T, class U> requires ((std::same_as<T, U>) && ...)
9 auto sum(U&& start, T&& ... a) { return (start + ... + a); }

We can overload with a different function template taking the same number of generic parameters, but
different constraints
We can overload with a variadic function template of the same name, so long as the constraints are different

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 template <class T> using cleanup = std::remove_cvref_t<T>;
2 template <class T> using element = std::iter_value_t<cleanup<T>>;
3 template <class T> requires std::ranges::forward_range<T>
4 auto sum(T&& a, element<T> start) {
5 for (auto&& el : a) start += el;
6 return start;
7 }
8 template <class ... T, class U> requires ((std::same_as<T, U>) && ...)
9 auto sum(U&& start, T&& ... a) { return (start + ... + a); }

1 auto main() -> int {
2 std::vector v{ 1, 2, 3, 4, 5 };
3 std::list l{9.1, 9.2, 9.3, 9.4, 9.5, 9.6};
4 std::cout << sum(v, 0) << "\n";
5 std::cout << sum(l, 0.) << "\n";
6 std::cout << sum(4.5, 9.) << "\n";
7 std::cout << sum(4.5, 3.4, 5., 9.) << "\n";
8 }

Tremendous flexibility, but still resolved at compilation time!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 40

The range concept
1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 // before std::ranges we did this...
3 std::reverse(v.begin(), v.end());
4 std::rotate(v.begin(), v.begin() + 3, v.end());
5 std::sort(v.begin(), v.end());

1 std::vector v{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
2 namespace sr = std::ranges;
3 sr::reverse(v);
4 sr::rotate(v, v.begin() + 3);
5 sr::sort(v);

The <ranges> header defines a special kind of concept describing entities with a start and an end.
The range concept is defined in terms of

the existence of an iterator type and a “sentinel” type.
the iterator should behave like an iterator, e.g., allow ++it *it etc.
it should be possible to compare the iterators with other iterators or with a sentinel for equality.
A begin() function returning an iterator and an end() function returning a sentinel

Other useful concepts defined in the ranges header:
view is a range with constant time copy/move/assignment
sr::sized_range, input_range, output_range
borrowed_range : a type such that its iterators can be returned without the danger of dangling.

The <algorithm> header has many algorithms taking ranges as inputs instead of pairs of iterators

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 41

The range concept

1 // examples/ranges/ranges0.cc
2 #include <ranges>
3 #include
4 auto sum(std::ranges::input_range auto&& seq) {
5 std::iter_value_t<decltype(seq)> ans{};
6 for (auto x : seq) ans += x;
7 return ans;
8 }
9 auto main() -> int

10 {
11 //using various namespaces;
12 cout << "vector : " << sum(vector({ 9,8,7,2 })) << "\n";
13 cout << "list : " << sum(list({ 9,8,7,2 })) << "\n";
14 cout << "valarray : " << sum(valarray({ 9,8,7,2 })) << "\n";
15 cout << "array : "
16 << sum(array<int,4>({ 9,8,7,2 })) << "\n";
17 cout << "array : "
18 << sum(array<string, 4>({ "9"s,"8"s,"7"s,"2"s })) << "\n";
19 int A[]{1,2,3};
20 cout << "span(built-in array) : " << sum(span(A)) << "\n";
21 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 42

Exercise 1.12:
The function template sum in examples/ranges/ranges0.cc accepts any input range, i.e., some entity whose
iterators satisfy the requirements of an input_iterator. Notice how we obtain the value type of the range

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 43

Fun with ranges and views
1 // examples/ranges/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin() and end() functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an
infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 44

Fun with ranges and views
1 // examples/ranges/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin() and end() functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an
infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 44

Fun with ranges and views
1 // examples/ranges/iota.cc
2 #include <ranges>
3 #include <iostream>
4 auto main() -> int {
5 namespace sv = std::views;
6 for (auto i : sv::iota(1UL)) {
7 if ((i+1) % 10000UL == 0UL) {
8 std::cout << i << ' ';
9 if ((i+1) % 100000UL == 0UL)

10 std::cout << '\n';
11 if (i >= 100000000UL) break;
12 }
13 }
14 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin() and end() functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an
infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 44

Fun with ranges and views
All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin() and end() functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an
infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 44

Fun with ranges and views
1 #include <ranges>
2 #include <iostream>
3 auto main() -> int {
4 namespace sv = std::views;
5 for (auto i : sv::iota(1UL)) {
6 if ((i+1) % 10000UL == 0UL) {
7 std::cout << i << ' ';
8 if ((i+1) % 100000UL == 0UL)
9 std::cout << '\n';

10 if (i >= 100000000UL) break;
11 }
12 }
13 }

All containers are ranges, but not all ranges are
containers
std::string_view is a perfectly fine range.
Has iterators with the right properties. Has
begin() and end() functions. It does not own
the contents, but “ownership” is not part of the
idea of a range.
We could take this further by creating views
which need not actually contain any objects of the
sequence, but simply fake it when we dereference
the iterators.
Example: the standard view
std::views::iota(integer) gives us an
infinite sequence of integers starting at a given
value.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 44

View adaptors
1 namespace sv = std::views;
2 std::vector v{1,2,3,4,5};
3 auto v3 = sv::take(v, 3);
4 // v3 is some sort of object so
5 // that it represents the first
6 // 3 elements of v. It does not
7 // own anything, and has constant
8 // time copy/move etc. It's a view.
9

10 // sv::take() is a view adaptor

A view is a range with constant time copy, move
etc. Think string_view

A view adaptor is a function object, which takes a
“viewable” range as an input and constructs a view
out of it. viewable is defined as “either a
borrowed_range or already a view.
View adaptors in the <ranges> library have very
interesting properties, and make some new ways of
coding possible.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 45

View adaptors
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 46

View adaptors
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 46

View adaptors
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 46

View adaptors
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 46

View adaptors
Adaptor(Viewable) -> View
Viewable | Adaptor -> View
V | A1 | A2 | A3 ... -> View

Adaptor(Viewable, Args...) -> View
Adaptor(Args...)(Viewable) -> View
Viewable | Adaptor(Args...) -> View

A view itself is trivially viewable.
Since a view adaptor produces a view, successive
applications of such adaptors makes sense.
If an adaptor takes only one argument, it can be
called using the pipe operator as shown. These
adaptors can then be chained to produce more
complex adaptors.
For adaptors taking multiple arguments, there
exists an equivalent adaptor taking only the
viewable range.

So what are we going to do with this ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 46

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.

Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}

R1 = T10R0 = T (n 7→ 2πn
N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)

Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range

If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example

Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000.
Map the integer range to real numbers in the range
[0, 2π)
Evaluate sin2(x) + cos2(x) − 1 over the resulting
range
If absolute value of any of the values in the result
exceeds ϵ, we have found a counter example
Intuitive left-to-right readability

R0 = {0, 1, 2, 3...}
R1 = T10R0 = T (n 7→ 2πn

N)R0

R2 = T21R1 = T (x 7→ (sin2(x) + cos2(x) − 1))R1

R2 = T21R1 = T21T10R0

= R0|T10|T21

= R0|(T10|T21)

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 47

View adaptors

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...

Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 48

View adaptors

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.

There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 48

View adaptors

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe

Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 48

View adaptors

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!

What about writing something similar in C++ ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 48

View adaptors

find . -name "*.cc" | xargs grep "if" | grep -v "constexpr" | less

Command line of Linux, Mac OS ...
Small utilities. Each program does one thing, and does it well.
There is a way to chain them together with the pipe
Overall usefulness of the tool set is amplified exponentially!
What about writing something similar in C++ ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 48

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting range
R2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 49

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting range
R2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 49

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting range
R2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 49

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting range
R2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 49

View adaptors
Pretend that you want to verify that sin2(x) + cos2(x) = 1

Start with a range of integers from 0 to N = 10000. R0 = iota(0, N)

Map the integer range to real numbers in the range [0, 2π), i.e., perform the transformation n 7→ 2πn
N over

the range: R1 = R0 | transform([](int n) -> double { return 2*pi*n/N; })

Perform the transformation x 7→ sin2(x) + cos2(x) − 1 over the resulting range
R2 = R1 | transform([](double x) -> double { return sin(x)*sin(x)+cos(x)*cos(x); });

If absolute value of any of the values in the result exceeds ϵ, we have found a counter example
if (any_of(R2, [](auto x){return fabs(x) > eps;})) ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 49

View adaptors
1 auto main() -> int {
2 namespace sr = std::ranges;
3 namespace sv = std::views;
4 using std::numbers::pi;
5 constexpr auto npoints = 10'000'00UL;
6 constexpr auto eps = 100 * std::numeric_limits<double>::epsilon();
7 auto to_0_2pi = [=](size_t idx) -> double {
8 return std::lerp(0., 2*pi, idx * 1.0 / npoints);
9 };

10 auto x_to_fx = [](double x) -> double {
11 return sin(x) * sin(x) + cos(x) * cos(x) - 1.0;
12 };
13 auto is_bad = [=](double x){ return std::fabs(x) > eps; };
14
15 auto res = sv::iota(0UL, npoints) | sv::transform(to_0_2pi) | sv::transform(x_to_fx);
16
17 if (sr::any_of(res, is_bad)) {
18 std::cerr << "The relation does not hold.\n";
19 } else {
20 std::cout << "The relation holds for all inputs\n";
21 }
22 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 50

View adaptors
The job of each small transform in the previous example was small, simple, easily verified for correctness.
The view adaptors allow us to chain them to produce a resulting range
Algorithms like std::range::any_of work on ranges, so they can work on the resulting views from
chained view adaptors.
No operation is done on any range when we create the variable res above.
When we try to access an element of the range in the any_of algorithm, one element is taken on the fly
out of the starting range, fed through the pipeline and catered to any_of

any_of does not process the range beyond what is necessary to establish its truth value. The remaining
elements in the result array are never calculated.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 51

Exercise 1.13:
The code used for the demonstration of view adaptors is examples/ranges/trig_views.cc. Build this code with
GCC and Clang.

g++ -std=c++20 trig_views.cc
./a.out

clang++ -std=c++20 -stdlib=libc++ trig_views.cc
./a.out

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 52

Exercise 1.14:
The trigonometric relation we used is true, so not all possibilities are explored. In
examples/ranges/trig_views2.cc there is another program trying to verify the bogus claim
sin2(x) < 0.99. It’s mostly true, but sometimes it isn’t, so that our if and else branches both have work to do.
The lambdas in this program have been rigged to print messages before returning. Convince yourself of the
following:

The output from the lambdas come out staggered, which means that the program does not process the
entire range for the first transform and then again for the second ...
Processing stops at the first instance where any_of gets a true answer.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 53

View adaptors

1 // examples/ranges/gerund.cc
2 using itertype = std::istream_iterator<std::string>;
3 std::ifstream fin { argv[1] };
4 auto gerund = [](std::string_view w) { return w.ends_with("ing"); };
5 auto in = sr::istream_view<std::string>(fin);
6 std::print("{}\n", in | sv::filter(gerund));
7

sr::istream_view<T> creates an (input) iterable range from an input stream. Each element of this
range is of the type T.
sv::filter is a view adaptor, which when applied to a range, produces another containing only the
elements satisfying a given condition
In the above, std::print is shown writing out a range. This works with the Clang standard library
libc++. Since GCC doesn’t have an implementation yet, please use clang++ for this.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 54

View adaptors
A program to print the alphabetically -first and -last word entered on the command line, excluding the program
name.

1 // examples/ranges/views_and_span.cc
2 auto main(int argc, char* argv[]) -> int
3 {
4 if (argc < 2) return 1;
5 namespace sr = std::ranges;
6 namespace sv = std::views;
7
8 std::span args(argv, argc);
9 auto str = [](auto cstr) -> std::string_view { return cstr; };

10 auto [mn, mx] = sr::minmax(args | sv::drop(1) | sv::transform(str));
11
12 std::cout << "Alphabetically first = " << mn << " last = " << mx << "\n";
13 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 55

Ranges improvements in C++23
1 std::vector v { "apples"s, "oranges"s,
2 "mangos"s, "bananas"s };
3
4 for (auto [i, fruit] : sv::enumerate(v)) {
5 std::print("{}: {}\n", i, fruit);
6 }

$ G -std=c++23 enumerate.cc
$./a.out
0: apples
1: oranges
2: mangos
3: bananas

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Ranges improvements in C++23
1 std::vector v { "apples"s, "oranges"s,
2 "mangos"s, "bananas"s };
3
4 for (auto [fruit1, fruit2] :
5 sv::zip(v, sv::reverse(v))) {
6 std::print("{}: {}\n", fruit1, fruit2);
7 }

$ G -std=c++23 zip.cc
$./a.out
apples: bananas
oranges: mangos
mangos: oranges
bananas: apples

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Ranges improvements in C++23
1 for (auto s : sv::zip_transform(
2 [](auto&& s1, auto&& s2) {
3 return format("{} <--> {}", s1, s2);
4 },
5 v, sv::reverse(v))) {
6 std::cout << s << "\n";
7 }

$ G -std=c++23 zip_transform.cc
$./a.out
apples <--> bananas
oranges <--> mangos
mangos <--> oranges
bananas <--> apples

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Ranges improvements in C++23
1 for (auto [i0, i1, i2]:
2 sv::iota(0UL, 15UL) | sv::adjacent<3UL>) {
3 std::print("{}, {}, {}\n", i0, i1, i2);
4 }

$ G -std=c++23 adjacent.cc
$./a.out
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
...

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Ranges improvements in C++23
1 auto R = sv::iota(0UL, 50UL)
2 | sv::transform([](auto i) { return 2. * pi * i; })
3 | sr::to<std::vector>();

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Ranges improvements in C++23
1 auto main() -> int
2 {
3 using namespace std::literals;
4 namespace sr = std::ranges;
5 namespace sv = sr::views;
6 std::vector v{"One"s, "Two"s, "Three"s, "Four"s};
7 std::print("{}\n", v);
8 std::print("{}\n", v | sv::reverse);
9 std::print("{}\n", sv::zip(v | sv::reverse, v));

10 std::print("{}\n", sv::zip(sv::iota(1UL), v));
11 }

With the definitions
namespace sr = std::ranges,
and namespace sv = sr::views

sv::enumerate

sv::zip

sv::zip_transform

sv::adjacent

sr::to

Formatting ranges

["One", "Two", "Three", "Four"]
["Four", "Three", "Two", "One"]
[("Four", "One"), ("Three", "Two"), ("Two", "Three"), ("One", "Four")]
[(1, "One"), (2, "Two"), (3, "Three"), (4, "Four")]

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 56

Recap of elementary features with an example
1 // Trivial piece of code as a background for discussions
2 // examples/demo_saxpy/saxpy_0.cc
3 // includes ...
4 auto main() -> int
5 {
6 const std::vector inp1 { 1., 2., 3., 4., 5. };
7 const std::vector inp2 { 9., 8., 7., 6., 5. };
8 std::vector outp(inp1.size(), 0.);
9

10 auto saxpy = [](double a,
11 const std::vector<double>& x,
12 const std::vector<double>& y,
13 std::vector<double>&z) {
14 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
15 [a](double X, double Y){ return a * X + Y; });
16 };
17
18 std::ostream_iterator<double> cout { std::cout, "\n" };
19 saxpy(10., inp1, inp2, outp);
20 copy(outp.begin(), outp.end(), cout);
21 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 57

Recap of elementary features with an example
1 // Trivial piece of code as a background for discussions
2 // examples/demo_saxpy/saxpy_0.cc
3 // includes ...
4 auto main() -> int
5 {
6 const std::vector inp1 { 1., 2., 3., 4., 5. };
7 const std::vector inp2 { 9., 8., 7., 6., 5. };
8 std::vector outp(inp1.size(), 0.);
9

10 auto saxpy = [](double a,
11 const std::vector<double>& x,
12 const std::vector<double>& y,
13 std::vector<double>&z) {
14 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
15 [a](double X, double Y){ return a * X + Y; });
16 };
17
18 std::ostream_iterator<double> cout { std::cout, "\n" };
19 saxpy(10., inp1, inp2, outp);
20 copy(outp.begin(), outp.end(), cout);
21 }

How many syntax errors are there if
we are using C++17 ?

A. 4
B. 3
C. 2
D. 0

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 57

Generic lambdas...
1 // examples/demo_saxpy/saxpy_1.cc
2 // includes ...
3
4 auto main() -> int
5 {
6 const std::vector inp1 { 1., 2., 3., 4., 5. };
7 const std::vector inp2 { 9., 8., 7., 6., 5. };
8 std::vector outp(inp1.size(), 0.);
9

10 auto saxpy = [](double a, auto&& x, auto&& y, auto& z) {
11 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
12 [a](auto X, auto Y){ return a * X + Y; });
13 };
14
15 std::ostream_iterator<double> cout { std::cout, "\n" };
16 saxpy(10., inp1, inp2, outp);
17 copy(outp.begin(), outp.end(), cout);
18 }

We can make the lambda more compact by making it generic. But now the types of x, y and z are deduced
independently. How can we keep it generic, and yet indicate that we want the same types for x and y ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 58

Explicit template syntax for lambdas
1 // examples/demo_saxpy/saxpy_2.cc
2 // includes ...
3 auto main() -> int
4 {
5 const std::vector inp1 { 1., 2., 3., 4., 5. };
6 const std::vector inp2 { 9., 8., 7., 6., 5. };
7 std::vector outp(inp1.size(), 0.);
8 auto saxpy = []<class T, class T_in, class T_out>
9 (T a, const T_in& x, const T_in& y, T_out& z) {

10 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
11 [a](T X, T Y){ return a * X + Y; });
12 };
13
14 std::ostream_iterator<double> cout { std::cout, "\n" };
15 saxpy(10., inp1, inp2, outp);
16 copy(outp.begin(), outp.end(), cout);
17 }

For normal function templates, we could easily express relationships among the types of different parameters.
Now, we can do that for generic lambdas.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 59

Constraining generic functions
1 // examples/demo_saxpy/saxpy_3.cc
2 template <class T> using value_type_of = typename std::remove_cvref_t<T>::value_type;
3 {
4 const std::vector inp1 { 1., 2., 3., 4., 5. };
5 const std::vector inp2 { 9., 8., 7., 6., 5. };
6 std::vector outp(inp1.size(), 0.);
7 auto saxpy = []<class T_in, class T_out>
8 (value_type_of<T_in> a, T_in&& x, T_in&& y, T_out& z) {
9 using in_element_type = value_type_of<T_in>;

10 using out_element_type = value_type_of<T_out>;
11 static_assert(std::is_same_v<in_element_type, out_element_type>,
12 "Input and output element types must match!");
13 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
14 [a](in_element_type X, in_element_type Y){ return a * X + Y; });
15 };
16 //...
17 std::ostream_iterator<double> cout { std::cout, "\n" };
18 saxpy(10., inp1, inp2, outp);

At the least, we can use this to get helpful error messages when we use the function in a way that violates our
assumptions.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 60

Constraining generic functions
1 // examples/demo_saxpy/saxpy_3b.cc
2 const std::array inp1 { 1., 2., 3., 4., 5. };
3 const std::array inp2 { 9., 8., 7., 6., 5. };
4 std::vector outp(inp1.size(), 0);
5 auto saxpy = []<class T_in, class T_out>
6 (value_type_of<T_in> a, T_in&& x, T_in&& y, T_out& z) {
7 using in_element_type = value_type_of<T_in>;
8 using out_element_type = value_type_of<T_out>;
9 static_assert(std::is_same_v<in_element_type, out_element_type>,

10 "Input and output element types must match!");
11 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
12 [a](in_element_type X, in_element_type Y){ return a * X + Y; });
13 };
14
15 std::ostream_iterator<double> cout { std::cout, "\n" };
16 saxpy(10., inp1, inp2, outp);

saxpy_3b.cc:16:9: error: static_assert failed due to requirement
'std::is_same_v<double, int>' "Input and output element types must match!"

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 61

Constraining generic functions
1 const std::array inp1 { 1., 2., 3., 4., 5. };
2 const std::array inp2 { 9., 8., 7., 6., 5. };
3 std::vector outp(inp1.size(), 0.);
4
5 auto saxpy = []<class T_in, class T_out>
6 (value_type_of<T_in> a, T_in&& x, T_in&& y, T_out& z) {
7 using in_element_type = value_type_of<T_in>;
8 using out_element_type = value_type_of<T_out>;
9 static_assert(std::is_same_v<in_element_type, out_element_type>,

10 "Input and output element types must match!");
11 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
12 [a](in_element_type X, in_element_type Y){ return a * X + Y; });
13 };
14
15 std::ostream_iterator<double> cout { std::cout, "\n" };
16 saxpy(10., inp1, inp2, outp);
17 copy(outp.begin(), outp.end(), cout);

Different container types are acceptable as long as element types match! Controlled generic behaviour!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 62

Constraining generic functions
1 // examples/demo_saxpy/saxpy_4.cc
2 // includes ...
3 template <class T> using value_type_of = std::remove_cvref_t<T>::value_type;
4 template <class T_in, class T_out>
5 auto saxpy(value_type_of<T_in> a, T_in&& x, T_in&& y, T_out& z)
6 {
7 using in_element_type = value_type_of<T_in>;
8 using out_element_type = value_type_of<T_out>;
9 static_assert(std::is_same_v<in_element_type, out_element_type>,

10 "Input and output element types must match!");
11
12 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
13 [a](in_element_type X, in_element_type Y) { return a * X + Y; });
14 }
15 auto main() -> int { ... }

Constraining normal function templates with template metaprogramming is an old technique. The syntax has
become clearer with newer standards. Still, we are not expressing in code that the template parameters T_in
and T_out should be array like objects, with begin(), end() etc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 63

std::span as function parameters
1 // examples/demo_saxpy/saxpy_5.cc
2 // other includes
3 #include
4 template <class T>
5 void saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
6 {
7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
8 [a](T X, T Y) { return a * X + Y; });
9 }

10
11 auto main() -> int { ... }

std::span<T> is a non-owning adaptor (“view”) for an existing array of objects in memory. It is like a
pointer and a size.
Provides an STL compatible interface
Can be constructed from typical array like containers, e.g., vector array, C-style arrays ...
Writing the saxpy function in terms of the span allows us to easily express that the element types in all
three containers must be the same as the scalar.
Still general enough to be used with different container types and different T

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 64

Exercise 1.15:
The examples used in these slides are all present in the examples/demo_saxpy folder of your course material.
Check examples saxpy_1.cc through saxpy_5.cc containing the various version discussed so far. The
important C++20 features we have revisited in this section so far, are explicit template syntax for lambdas and
std::span.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 65

std::span as function parameters
1 // examples/demo_saxpy/saxpy_5.cc
2 // other includes
3 #include
4 template <class T>
5 void saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
6 {
7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
8 [a](T X, T Y) { return a * X + Y; });
9 }

10 auto main() -> int
11 {
12 const std::array inp1 { 1., 2., 3., 4., 5. };
13 const std::array inp2 { 9., 8., 7., 6., 5. };
14 std::vector outp(inp1.size(), 0.);
15 saxpy(10., {inp1}, {inp2}, {outp});
16 }

No inheritance relationships between span and any other containers!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 66

std::span as function parameters
1 // examples/demo_saxpy/saxpy_5.cc
2 // other includes
3 #include
4 template <class T>
5 void saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
6 {
7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
8 [a](T X, T Y) { return a * X + Y; });
9 }

10 auto main() -> int
11 {
12 const std::array inp1 { 1., 2., 3., 4., 5. };
13 const std::array inp2 { 9., 8., 7., 6., 5. };
14 std::vector outp(inp1.size(), 0.);
15 saxpy(10., {inp1}, {inp2}, {outp});
16 }

Can we restrict the scalar type to just floating point numbers, like float or double ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 66

Constraining templates using concepts

1 template <class T>
2 auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
3 -> std::enable_if_t<std::is_floating_point_v<T>, void>
4 {
5 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
6 [a](T X, T Y) { return a * X + Y; });
7 }

SFINAE: “Substitution Failure is not an error” is widely used to achieve the effect in C++.
If T is not a floating point number, is_floating_point_v becomes false.
enable_if_t<cond, R> is defined as R if cond is true. If not it is simply undefined!
False condition to enable_if_t makes the result type, which is used as the output here, vanish.
The compiler interprets that as : “Stupid substitution! If I do that the function ends up with no return type!
That can’t be the right function template. Let’s look elsewhere!”

Does the job. But, in C++20, we have a better alternative...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 67

Constraining templates using concepts

1 template <class T> requires std::floating_point<T>
2 void saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
3 {
4 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
5 [a](T X, T Y) { return a * X + Y; });
6 }

concepts: Named requirements on template parameters.
Far easier to read than SFINAE (even the name!)
If MyAPI is a concept, and T is a type, MyAPI<T> evaluates at compile time to either true or false.
Concepts can be combined using conjunctions (&&) and disjunctions (||) to make other concepts.
A requires clause introduces a constraint on a template type

A suitably designed set of concepts can greatly improve readability of template code

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 67

1 // examples/demo_saxpy/saxpy_6.cc
2 template <class T> concept Number = std::floating_point<T> or std::integral<T>;
3 template <class T> requires Number<T>
4 auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
5 {
6 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
7 [a](T X, T Y) { return a * X + Y; });
8 }
9 auto main() -> int

10 {
11 {
12 const std::array inp1 { 1., 2., 3., 4., 5. };
13 const std::array inp2 { 9., 8., 7., 6., 5. };
14 std::vector outp(inp1.size(), 0.);
15 saxpy(10., {inp1}, {inp2}, {outp});
16 }
17 {
18 const std::array inp1 { 1, 2, 3, 4, 5 };
19 const std::array inp2 { 9, 8, 7, 6, 5 };
20 std::vector outp(inp1.size(), 0);
21 saxpy(10, {inp1}, {inp2}, {outp});
22 }
23 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 68

Using concepts for our example

1 // examples/demo_saxpy/saxpy_6b.cc
2 template <class T> concept Number = std::floating_point<T> or std::integral<T>;
3
4 template <Number T>
5 auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z)
6 {
7 std::transform(x.begin(), x.end(), y.begin(), z.begin(),
8 [a](T X, T Y) { return a * X + Y; });
9 }

Our function is still a function template. But it does not accept “anything” as input. Acceptable inputs must
have the following properties:

The scalar type (first argument here) is a number by our definition
The next two are contiguously stored constant arrays of the same scalar type
The last is another span of non-const objects of the same scalar type

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 69

Using standard concepts and ranges in our example

1 // examples/demo_saxpy/saxpy_7.cc
2 namespace sr = std::ranges;
3 auto saxpy(std::floating_point auto a,
4 sr::input_range auto&& x, sr::input_range auto&& y,
5 std::weakly_incrementable auto&& z)
6 {
7 sr::transform(x, y, z, [a](auto X, auto Y) { return a * X + Y; });
8 }
9 auto main() -> int

10 {
11 std::vector inp1 { 1., 2., 3., 4., 5. };
12 std::vector inp2 { 9., 8., 7., 6., 5. };
13 std::array inp3 { 9., 8., 7., 6., 5. };
14 double cstyle[] { 1., 2., 3., 4., 5. };
15 std::vector outp(inp1.size(), 0.);
16 saxpy(10., inp1, inp2, outp.begin());
17 saxpy(10., inp1, inp3, outp.begin());
18 saxpy(10., inp1, std::to_array(cstyle), outp.begin());
19 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 70

1 namespace sr = std::ranges;
2 void saxpy(std::floating_point auto a,
3 sr::input_range auto&& x, sr::input_range auto&& y,
4 std::weakly_incrementable auto&& z) {
5 sr::transform(x, y, z, [a](auto X, auto Y) { return a * X + Y; });
6 }
7 void saxpy(std::weakly_incrementable auto&& z, std::floating_point auto a,
8 sr::input_range auto&& x, sr::input_range auto&& y) {
9 sr::transform(x, y, z, [a](auto X, auto Y) { return a * X + Y; });

10 }
11 auto main() -> int {
12 std::vector inp1 { 1., 2., 3., 4., 5. };
13 std::vector inp2 { 9., 8., 7., 6., 5. };
14 std::array inp3 { 9., 8., 7., 6., 5. };
15 double cstyle[] { 1., 2., 3., 4., 5. };
16 std::vector outp(inp1.size(), 0.);
17 saxpy(10., inp1, inp2, outp.begin());
18 saxpy(10., inp1, inp3, outp.begin());
19 saxpy(10., inp1, std::to_array(cstyle), outp.begin());
20 saxpy(outp.begin(), 10., inp1, inp3);
21 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 71

We can now specify our requirements thoroughly...

1 namespace sr = std::ranges;
2 template <std::floating_point D, sr::input_range IR, std::weakly_incrementable OI>
3 requires std::is_same_v<D, std::iter_value_t<IR>> and std::indirectly_writable<OI, D>
4 void saxpy(D a, IR x, IR y, OI z)
5 {
6 sr::transform(x, y, z, [a](auto X, auto Y) { return a * X + Y; });
7 }
8
9 template <std::floating_point D, sr::input_range IR, std::weakly_incrementable OI>

10 requires std::same_as<D, std::iter_value_t<IR>> and std::indirectly_writable<OI, D>
11 void saxpy(OI z, D a, IR x, IR y)
12 {
13 sr::transform(x, y, z, [a](const auto& X, const auto& Y) { return a * X + Y; });
14 }
15

Look up cppreference.com and find out what pre-defined concepts and ranges are available in the standard library.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 72

https://en.cppreference.com/w/cpp/ranges

Exercise 1.16:
The program examples/demo_saxpy/saxpy_9.cc contains this last version with the requirements on template
parameters as well as two overloads. Verify that even if the two functions are both function templates with 4
function parameters, they are indeed distinct for the compiler. Depending on the placement of our arguments,
one or the other version is chosen. Try changing data types uniformly in all parameters. Try using different
numeric types between source, destination arrays. Try changing container types for the 3 containers involved.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 73

Modules

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 74

C++20 modules
Traditionally, C++ projects are organised into header and source files. As an example, consider a simple saxpy
program ...

#ifndef SAXPY_HH
#define SAXPY_HH
#include <algorithm>
#include
template <class T> concept Number = std::floating_point<T> or std::integral<T>;
template <class T> requires Number<T>
auto saxpy(T a, std::span<const T> x, std::span<const T> y, std::span<T> z){

std::transform(x.begin(), x.end(), y.begin(), z.begin(),
[a](T X, T Y) { return a * X + Y; });

}
#endif

#include "saxpy.hh"
auto main() -> int {

//declarations
saxpy(10., {inp1}, {inp2}, {outp});

}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 75

Problems with header files
Headers contain declarations of functions, classes etc., and definitions of inline functions.
Source files contain implementations of other functions, such as main.
Since function templates and class templates have to be visible to the compiler at the point of instantiation,
these have traditionally lived in headers.
Standard library, TBB, Thrust, Eigen ... a lot of important C++ libraries consist of a lot of template code,
and therefore in header files.
The #include <abc> mechanism is essentially a copy-and-paste solution. The preprocessor inserts the
entire source of the headers in each source file that includes it, creating large translation units.
The same template code gets re-parsed over and over for every new translation unit.
If the headers contain expression templates, CRTP, metaprogramming repeated processing of the templates
is a waste of resources.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 76

The compilation process
Header File 1

Header File 2

Header File 3

Source File 1

Source File 2

Program source

Preprocessor

Preprocessor

Preprocessor

Translation unit 1

Translation unit 2

Translation unit 3

Compiler

Compiler

Compiler

Object File 1

Object File 2

Object File for program

Linker

Linker

Library

Executableg++ -std=c++23 -c main.cc -o main.o

ar rs libmylibrary.a A.o B.o C.o ...

g++ main.o -lmylibrary

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 77

Modules
The C++20 modules offer an alternative (better) organisation, in which all code, including template code,
can now reside in source files
Module sources are processed once to generate the so called compiled module interface (binary module
interface, BMI) in addition to an object file
The BMI caches syntactic information from all entities in the module
Any source importing the module immediately has access to the precompiled syntax tree in the BMI,
leading to faster compilation
Enforces ordered compilation: since a source file may export a module to be imported by another source file
C++23 added the standard library as a module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 78

Compilation flow using modules

MIU1

MIU2

Compiler

Compiler

BMI1

BMI2

Object File MIU1

Object File MIU2

Module Impl. unit1

Module Impl. unit2

Compiler

Compiler

Object File (Impl. 1)

Object File (Impl. 2)

Linker Library

Program Source
(uses Module 2 + Library) Compiler Object File (Program)

Linker Executableg++ -std=c++23 -fmodules -c main.cc -o main.o

g++ -std=c++23 -fmodules -c abc.ixx -o abc.ixx.o

ar rs libmylibrary.a A.o B.o C.o ...

g++ main.o -lmylibrary

+

+

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 79

Using modules
// examples/hello_m23.cc
import std;
auto main() -> int
{

std::print("Hello, world!\n");
}

In C++23, the standard library is also available as a module.
Note: We have set up an alias Gm='g++ -std=c++23 -fmodules' in
the course

$ Gm -c -fsearch-include-path bits/std.cc
$ Gm hello_m23.cc
$./a.out
$

The first step generates the BMI for the standard library and the second compiles the actual program

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 80

Using modules
// examples/hello_m23.cc
import std;
auto main() -> int
{

std::print("Hello, world!\n");
}

Clang standard library is also avilable as a module, but usually it
requires building using build system generators like CMake

$ export libcxxsrc=$(find $(dirname $(which clang))/.. -name std.cppm 2>/dev/null)
$ clang++ -std=c++23 -stdlib=libc++ -Wno-reserved-identifier\
-Wno-reserved-module-identifier --precompile \
-o std.pcm $libcxxsrc

$ clang++ -std=c++23 -stdlib=libc++ -fmodules -fmodule-file=std=std.pcm hello_m23.cc
$./a.out

Not as elegant as the GCC oneliner, but it’s possible to precompile the standard library module with clang
It is necessary to explicitly specify the location of the module file when using it

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 80

Using modules

Exercise 1.17:
Convert a few of the example programs you have seen during the course to use modules syntax instead. At the
moment it means no more than replacing the #include lines with the import line for the standard library.
The point is to get used to the extra compilation options you need with modules at the moment. Use, for
instance, the date time library demo programs like feb.cc and advent.cc. In the next step, replace all the
import lines using individual header units for standard library features by a single import std; line. Refer to
the slides and compile using g++.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 81

Creating a module (example)
class NullSimulator {

bool config_ok{false}, run_ok{false};
public:

void configure(std::string_view pars)
{

if (pars.empty())
throw std::runtime_error{"..."};

std::println("config {}", pars);
config_ok = true;

}
void run()
{

if (not config_ok)
throw std::runtime_error{"..."};

std::println("running NullSimulator!");
run_ok = true;

}
auto summary() const -> std::string
{

if (not run_ok)
throw std::runtime_error{"..."};

return { "And here are the results:" };

auto main() -> int {
using namespace cxx_course;
try {

NullSimulator sim;
sim.configure("Modules demo");
sim.run();
std::print("{}\n", sim.summary());
return 0;

} catch (std::exception& err) {
std::print("{}\n", err.what());
return 1;

};
}

A simple “do nothing” simulator class, mimicking
the top level control flow in many applications
We want to put our NullSimulator in a module
and import it in main and use it as shown

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 82

Creating a module (example)
When using our module, like when using the
standard library module, there are no changes in
syntax
We just have to import our module
Notice that the module name, namespace name
and the class name are all independent in C++
#include "myheader.hh" searches for the
header file and inserts it in place
In contrast, the file name containing module code
is not tied to the module name (which is why we
had to explicitly state -fmodule-file=std=std.pcm

when compiling with clang earlier)

// main.cc
import NullSim;
import std;
auto main() -> int {

using namespace cxx_course;
try {

NullSimulator sim;
sim.configure("Modules demo");
sim.run();
std::print("{}\n", sim.summary());
return 0;

} catch (std::exception& err) {
std::print("{}\n", err.what());
return 1;

};
}

In the module world, there are no transitive
imports. Module std has to be imported
independently wherever it is used

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 83

Creating a module (example)
// NullSimulator.cc
export module NullSim;
import std;
namespace cxx_course {
export class NullSimulator {

bool config_ok{false}, run_ok{false};
public:

void configure(std::string_view pars) {
// code...

}
void run() {

// code...
}
auto summary() const -> std::string {

// code...
}

};
void i_am_invisible() {
//...
}
}

The class/function declarations and definitions can
all be put in module source files
The first non-comment line has to declare the
module.

export module XYZ; : Module interface unit
module XYZ; : Module implementation unit
module; : Start of the "global module fragment"

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 84

Creating a module (example)
// NullSimulator.cc
export module NullSim;
import std;
namespace cxx_course {
export class NullSimulator {

bool config_ok{false}, run_ok{false};
public:

void configure(std::string_view pars) {
// code...

}
void run() {

// code...
}
auto summary() const -> std::string {

// code...
}

};
void i_am_invisible() {
//...
}
}

Unlike declarations in a header file, those in a
module file are not automatically visible if you
import the module
Only exported symbols are visible to code which
imports a module
Unexported declarations remain private

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 84

Creating a module (example)
// NullSimulator.cc
export module NullSim;
import std;
namespace cxx_course {
export class NullSimulator {

bool config_ok{false}, run_ok{false};
public:

void configure(std::string_view pars) {
// code...

}
void run() {

// code...
}
auto summary() const -> std::string {

// code...
}

};
void i_am_invisible() {
//...
}
}

// main.cc
import NullSim;
import std;
auto main() -> int {

using namespace cxx_course;
try {

NullSimulator sim;
sim.configure("Modules demo");
sim.run();
std::print("{}\n", sim.summary());

} catch (std::exception& err) {
std::print("{}\n", err.what());
return 1;

};
}

Gm -c -fsearch-include-path bits/std.cc
Gm -c NullSimulator.cc
Gm -c main.cc
g++ main.o NullSimulator.o std.o -o nullsim

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 85

Building the project using CMake
cmake_minimum_required(VERSION 3.30 FATAL_ERROR)
set (CMAKE_CXX_EXTENSIONS OFF)
set (CMAKE_CXX_STANDARD 23)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

if(CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.3")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"d0edc3af-4c50-42ea-a356-e2862fe7a444")

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.0")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"a9e1cf81-9932-4810-974b-6eccaf14e457")

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL "3.30.0")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"0e5b6991-d74f-4b3d-a41c-cf096e0b2508")

endif()

project(nullsim LANGUAGES CXX)
set(CMAKE_CXX_MODULE_STD 1)
add_executable(nullsim main.cc)
target_sources(nullsim PUBLIC FILE_SET CXX_MODULES

FILES NullSimulator.cc)

Let CMake handle the necessary compiler
options

mkdir build && cd build
CXX=g++ cmake -GNinja ..
ninja

For clang, you would configure like this:

CXX=clang++ CXXFLAGS="-stdlib=libc++"\
cmake -GNinja ..

The odd experimental import std guids are
temporary as long as the feature is considered
“experimental”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 86

Exercise 1.18:
The simple example with NullSimulator in the previous slides is in the folder examples/modules/create0.
Build it using CMake with both Clang and GCC as compilers. Try building it directly using GCC as shown. The
idea is to familiarise yourself with the modules based workflow. Insert a simple I_am_invisible function as
shown in the slides. Try to use it in main(). What error do you get, even if we are importing the module
containing it? Now, add the keyword export before that function, and test again!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 87

Creating a module: implementation units
// NullSimulator.ixx
export module NullSim;
export class NullSimulator {
public:

void configure(std::string_view pars);
void run();
auto summary() const -> std::string;

};

// NullSimulator.cc
module NullSim;
import std;
void NullSimulator::configure(std::string_...) {

// actual implementation
}
void NullSimulator::run() {

// code...
}
auto NullSimulator::summary() const

-> std::string {
// code...

}

Separating implementation is not syntactically
necessary, but may sometimes be desirable to offer
a clearer overview of the interface without the
implementation code
Only the interface unit shall export the symbols
and the module itself, not the implementation unit
The implementation units are bound to the module
by the module lines at the start

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 88

Creating a module: implementation units
// NullSimulator.ixx
export module NullSim;
export class NullSimulator {
public:

void configure(std::string_view pars);
void run();
auto summary() const -> std::string;

};

// NullSimulator.cc
module NullSim;
import std;
void NullSimulator::configure(std::string_...) {

// actual implementation
}
void NullSimulator::run() {

// code...
}
auto NullSimulator::summary() const

-> std::string {
// code...

}

Gm -c -fsearch-include-path bits/std.cc
Gm -c NullSimulator.ixx
Gm -c NullSimulator.cc
Gm -c main.cc
g++ main.o NullSimulator.o std.o -o nullsim

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 88

Creating a module: implementation units
// NullSimulator.ixx
export module NullSim;
export class NullSimulator {
public:

void configure(std::string_view pars);
void run();
auto summary() const -> std::string;

};

// NullSimulator.cc
module NullSim;
import std;
void NullSimulator::configure(std::string_...) {

// actual implementation
}
void NullSimulator::run() {

// code...
}
auto NullSimulator::summary() const

-> std::string {
// code...

}

Gm -c -fsearch-include-path bits/std.cc
Gm -c NullSimulator.ixx
Gm -c NullSimulator.cc
Gm -c main.cc
g++ main.o NullSimulator.o std.o -o nullsim

Works, but masks a big problem! Can you see it?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 88

Creating a module: implementation units
Gm -c -fsearch-include-path bits/std.cc
Gm -c NullSimulator.ixx
Gm -c NullSimulator.cc
Gm -c main.cc
g++ main.o NullSimulator.o std.o -o nullsim

The third line overwrites one of the outputs NullSimulator.o from the second line
When we compile the interface unit, the by-products are the BMI and an object file.

The BMI contains information about the interface and the pre-compiled inline functions, class and function
templates.
Since implementation units are not mandatory, the interface units can contain ordinary function definitions,
which will result in binary code stored in the object file

Compiling the implementation unit is like compiling any other C++ file, and results in an object file for the
functions defined there.
Our example works because we separated all implementation code into the implementation unit
NullSimulator.cc. What if we left one function body in NullSimulator.ixx?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 89

Exercise 1.19:
The example directory modules/create1 contains the code where we have split the NullSimulator code
between the module interface and implementation units. Compile it with GCC as shown in the previous slides.
What happens if you delete the NullSimulator.o output after the second step and go through with the rest?
Then in modules/create1b, we have the same code, but, we have inserted a new free function check_results.
It will lead to a compiler error in step 2, which you should be able to solve. Does the rest of the build process go
through without issues?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 90

Non-inline functions in interface units
... end up in the object file when the interface unit is compiled. If we are using those functions, we need
that object file when linking
=⇒ Possible conflict in output filename when compiling the implementation unit

Common solutions:
When compiling with option -c, use an explicit output filename, e.g.,

Gm -c NullSimulator.ixx -o NullSimulator.ixx.o
Gm -c NullSimulator.cc -o NullSimulator.cc.o
Gm -c main.cc -o main.cc.o
g++ main.cc.o NullSimulator.cc.o NullSimulator.ixx.o std.o

Abandon suffix based differentiation, and name interface and implementation units differently, e.g.,
NullSimulator.cc and NullSimulator_impl.cc.

Gm -c NullSimulator.cc
Gm -c NullSimulator_impl.cc
Gm -c main.cc
g++ main.o NullSimulator.o NullSimulator_impl.o std.o

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 91

Non-inline functions in interface units
How do the functions defined inside the class declarations behave?
Answer: as of C++23, like regular non-inline functions!

// NullSimulator.ixx
export module NullSim;
import std;
namespace cxx_course {
export class NullSimulator {

bool config_ok{false}, run_ok{false};
public:

void configure(std::string_view pars);
void run();
auto summary() const -> std::string
{

return {"Summary of results:"};
}

};
}

The function summary is compiled and placed in the
object code when compiling NullSimulator.ixx

// NullSimulator.cc
module NullSim;
void NullSimulator::configure(...)
{

...
}
void NullSimulator::run()
{

...
}

The functions configure() and run() end up in the
object file when NullSimulator.cc is compiled.
Both generated object files are required for linking!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 92

Building process including modules
Object files from the interface and implementation units can be combined into static/shared libraries.
The interface units also produce the BMI
To compile a module user, we need the BMI of all modules it uses
To link the application, we need the object files or libraries made of them.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 93

Splitting the module interface
Large module interface units may be split into
multiple files

Example: different large classes in their own files
Reason: maintenance, collaborative development
How: module partitions

Each of the 3 module interface units shown here
belong to the same module Measurements.
Observe how they are named and exported
Implementation units belong to the module as a
whole, not to any partitions

// Measurements.ixx
export module Measurements;
export import :RMSD;
export import :Rg;
export import :ContactOrder;

// RMSD.ixx
export module Measurements:RMSD;
export class RMSD {/*...*/};

// Rg.ixx
export module Measurements:Rg;
export class Rg {/*...*/};

// ContactOrder.ixx
export module Measurements:ContactOrder;
export class ContactOrder {/*...*/};

Partitions can be imported by other partitions
Partitions can not be directly imported outside the
module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 94

Splitting the module interface
Large module interface units may be split into
multiple files

Example: different large classes in their own files
Reason: maintenance, collaborative development
How: module partitions

Each of the 3 module interface units shown here
belong to the same module Measurements.
Observe how they are named and exported
Implementation units belong to the module as a
whole, not to any partitions

// Measurements.ixx
export module Measurements;
export import :RMSD;
export import :Rg;
export import :ContactOrder;

// RMSD.ixx
export module Measurements:RMSD;
export class RMSD {/*...*/};

// Rg.ixx
export module Measurements:Rg;
export class Rg {/*...*/};

// ContactOrder.ixx
export module Measurements:ContactOrder;
export class ContactOrder {/*...*/};

The interface exported by the module partitions
can be exported by the primary module interface

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 94

Organisation of interface partitions vs headers
1 // M.hh
2 constexpr auto R = 42;

1 // A.hh
2 struct cA {
3 auto func() const -> int;
4 };

1 // B.hh
2 struct cB {
3 auto func() const -> int;
4 };

Quite common to have classes in their own headers
Must include the header for a class when
implementing member functions in separate source
files

1 // A.cc
2 #include "A.hh"
3 auto cA::func() const -> int {
4 return 42;
5 }

1 // B.cc
2 #include "B.hh"
3 auto cB::func() const -> int {
4 return 43;
5 }

1 // main.cc
2 #include "A.hh"
3 #include "B.hh"
4 #include "M.hh"
5 auto main() -> int {
6 cA a;
7 cB b;
8 return R + a.func() + b.func();
9 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 95

Organisation of interface partitions vs headers
1 // M.ixx
2 export module M;
3 export constexpr auto R = 42;
4 export struct cA {
5 auto func() const -> int;
6 };
7 export struct cB {
8 auto func() const -> int;
9 };

Large module interface units are not considered bad
Names exported in the primary module interface
don’t need to be imported inside the module’s
implementation units

1 // A.cc
2 module M;
3 auto cA::func() const -> int {
4 return 42;
5 }

1 // B.cc
2 module M;
3 auto cB::func() const -> int {
4 return 43;
5 }

1 // main.cc
2 import M;
3 auto main() -> int {
4 cA a;
5 cB b;
6 return a.func() + b.func();
7 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 96

Organisation of interface partitions vs headers
1 // M.ixx
2 export module M;
3 export constexpr auto R = 42;
4 export import :A;
5 export import :B;

1 // A.ixx
2 export module M:A;
3 export struct cA {
4 auto func() const -> int;
5 };

1 // B.ixx
2 export module M:B;
3 export struct cB {
4 auto func() const -> int;
5 };

In case the primary interface is split into partitions,
the partitions need to be re-exported in it, in order
that the declarations in them be visible in
implementation units

1 // A.cc
2 module M;
3 auto cA::func() const -> int {
4 return 42;
5 }

1 // B.cc
2 module M;
3 auto cB::func() const -> int {
4 return 43;
5 }

1 // main.cc
2 import M;
3 auto main() -> int {
4 cA a;
5 cB b;
6 return R + a.func() + b.func();
7 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 97

Organisation of interface partitions vs headers
1 // M.ixx
2 export module M;
3 export constexpr auto R = 42;
4 export import :A;
5 export import :B;

1 // A.ixx
2 export module M:A;
3 export struct cA {
4 auto func() const -> int;
5 };

1 // B.ixx
2 export module M:B;
3 export struct cB {
4 auto func() const -> int;
5 };

Module exporters and importers must be compiled
in a specific order, not always trivially inferred

1 // A.cc
2 module M;
3 auto cA::func() const -> int {
4 return 42;
5 }

1 // B.cc
2 module M;
3 auto cB::func() const -> int {
4 return 43;
5 }

1 // main.cc
2 import M;
3 auto main() -> int {
4 cA a;
5 cB b;
6 return R + a.func() + b.func();
7 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 97

Letting the build system generators handle modules
CMake and other build system generators simplify the management of modules based compilation
A set of module interface units can be attached to an executable or library target in CMake with the
target_sources function
CMake determines the order in which they must be compiled, and sets where the BMI and object files are
stored
The library or executable is then linked using the relevant set of object files
CMake places the BMI files at the right places so that it can find them while compiling the rest of the project
The BMI must be generated from the module interface units fresh using the build flags.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 98

Using header files inside module units
Even if you want to use modules for your project,
you might need external dependencies which don’t
yet support a modules based build
Including headers is possible, but restricted to a
specific segment in a module unit, called the global
module fragment
The global module fragment, if present, has to be
the first section in a module unit.

module;
#include <Eigen/Dense>
#include <boost/type_index.hpp>
module Measurements;

import ...;

As of October 2025, mixed mode projects when using the standard library as a module, but also including
it directly or indirectly through dependencies, lead to errors with GCC! With versions 15.1, 15.2 and the
latest git version.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 99

Using header files inside module units
Even if you want to use modules for your project,
you might need external dependencies which don’t
yet support a modules based build
Including headers is possible, but restricted to a
specific segment in a module unit, called the global
module fragment
The global module fragment, if present, has to be
the first section in a module unit.

module;
#include <Eigen/Dense>
#include <boost/type_index.hpp>
module Measurements;

import ...;

It starts like an empty or nameless module
declaration (module;). It ends at the actual
module declaration (with export for interface and
without for implementation)

As of October 2025, mixed mode projects when using the standard library as a module, but also including
it directly or indirectly through dependencies, lead to errors with GCC! With versions 15.1, 15.2 and the
latest git version.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 99

Converting older header based projects
// saxpy.hh
#ifndef SAXPY_HH
#define SAXPY_HH
#include <algorithm>
#include

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}
#endif

A header file contains a function template saxpy,
and a concept necessary to define that function
A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 100

Converting older header based projects
// usesaxpy.cc
#include <iostream>
#include <array>
#include <vector>
#include
#include "saxpy.hh"

auto main() -> int
{

using namespace std;
const array inp1 { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inp1.size(), 0.);

saxpy(10., {inp1}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":::::::::::::::::::::\n";

}

A header file contains a function template saxpy,
and a concept necessary to define that function
A source file, main.cc which includes the header
and uses the function

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 101

Converting older header based projects
// saxpy.hh -> saxpy.ixx
#ifndef SAXPY_HH
#define SAXPY_HH
#include <algorithm>
#include

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}
#endif

Make a module interface unit

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Converting older header based projects
// saxpy.hh -> saxpy.ixx
#ifndef SAXPY_HH
#define SAXPY_HH
#include <algorithm>
#include

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}
#endif

Make a module interface unit
Include guards are no longer required, since
importing a module does not transitively import
things used inside the module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Converting older header based projects
// saxpy.hh -> saxpy.ixx

#include <algorithm>
#include

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}

Make a module interface unit

Start a global module fragment to enclose the
headers you have to use.
Export the module.
If you can get by with only imports, replace
#include lines with corresponding import lines.
Omit the global module fragment in this case
Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Converting older header based projects
// saxpy.hh -> saxpy.ixx
module;
#include <algorithm>
#include
export module saxpy;

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}

Make a module interface unit
Start a global module fragment to enclose the
headers you have to use.
Export the module.

If you can get by with only imports, replace
#include lines with corresponding import lines.
Omit the global module fragment in this case
Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Converting older header based projects
// saxpy.hh -> saxpy.ixx

export module saxpy;
import std;

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}

Make a module interface unit
Start a global module fragment to enclose the
headers you have to use.
Export the module.
If you can get by with only imports, replace
#include lines with corresponding import lines.
Omit the global module fragment in this case

Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Converting older header based projects
// saxpy.hh -> saxpy.ixx

export module saxpy;
import std;

template <class T>
concept Number = std::floating_point<T>

or std::integral<T>;
export template <Number T>
auto saxpy(T a, std::span<const T> x,

std::span<const T> y,
std::span<T> z)

{
std::transform(x.begin(), x.end(),

y.begin(), z.begin(),
[a](T X, T Y) {

return a * X + Y;
});

}

Make a module interface unit
Start a global module fragment to enclose the
headers you have to use.
Export the module.
If you can get by with only imports, replace
#include lines with corresponding import lines.
Omit the global module fragment in this case
Explicitly export any definitions (classes,
functions...) you want for users of the module.
Anything not exported by a module is automatically
private to the module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 102

Using the module
// usesaxpy.cc
#include <iostream>
#include <array>
#include <vector>
#include
#include "saxpy.hh"

auto main() -> int
{

using namespace std;
const array inp1 { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inp1.size(), 0.);

saxpy(10., {inp1}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":::::::::::::::::::::\n";

}

Use your module

Optionally replace #include lines with
corresponding import line(s).
If the source is not a module unit, include directives
may be used alongside imports
Import your module by name
Importing saxpy here, only grants us access to the
explicitly exported function saxpy. Not other
functions, classes, concepts etc. defined in the
module saxpy, not any other module imported in
the module interface unit.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 103

Using the module
// usesaxpy.cc
import std;
#include "saxpy.hh"

auto main() -> int
{

using namespace std;
const array inp1 { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inp1.size(), 0.);

saxpy(10., {inp1}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":::::::::::::::::::::\n";

}

Use your module
Optionally replace #include lines with
corresponding import line(s).
If the source is not a module unit, include directives
may be used alongside imports

Import your module by name
Importing saxpy here, only grants us access to the
explicitly exported function saxpy. Not other
functions, classes, concepts etc. defined in the
module saxpy, not any other module imported in
the module interface unit.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 103

Using the module
// usesaxpy.cc
import std;
import saxpy;

auto main() -> int
{

using namespace std;
const array inp1 { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inp1.size(), 0.);

saxpy(10., {inp1}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":::::::::::::::::::::\n";

}

Use your module
Optionally replace #include lines with
corresponding import line(s).
If the source is not a module unit, include directives
may be used alongside imports
Import your module by name

Importing saxpy here, only grants us access to the
explicitly exported function saxpy. Not other
functions, classes, concepts etc. defined in the
module saxpy, not any other module imported in
the module interface unit.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 103

Using the module
// usesaxpy.cc
import std;
import saxpy;

auto main() -> int
{

using namespace std;
const array inp1 { 1., 2., 3., 4., 5. };
const array inp2 { 9., 8., 7., 6., 5. };
vector outp(inp1.size(), 0.);

saxpy(10., {inp1}, {inp2}, {outp});
for (auto x : outp) cout << x << "\n";
cout << ":::::::::::::::::::::\n";

}

Use your module
Optionally replace #include lines with
corresponding import line(s).
If the source is not a module unit, include directives
may be used alongside imports
Import your module by name
Importing saxpy here, only grants us access to the
explicitly exported function saxpy. Not other
functions, classes, concepts etc. defined in the
module saxpy, not any other module imported in
the module interface unit.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 103

Setup building with CMake
cmake_minimum_required(VERSION 3.30)
set (CMAKE_CXX_EXTENSIONS OFF)
set (CMAKE_CXX_STANDARD 23)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

if(CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.3")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"d0edc3af-4c50-42ea-a356-e2862fe7a444")

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL "4.0.0")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"a9e1cf81-9932-4810-974b-6eccaf14e457")

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL "3.30.0")
set(CMAKE_EXPERIMENTAL_CXX_IMPORT_STD
"0e5b6991-d74f-4b3d-a41c-cf096e0b2508")

endif()
project(use_saxpy-example LANGUAGES CXX)
set(CMAKE_CXX_MODULE_STD 1)
add_executable(use_saxpy usesaxpy.cc)
target_sources(use_saxpy
PUBLIC
FILE_SET CXX_MODULES
FILES saxpy.ixx

)

CMake supports C++ modules since the
version 3.28
Since version 3.30 it supports creation
and use of standard library as a module
if the compiler + standard library
combination supports it
This means Clang >= 18.1 or GCC >=
15.1.
The Ninja generator is required
Massive simplification of the build
process!

mkdir -p build && cd build
cmake -DCMAKE_GENERATOR=Ninja ..
ninja

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 104

Exercise 1.20:
Versions of the saxpy program written using header files and then modules can be found in the examples/saxpy/.
Familiarise yourself with the process of building applications with modules. Experiment by writing a new inline
function in the module interface file without exporting it. Try to call that function from main. Check again after
exporting it in the module.

Exercise 1.21:
As a more complicated example, we have in examples/2_any the second version of our container with
polymorphic geometrical objects. The header and source files for each class Point, Circle etc have been
rewritten for modules. Compare the two versions, build them, run them.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 105

Modules: Summary
Status, since around September 2024: Usable!
There is support from CMake and b2build with GCC and Clang.
A different organisation of multi-file projects than the one with header and source files
Promise:

easier control over symbol visibility
no “copy and paste” solution of headers
smaller translation units and hence faster compilation
no transitive imports, no import of MACROs defined in imported modules

Does not change anything about functions, classes, templates or concepts, just how we place them in files
Module interface units play a similar role to headers, but without their problems

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 106

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

main:
call A()
call B()
xorl %eax, %eax
addq $8, %rsp
ret$

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

main:
call A()
call B()
xorl %eax, %eax
addq $8, %rsp
ret$

Li
nk

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

main:
call A()
call B()
xorl %eax, %eax
addq $8, %rsp
ret$

Li
nk

Have to produce one sequence of
instructions.

But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

main:
call A()
call B()
xorl %eax, %eax
addq $8, %rsp
ret$

Li
nk

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 A.cc

namespace app {
int variable{};

}
void B()
{

std::printf("%d\n",
app::variable++);

}

g++ -S -O3 B.cc

auto main() -> int
{

A();
B();

}

g++ -S -O3 main.cc

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

main:
call A()
call B()
xorl %eax, %eax
addq $8, %rsp
ret$

Li
nk

Have to produce one sequence of
instructions.
But there are two versions of
app::variable, one from the
compilation of A.cc, one from that
of B.cc

Are they to be treated as the same
entity or different ones?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 107

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

Putting it in a header does not fix anything!
There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.
Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

Putting it in a header does not fix anything!
There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.
Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Putting it in a header does not fix anything!
There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.
Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Putting it in a header does not fix anything!

There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.
Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Putting it in a header does not fix anything!
There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.

Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage: determining who is who in multi-file projects

// var.hh
namespace app {

int variable{};
}

#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

A():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

B():
movl app::variable(%rip), %esi
movl $.LC0, %edi
leal 1(%rsi), %eax
movl %eax, app::variable(%rip)
xorl %eax, %eax
jmp printf

app::variable:
.zero 4

Putting it in a header does not fix anything!
There are 4 types of "linkage" defined in C++, to address the issue of sameness of symbols across multiple
translation units.
Connected with a name, not with a file or project

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 108

Linkage type
No-linkage: variables like block-scope entities can be safely excluded when trying to solve the problem of
whether or not the same name appearing in different translation units refer to the same entity
Internal linkage: the name is treated as private to each translation unit it appears in. Different occurences
in different translation units are considered independent entities
External linkage: Anywhere the name appears in all the translation units, it refers to the same entity. There
needs to be a single definition of the object (ODR).
Module linkage: The symbol is to be treated as the same entity everywhere it appears inside a module, but
if it appears outside the module, it is another entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 109

External linkage
// A.cc : A.o and B.o can't be linked together
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc : A.o and B.o can't be linked together
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope (non-constant)
variables and functions have external linkage by
default

One and only one definition is permitted for such a
name(ODR: One Definition Rule)

Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)
Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

inline: Making a variable or function inline
frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 110

External linkage
// A.cc : A.o and B.o can't be linked together
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc : A.o and B.o can't be linked together
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope (non-constant)
variables and functions have external linkage by
default
One and only one definition is permitted for such a
name(ODR: One Definition Rule)

Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)
Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

inline: Making a variable or function inline
frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 110

External linkage
// A.cc
namespace app {

extern int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope (non-constant)
variables and functions have external linkage by
default
One and only one definition is permitted for such a
name(ODR: One Definition Rule)

Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)

Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

inline: Making a variable or function inline
frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 110

External linkage
// A.cc
namespace app {

extern int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
namespace app {

int variable{};
}
void A()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope (non-constant)
variables and functions have external linkage by
default
One and only one definition is permitted for such a
name(ODR: One Definition Rule)

Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)
Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

inline: Making a variable or function inline
frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 110

External linkage
// var.hh
namespace app {

inline int variable{};
}

// A.cc
#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope (non-constant)
variables and functions have external linkage by
default
One and only one definition is permitted for such a
name(ODR: One Definition Rule)

Variables: Make sure all translation units but one
declare the symbol as extern, and the last one
defines it without the extern. (extern:
Somewhere out there there is an instance of this
variable in memory. The linker will find it)
Functions: Make sure all translation units except
one have only access to only the function
declaration, and only one translation unit contains
the actual definition.

inline: Making a variable or function inline
frees it from the one definition rule. Even if it has
external linkage, the linker treats all instances of as
the same entity

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 110

Internal linkage
// var.hh
namespace app {

const unsigned long max_dim = 1024UL;
static auto f(int i) {

// ...
}
static int variable{};

}

// A.cc
#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope constants have
internal linkage by default in C++ (but not in C!)

A free function can be declared static give it
internal linkage
A non-constant namespace scope variable can be
declared static to give it both a static storage
duration and internal linkage
Since a variable or function with internal linkage
can not be “required elsewhere”, it is possible for
the compiler to perform agressive optimizations,
sometimes eliminating the symbol altogether from
the translation unit

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 111

Internal linkage
// var.hh
namespace app {

const unsigned long max_dim = 1024UL;
static auto f(int i) {

// ...
}
static int variable{};

}

// A.cc
#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope constants have
internal linkage by default in C++ (but not in C!)
A free function can be declared static give it
internal linkage

A non-constant namespace scope variable can be
declared static to give it both a static storage
duration and internal linkage
Since a variable or function with internal linkage
can not be “required elsewhere”, it is possible for
the compiler to perform agressive optimizations,
sometimes eliminating the symbol altogether from
the translation unit

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 111

Internal linkage
// var.hh
namespace app {

const unsigned long max_dim = 1024UL;
static auto f(int i) {

// ...
}
static int variable{};

}

// A.cc
#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope constants have
internal linkage by default in C++ (but not in C!)
A free function can be declared static give it
internal linkage
A non-constant namespace scope variable can be
declared static to give it both a static storage
duration and internal linkage

Since a variable or function with internal linkage
can not be “required elsewhere”, it is possible for
the compiler to perform agressive optimizations,
sometimes eliminating the symbol altogether from
the translation unit

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 111

Internal linkage
// var.hh
namespace app {

const unsigned long max_dim = 1024UL;
static auto f(int i) {

// ...
}
static int variable{};

}

// A.cc
#include "var.hh"
void A()
{

std::printf("%d\n",
app::variable++);

}

// B.cc
#include "var.hh"
void B()
{

std::printf("%d\n",
app::variable++);

}

“Top-level”/namespace scope constants have
internal linkage by default in C++ (but not in C!)
A free function can be declared static give it
internal linkage
A non-constant namespace scope variable can be
declared static to give it both a static storage
duration and internal linkage
Since a variable or function with internal linkage
can not be “required elsewhere”, it is possible for
the compiler to perform agressive optimizations,
sometimes eliminating the symbol altogether from
the translation unit

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 111

Module linkage
// A.cc
export module A;
import std;
namespace app {

int variable {};
}
void other_func();
export void A()
{

std::print("{}\n",
app::variable ++);

other_func();
}

// A2.cc
module A;
void other_func()
{

app::variable += 10;
}

export module B;
import std;
namespace app {

int variable {};
}
export void B()
{

std::print("{}\n",
app::variable ++);

}

In between internal and external linkage: external
as far as different module units inside the module
are concerned, but visible only inside the module

Unexported names in the primary module interface
unit are regarded as the same entity in all
implementation units of the same module
The exact same symbol may be used in a different
module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 112

Module linkage
// A.cc
export module A;
import std;
namespace app {

int variable {};
}
void other_func();
export void A()
{

std::print("{}\n",
app::variable ++);

other_func();
}

// A2.cc
module A;
void other_func()
{

app::variable += 10;
}

export module B;
import std;
namespace app {

int variable {};
}
export void B()
{

std::print("{}\n",
app::variable ++);

}

In between internal and external linkage: external
as far as different module units inside the module
are concerned, but visible only inside the module
Unexported names in the primary module interface
unit are regarded as the same entity in all
implementation units of the same module

The exact same symbol may be used in a different
module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 112

Module linkage
// A.cc
export module A;
import std;
namespace app {

int variable {};
}
void other_func();
export void A()
{

std::print("{}\n",
app::variable ++);

other_func();
}

// A2.cc
module A;
void other_func()
{

app::variable += 10;
}

export module B;
import std;
namespace app {

int variable {};
}
export void B()
{

std::print("{}\n",
app::variable ++);

}

In between internal and external linkage: external
as far as different module units inside the module
are concerned, but visible only inside the module
Unexported names in the primary module interface
unit are regarded as the same entity in all
implementation units of the same module
The exact same symbol may be used in a different
module

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 112

Exercise 1.22:
The folder examples/linkage contains tiny demos for internal/external linkage (intext) and module linkage
(module).

intext: Build and run the program as is. Observe the output. Replace inline with static in the
intext/var.hh. Build and run again. Reason about any differences in the output.
module: Build and run using the approriate compiler options. Observe how the symbol app::variable
is regarded the same across the different files of module A, but the same symbol is regarded as an
independent object in module B

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 113

Argument Dependent Lookup

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 114

Argument Dependent Lookup

1 namespace Surrounding {
2 struct AClass {};
3 void one_func(int x, int y) {
4 std::cout << "Surrounding::one_func(int, int) << "\n";
5 }
6 void another_func(int x, AClass y) {
7 std::cout << "Calling Surrounding::another_func...";
8 }
9 }

10 // Elsewhere...
11 Surrounding::AClass obj; // OK
12 Surrounding::one_func(1, 2); // OK
13 one_func(1, 2); // Error!
14 Surrounding::another_func(1, obj); // OK
15 another_func(1, obj); // OK!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 115

Argument Dependent Lookup
If a function call expression involves one or more arguments of class types, the search for the matching
function includes functions defined in the namespaces surrounding each of those classes. This is called
"Argument Dependent Lookup", or Koenig Lookup
The functions considered have to be in the immediately surrounding namespace around a class
Calling such functions is very similar to calling our mental model of a member function, e.g., norm(x)
instead of x.norm()
Recommendation: Write more functions using class type objects in the surrounding namespace instead of
making them members!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 116

Argument Dependent Lookup

Exercise 1.23:
The notebook ADL.ipynb demonstrates argument dependent lookup. This is an important class related idea.
Please go through the notebook and try out your own variations!

Exercise 1.24:
The folder examples/ADL contains a series of small programs demonstrating ADL, similar to those in the
notebook above. Try them, in addition to the notebooks, as they explore the topic further.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 117

Numeric types

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 118

Floating point numbers
Area of a triangle of sides a, b and c...

Heron’s formula (Metrica, Heron of Alexandria, ≈ 60 CE)

s =
a + b + c

2

∆ =
√

s × (s − a) × (s − b) × (s − c)

Kahan’s formula (Miscalculating Area and Angles of a Needle-like Triangle, W. Kahan, 2000 CE,
http://http.cs.berkeley.edu/~wkahan/Triangle.pdf)

a ≥ b ≥ c

∆ =
1

4

√
(a + (b + c)) × (c − (a − b)) × (c + (a − b)) × (a + (b − c))

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 119

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf

Floating point numbers
Area of a triangle of sides a, b and c...

Heron’s formula (Metrica, Heron of Alexandria, ≈ 60 CE)

s =
a + b + c

2

∆ =
√

s × (s − a) × (s − b) × (s − c)

Kahan’s formula (Miscalculating Area and Angles of a Needle-like Triangle, W. Kahan, 2000 CE,
http://http.cs.berkeley.edu/~wkahan/Triangle.pdf)

a ≥ b ≥ c

∆ =
1

4

√
(a + (b + c)) × (c − (a − b)) × (c + (a − b)) × (a + (b − c))

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 119

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf

Floating point numbers
1 const auto a = 5.0f;
2 const auto b = 4.0f;
3 const auto c = 3.0f;
4 std::cout << "Heron's formula = "
5 << area_heron(a,b,c) << "\n";
6 std::cout << "Kahan's formula = "
7 << area_kahan(a,b,c) << "\n";

Heron's formula = 6
Kahan's formula = 6

Mathematically, both calculate the same thing

If the triangle becomes very long and thin though,
weird things happen
Correct answer is 10.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 120

Floating point numbers
1 const auto a = 100'000.000'00f;
2 const auto b = 99'999.999'79f;
3 const auto c = 0.000'29f;
4 std::cout << "Heron's formula = "
5 << area_heron(a,b,c) << "\n";
6 std::cout << "Kahan's formula = "
7 << area_kahan(a,b,c) << "\n";

1 |
2 |

Mathematically, both calculate the same thing
If the triangle becomes very long and thin though,
weird things happen

Correct answer is 10.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 120

Floating point numbers
1 const auto a = 100'000.000'00f;
2 const auto b = 99'999.999'79f;
3 const auto c = 0.000'29f;
4 std::cout << "Heron's formula = "
5 << area_heron(a,b,c) << "\n";
6 std::cout << "Kahan's formula = "
7 << area_kahan(a,b,c) << "\n";

Heron's formula = 0
Kahan's formula = 14.5

Mathematically, both calculate the same thing
If the triangle becomes very long and thin though,
weird things happen

Correct answer is 10.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 120

Floating point numbers
1 const auto a = 100'000.000'00f;
2 const auto b = 99'999.999'79f;
3 const auto c = 0.000'29f;
4 std::cout << "Heron's formula = "
5 << area_heron(a,b,c) << "\n";
6 std::cout << "Kahan's formula = "
7 << area_kahan(a,b,c) << "\n";

Heron's formula = 0
Kahan's formula = 14.5

Mathematically, both calculate the same thing
If the triangle becomes very long and thin though,
weird things happen
Correct answer is 10.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 120

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

It is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.

For a fixed exponent, there are 223 different floating point numbers. =⇒ There are as many floats
between 2−11 and 2−10 as there are between 1024 and 2048
By contrast, integral types have a uniform density throughout their range

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 121

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

It is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.
For a fixed exponent, there are 223 different floating point numbers. =⇒ There are as many floats
between 2−11 and 2−10 as there are between 1024 and 2048

By contrast, integral types have a uniform density throughout their range

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 121

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

It is enough to store the coloured parts. We win an extra bit of precision in the mantissa by skipping the 1
before the decimal point.
For a fixed exponent, there are 223 different floating point numbers. =⇒ There are as many floats
between 2−11 and 2−10 as there are between 1024 and 2048
By contrast, integral types have a uniform density throughout their range

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 121

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

Zero = all bits 0. One ?

Exponent is stored shift-127 encoded. So, 1 ≡ [0][01111111][00000000000000000000000]
To maintain our sanity, we will write it as 1 ≡ [0][(20)][00000000000000000000000]

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 122

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

Zero = all bits 0. One ?
Exponent is stored shift-127 encoded. So, 1 ≡ [0][01111111][00000000000000000000000]

To maintain our sanity, we will write it as 1 ≡ [0][(20)][00000000000000000000000]

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 122

Representation of floating point numbers

−1s × 1.mantissa × 2exponent

Zero = all bits 0. One ?
Exponent is stored shift-127 encoded. So, 1 ≡ [0][01111111][00000000000000000000000]
To maintain our sanity, we will write it as 1 ≡ [0][(20)][00000000000000000000000]

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 122

Floating point numbers
Mental exercise: we have two decimal numbers in scientific notation 9.78 × 102, and 1.0 × 10−1. How will
you add them ?

You shift the decimal point in one of them until the exponents are the same, and then add the mantissas:
9.78 × 102 + 0.001 × 102. Digits in the smaller number are pushed to the right

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 123

Floating point numbers
Mental exercise: we have two decimal numbers in scientific notation 9.78 × 102, and 1.0 × 10−1. How will
you add them ?
You shift the decimal point in one of them until the exponents are the same, and then add the mantissas:
9.78 × 102 + 0.001 × 102. Digits in the smaller number are pushed to the right

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 123

Floating point numbers
1 ≡ [0][(20)][00000000000000000000000]

What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001] with the mantissa changing by 2−23 ≈ 0.0000001192092895507813
What is 2.0 ? [0][(21)][00000000000000000000000]. What if you add these two ? What information about
the smaller number can we retain ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 124

Floating point numbers
1 ≡ [0][(20)][00000000000000000000000]
What is the smallest representable n, with n > 1 ?

[0][(20)][00000000000000000000001] with the mantissa changing by 2−23 ≈ 0.0000001192092895507813
What is 2.0 ? [0][(21)][00000000000000000000000]. What if you add these two ? What information about
the smaller number can we retain ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 124

Floating point numbers
1 ≡ [0][(20)][00000000000000000000000]
What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001] with the mantissa changing by 2−23 ≈ 0.0000001192092895507813

What is 2.0 ? [0][(21)][00000000000000000000000]. What if you add these two ? What information about
the smaller number can we retain ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 124

Floating point numbers
1 ≡ [0][(20)][00000000000000000000000]
What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001] with the mantissa changing by 2−23 ≈ 0.0000001192092895507813
What is 2.0 ? [0][(21)][00000000000000000000000]. What if you add these two ? What information about
the smaller number can we retain ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 124

Floating point numbers
What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001]. Mantissa changes by 2−23 ≈ 0.0000001192092895507813.
This quantity depends on the floating point type. In C++, you can retrieve it
std::numeric_limits<T>::epsilon()

Two quantities with exponent 0 can not be distinguished in this representation, if they differ by less than
epsilon

In an expression like (big+small)-big, if big and small differ by more than 23 in exponent, all
information about small is lost, and we get a 0. 223 = 8388608.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 125

Floating point numbers
What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001]. Mantissa changes by 2−23 ≈ 0.0000001192092895507813.
This quantity depends on the floating point type. In C++, you can retrieve it
std::numeric_limits<T>::epsilon()

Two quantities with exponent 0 can not be distinguished in this representation, if they differ by less than
epsilon

In an expression like (big+small)-big, if big and small differ by more than 23 in exponent, all
information about small is lost, and we get a 0. 223 = 8388608.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 125

Floating point numbers
What is the smallest representable n, with n > 1 ?
[0][(20)][00000000000000000000001]. Mantissa changes by 2−23 ≈ 0.0000001192092895507813.
This quantity depends on the floating point type. In C++, you can retrieve it
std::numeric_limits<T>::epsilon()

Two quantities with exponent 0 can not be distinguished in this representation, if they differ by less than
epsilon

In an expression like (big+small)-big, if big and small differ by more than 23 in exponent, all
information about small is lost, and we get a 0. 223 = 8388608.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 125

Floating point numbers
Floating point numbers with all bits in the exponent field at 0, are said to be “denormalised” (remember the
shift-127 encoding)
Not enough bits to represent such small quantities.
All exponent bits being 1 indicate some special “numbers”:

±∞ : all mantissa bits 0.
NaN : at least one mantissa bit non-zero.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 126

Exercise 1.25:
In examples/floating_fun.cc, there is a small program “simulating” a calculation involving some large
quantities adding up to 0. Eight numbers are stored in an array of floats, and their sum evaluated and printed.
The calculation is repeated by permuting the indexes of the array, so that the numbers are added in all possible
orders. Observe the output!

Exercise 1.26: std::numeric_limits
What is epsilon for float and double on your computer ? Find out by writing a small C++ program and
printing out the values from std::numeric_limits. Look up the documentation of numeric_limits.
What other information can you get about numeric types from that header ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 127

Float: [1 − bit][8 − bits][23 − bits]

Maximum 3.40282e+38
Minimum 1.17549e-38
Lowest -3.40282e+38
Epsilon 1.19209e-07
Rounding error 0.5

Double: [1 − bit][11 − bits][52 − bits]

Maximum 1.79769e+308
Minimum 2.22507e-308
Lowest -1.79769e+308
Epsilon 2.22045e-16
Rounding error 0.5

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 128

New floating point types in C++23
Name typeid Min Max Epsilon
double d 2.2250738585072014e-308 1.7976931348623157e+308 2.220446049250313e-16
std::float64_t DF64 2.2250738585072014e-308 1.7976931348623157e+308 2.220446049250313e-16
float f 1.1754944e-38 3.4028235e+38 1.1920929e-07
std::float32_t DF32_ 1.1754944e-38 3.4028235e+38 1.1920929e-07
std::float16_t DF16_ 6.1035156e-05 65504 0.0009765625
std::bfloat16_t DF16b 1.1754944e-38 3.3895314e+38 0.0078125

Two different 16 bit floating point numbers introduced
std::float64_t and std::float32_t with different typeids compared to built in double and
float

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 129

Chapter 2

Cost of ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 130

Stack execution model

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 131

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() f() int i=10

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() g() int i = 10

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10 h11() int i = 10

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main() h1() int i = 10

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

auto main() -> int
{

auto N = 10;
if (f(N) < g(N)) {

h1(N);
} else {

h2(N);
}

}

auto f(int i)() -> int
{

return (i * i) %12;
}
auto g(int i)() -> int
{

return i % 12;
}
auto h1(int i)() -> int
{

return h11(i);
}
auto h2(int i)() -> int

{
return h21(i);

}

auto h11(int i)() -> int
{

return i * i;
}
auto h21(int i)() -> int
{

return i + h211(i);
}

auto h211(int i)
-> int

{
return -i;

}

main()

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 132

Functions at run time

1 auto sin(double x) -> int {
2 // Somehow calculate sin of x
3 return answer;
4 }
5 auto main() -> int {
6 double x{3.141592653589793};
7 for (int i = 0; i < 100; ++i) {
8 std::cout << i * x / 100
9 << sin(i * x / 100) <<"\n";

10 }
11 }

When a function is called, e.g., when we write
f(value1,value2,value3) for a function f
declared as
ret_type f(type1 x, type2 y, type3 z):

A "workbook" in memory called a stack frame is
created for the call
The local variables x, y, z are created, as if using
instructions type1 x{value1},
type2 y{value2}, type3 z{value3}.
A return address is stored.
The actual body of the function is executed
When the function concludes, execution continues
at the stored return address, and the stack frame is
destroyed
Memory used for the stack frame is usually cached
and can be accessed quickly

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 133

Member functions
1 class D {
2 int nm;
3 double d;
4 public:
5 void val(double x) { d = x; }
6 auto val() const -> double { return d; }
7 auto name() const { return nm; }
8 auto operator+(double x1) const -> double;
9 };

1 auto D::operator+(double x) const -> double
2 {
3 return d + x * x;
4 }

1 0000000000000000 <_ZNK1DplEd>:
2 vmulsd xmm0,xmm0,xmm0
3 vaddsd xmm0,xmm0,QWORD PTR [rdi+0x8]
4 ret

Object of class types are passed using their
addresses. The compiler uses the address of the
class type variable and offsets to its parts to find
the appropriate values to use.
Return value is written to the type appropriate
registers, e.g., xmm0, eax...
Execution continues at the previously stored return
address

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 134

Aside: reading assembly code
The compiler explorer

Exercise 2.1:
The compiler explorer https://godbolt.org provides a great tool to quickly examine the assembly code
corresponding to a code snippet. It is possible to choose different compilers, give compiler options ... Use it to
quickly check the assembly code generated for simple functions. Compare different compilers. Try the examples
in examples/assembly. Vary the compiler and compiler options and see how the assembler changes.

class.cc contains two functions doing the same thing. One operates one a bare double variable, and
another on a double variable wrapped in a class with simple accessor functions. How different are the
generated assembler code for the two functions ?
axpy.cc shows an example of a simple struct with an internal array (presumably of some numeric type).
Notice how separate numeric operations, written over elements of those arrays become fused multiply-add
or vector fma operations, when compiled with more recent compilers. What happens when the compile-time
fixed length array has a size 32 or 64 instead of 16? Compare also with the assembly from older compilers!

See also: CppCon 2016: Serge Guelton “C++ Costless Abstractions: the compiler view”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 135

https://godbolt.org
https://www.youtube.com/watch?v=q0N9Tvf7Bz0

Stack
1 class V3 {
2 double x{}, y{}, z{};
3 auto cross(const V3 &) -> V3;
4 auto dot(const V3 &) -> double;
5 };
6 auto prob(int i, const V3& x, const V3& y)
7 -> double
8 {
9 int j = i % 233;

10 V3 tmp{x};
11 for (; j < i; ++j) {
12 tmp = tmp.cross(y);
13 }
14 return tmp.dot(x);
15 }

Heavily reused memory locations
Likely cached, therefore, fast
All local (block scope) variables of any type, which
come into existence inside a block, and expire at
the end of the block, i.e., with automatically
managed lifetime.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 136

Global storage
1 auto prob(int i) -> double
2 {
3 static int c{0};
4 ++c;
5 if (c % 1000==0) {
6 std::cout << "Call count reached "
7 << c << "\n";
8 }
9 static const double L[] = {3.14, 2.71};

10 return L[i % 2];
11 }

Variables outside any function
Variables marked with the static keyword in
functions
Floating point constants, array initializer lists, jump
tables, virtual function tables

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 137

Heap
1 void f()
2 {
3 int *A = new int[1000000];
4 // calculations with A
5 delete [] A;
6 }

Directly/indirectly managed memory through new,
delete, malloc or free
Best practice: managed by container types like
vector, list etc. or by smart pointers
unique_ptr or shared_ptr
Objects who come into existence with a new call,
and live until an explicit delete call
Can store very large objects which don’t fit in the
stack
Arrays whose size is not known at compile time.
C99 style variable length arrays are not standard
C++.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 138

Heap
1 void f()
2 {
3 int *A = new int[1000000];
4 // calculations with A
5 // What if we throw an exception here
6 // and never actually reach the delete?
7 delete [] A;
8 }

Must remember to free memory before all pointers
pointing to that heap block go out of scope. Those
pointers may expire either because the program
successfully runs past the } marking the end of
their lifetime, or leaves the scope by throwing an
exception. =⇒ RAII: tie the acquiring and
releasing of resources to the life time of a suitable
object.
Tends to get fragmented
Must find a suitably sized unused block, and must
keep track of what is and isn’t in use 7−→
allocation and deallocation are expensive
Objects stored one after the other may end up in
very different locations
Slower than stack storage

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 139

Exercise 2.2:
In HPC, we have to carefully monitor our heap allocation/deallocation operations. In the program
examples/alloc_cost.cc, we compare two nearly identical functions, where the only difference is the use
of a heap allocated array as the returned value. We clearly see that the version without the heap allocation runs
faster. Reducing the allocation/deallocation operations inside hot code sections improves performance.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 140

1 static void StringCreation(benchmark::State& state) {
2 for (auto _ : state) {
3 std::string created_string("hello");
4 benchmark::DoNotOptimize(created_string);
5 }
6 }
7 BENCHMARK(StringCreation);
8 static void StringCopy(benchmark::State& state) {
9 std::string x = "hello";

10 for (auto _ : state) {
11 std::string copy(x);
12 }
13 }
14 BENCHMARK(StringCopy);

Exercise 2.3:
Test the cost of allocation and deallocation using the microbenchmarking site quick-bench.com! Their default
example is the code given here (above), comparing string creation and copy. Note down the timings. Then add
about 20 ’o’s at the end of the "hello" in each bench mark, i.e., "hello" 7−→ "hellooooooooooooooooooooo".
Compare the timings again! Reduce the number of o’s until the timings are as in the original form. Do you
understand the timings?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 141

https://quick-bench.com

Resource handles
Instead of bare heap allocation/deallocation, allocate in constructors or member functions (a)
When the scope of the variable ends, the destructor is automatically called (b)
Destructor should free any resources still in use (c)
The variable can now expire (d)

The labels (a), (b), (c) and (d) refer to the figures in the following slide.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 142

Resource handles

(a)

(c)

(b)

(d)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 143

Resource handles
STL containers (except std::array) are
"resource" handles
Memory management is done through constructors,
the destructor and member functions

No legitimate use of objects of the class should result in a memory leak
Most data is on the heap. The objects on the stack are light-weight handles.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 144

Resource handles
1 vector<int> A(32,0);
2 vector<double> B(64,0.);
3 vector<complex<double>> C(128);
4 vector<bool> D(256);
5 cout << sizeof(A) << ", "
6 << sizeof(B) << ", "
7 << sizeof(C) << ", "
8 << sizeof(D) << "\n";

Quiz
What will the program print ?

A. 32, 64, 128, 256
B. 32, 64, 256, 64
C. 24, 24, 24, 24
D. 24, 24, 24, depends on the library

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 145

Resource handles

(a) (b)

Move
Can transfer ownership of the resources very cheaply
Actual data on the heap need not be touched at all!
Just some pointer re-assignments on the stack (a), (b)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 146

Resource handles
vector<vector<int>> v(10, vector<int>(10,0));
...
for (int i = 0; i < 10; ++i) {

for (int j = 0; j < 10; ++j) {
v[i][j] = i + j;
//v.operator[](i).operator[](j);
//(*(*(v.dat + i)).dat + j)

}
}

In C++, objects (instances of a class) can live on
the stack or on the heap
Putting resource handles like vector<int> on
the heap, while allowed, incurs the cost of
additional indirections
It is almost always possible to avoid cumbersome
beasts like vector<vector<int>> ,
vector<vector<vector<vector<int>>>>
or int*****.
I wish I hadn’t seen such “multi-dimensional arrays”
in production code!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 147

If you need your own 2D, 5D etc. arrays, ...

1 template <class T> class array2d {
2 vector<T> v;
3 size_t nc{0}, nr{0};
4 public:
5 auto operator()(size_t i, size_t j) const
6 -> const T& { return v[i * nc + j]; }
7 auto operator()(size_t i, size_t j)
8 -> T& { return v[i * nc + j]; }
9 };

Use a wrapper class around an STL container, like vector or valarray
Either overload the operator() to access a given row and column ...

...or use C++23 and overload operator[] with two indexes, and deducing this...

Exercise 2.4:
examples/array2d contains the class template shown here.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 148

If you need your own 2D, 5D etc. arrays, ...

1 template <class T> class array2d {
2 std::vector<T> v;
3 size_t nc{ 0 }, nr{ 0 };
4 public:
5 template <class Self> auto&& operator[](this Self&& self, size_t i, size_t j) {
6 auto&& a = std::forward<Self>(self);
7 return a.v[i * a.nc + j];
8 }
9 };

Use a wrapper class around an STL container, like vector or valarray
Either overload the operator() to access a given row and column ...
...or use C++23 and overload operator[] with two indexes, and deducing this...

Exercise 2.5:
examples/array2d contains the class template shown here.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 148

std::array

1 // examples/stdarray.cc
2 #include <iostream>
3 #include <array>
4
5 auto main() -> int
6 {
7 std::array A{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9};
8 std::cout << "Size of array on stack = " << sizeof(A) << "\n";
9 std::cout << "size() = " << A.size() << "\n";

10 }

Resembles other STL containers, but this is not just a handle.
Does not need a data element to store the size, as the size is "part of the name" of the type!
Moving an std::array has order N complexity, as each individual element needs to be moved. No
pointer swapping trick can do the job for this.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 149

Data alignment

Data is read or written with a unit size called word. On the most common architectures, word size is 4 or 8
bytes.
Data alignment means, putting data on memory addresses which are integral multiples of the word size
n-byte aligned address has >= log2(n) least significant zeros
Access for aligned data is fast
If the size of a primitive type does not exceed the word size, access to aligned data of that type is also atomic

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 150

Data alignment
The X86 architecture is tolerant of misaligned data. Programs run, even if they can’t use SSE features
PowerPC throws a hardware exception, which may be handled by the OS. For unaligned 8 byte access, a
4,610% performance penalty has been discussed
(http://www.ibm.com/developerworks/library/pa-dalign/)
On other systems, crashes, data corruption, incorrect results are all possibilities

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 151

http://www.ibm.com/developerworks/library/pa-dalign/

Data alignment
Usually, primitive types are aligned by their "natural alignment": 4 byte int has 4 byte alignment, 8 byte
double has alignment of 8 and so on
A class has a natural alignment equal to the strictest requirement of its members
The alignof operator can be used to query the alignment of a type
The alignas keyword can be used to set a stricter alignment requirement

Exercise 2.6:
Verify the above using the example program examples/alignof.cc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 152

Data structure padding
class D { // alignment : 8, because of d

int nm; // alignment requirement 4.
double d; // Must have alignment 8.

public:
void val(double x) { d=x; }
auto val() const -> double { return d; }
auto operator+(double x1) const -> double;

};auto D::operator+(double x) const -> double
{

return d + x * x;
}D::operator+(double) const:

vfmadd213sd xmm0, xmm0, QWORD PTR [rdi+8]
ret

Alignment requirement of members can necessitate
introduction of padding between members

What happens to the assembler here, if we put a
comma between n and m in the name nm in class
D?
What if we make it int n, m, p;? Test it using
the compiler explorer! Click on the link or copy and
paste code from
examples/assembly/class2.cc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 153

https://www.godbolt.org/z/xcdGx9nox

Data structure padding
class D { // alignment : 8, because of d

int nm; // alignment requirement 4.
double d; // Must have alignment 8.

public:
void val(double x) { d=x; }
auto val() const -> double { return d; }
auto operator+(double x1) const -> double;

};auto D::operator+(double x) const -> double
{

return d + x * x;
}D::operator+(double) const:

vfmadd213sd xmm0, xmm0, QWORD PTR [rdi+8]
ret

Alignment requirement of members can necessitate
introduction of padding between members
What happens to the assembler here, if we put a
comma between n and m in the name nm in class
D?

What if we make it int n, m, p;? Test it using
the compiler explorer! Click on the link or copy and
paste code from
examples/assembly/class2.cc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 153

https://www.godbolt.org/z/xcdGx9nox

Data structure padding
class D { // alignment : 8, because of d

int nm; // alignment requirement 4.
double d; // Must have alignment 8.

public:
void val(double x) { d=x; }
auto val() const -> double { return d; }
auto operator+(double x1) const -> double;

};auto D::operator+(double x) const -> double
{

return d + x * x;
}D::operator+(double) const:

vfmadd213sd xmm0, xmm0, QWORD PTR [rdi+8]
ret

Alignment requirement of members can necessitate
introduction of padding between members
What happens to the assembler here, if we put a
comma between n and m in the name nm in class
D?
What if we make it int n, m, p;? Test it using
the compiler explorer! Click on the link or copy and
paste code from
examples/assembly/class2.cc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 153

https://www.godbolt.org/z/xcdGx9nox

Data structure padding
1 class A {
2 char c;
3 double x;
4 int d;
5 };
6 // Compiled as if it was ...
7 char c;
8 char pad[7];
9 double x;

10 int d;
11 char pad2[4]; // why is this here ?
12 // Overall alignment alignof(double)
13 // size of struct = 24

1 class B {
2 double x;
3 int d;
4 char c;
5 };
6 // Compiled as if it was ...
7 double x;
8 int d;
9 char c;

10 char pad[3];
11 // Overall alignment alignof(double)
12 // size of struct = 16

Due to padding, size of structures can be bigger than the sum of sizes of their elements
C++ rules do not allow the compiler to reorder elements for space
Carefully choosing the declaration order of class members can save memory

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 154

Alignment specifiers
1 alignas(64) double x[4]; // ok
2
3 alignas(64) vector<double> a(4);
4 // Pointless.
5 // The above simply aligns the resource
6 // handle, not the data on the heap
7
8 alignas(64) array<double, 4> A;
9 // This is fine, as std::array has

10 // real data in its struct
11
12 template <class T, int vecsize>
13 struct alignas(vecsize) simd_t
14 {
15 array<T,vecsize/sizeof(T)> data;
16 };
17 // We have requested that all objects
18 // of type simd_t should be aligned
19 // to vecsize bytes.

The alignas keyword can specify alignment for
variables
Can be attached to a class declaration so that all
objects of that type have a specified alignment
It is possible to attach an extended alignment
specifier to the class declaration
Be mindful about what you are aligning when you
use alignas for a resource handle like vector

1 alignas(64) std::vector U(100UL, 3.14);
2 // Align the vector object on the stack
3 // The array managed by the vector is
4 // not aligned
5 std::vector<double,
6 tbb::cache_aligned_allocator<double>>
7 A(100UL, 3.14);
8 // Cache aligned data array on the heap

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 155

Exercise 2.7:
The examples/align0.cc has an example class template, which creates a data array of the right size to fill
the simd vector width irrespective of the input data type. It illustrates the use of alignof and alignas, and
variable templates.

Exercise 2.8:
The examples/align1.cc shows that the usual mechanisms of dynamic allocation up to C++14 do not
provide any guarantees about alignment greater than the natural alignment of the type. The behaviour changed
in C++17 for types with explicitly specified extended alignment specifier like our simd_t class of the previous
example. Finally, examples/align2.cc shows the use of a new version of the new operator introduced in
C++17, which accepts an alignment argument.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 156

Memory
Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!

CPUs contain a certain amount of “cache” memory,
which is faster to access, but much smaller than
RAM
Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
the L1 cache
When the CPU looks for data from one address in
memory, it is copied from RAM to the cache and
then used.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 157

Memory
Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!
CPUs contain a certain amount of “cache” memory,
which is faster to access, but much smaller than
RAM
Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
the L1 cache
When the CPU looks for data from one address in
memory, it is copied from RAM to the cache and
then used.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 157

Memory
Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!
CPUs contain a certain amount of “cache” memory,
which is faster to access, but much smaller than
RAM
Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
the L1 cache
When the CPU looks for data from one address in
memory, it is copied from RAM to the cache and
then used.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 157

Memory
Fun fact: in 1 clock cycle of the CPU on my laptop,
a photon travels about 10 cm in vacuum!
CPUs contain a certain amount of “cache” memory,
which is faster to access, but much smaller than
RAM
Cost of fetching one integer from the main memory
can be a hundred times larger than getting it from
the L1 cache
When the CPU looks for data from one address in
memory, it is copied from RAM to the cache and
then used.

If it is immediately accessed again, it is in the cache, and can be used without the cost of fetching it from
RAM
Memory is fetched in “cache lines”. Successive operations on contiguous memory locations do not incur the
full cost of main memory access

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 157

Finding out cache information about your CPU
root > dmidecode -t cache
dmidecode 3.1
Getting SMBIOS data from sysfs.
SMBIOS 3.0.0 present.
Handle 0x0007, DMI type 7, 19 bytes
Cache Information

Socket Designation: L1 Cache
Configuration: Enabled, Not Socketed, Level 1
Operational Mode: Write Back
Location: Internal
Installed Size: 256 kB
Maximum Size: 256 kB
Supported SRAM Types:

Synchronous
Installed SRAM Type: Synchronous
Speed: Unknown
Error Correction Type: Parity
System Type: Unified
Associativity: 8-way Set-associative}

Handle 0x0008, DMI type 7, 19 bytes
Cache Information

Socket Designation: L2 Cache
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Write Back

Location: Internal
Installed Size: 1024 kB
Maximum Size: 1024 kB

Supported SRAM Types:
Synchronous

Installed SRAM Type: Synchronous
Speed: Unknown
Error Correction Type: Single-bit ECC
System Type: Unified
Associativity: 4-way Set-associative

Handle 0x0009, DMI type 7, 19 bytes
Cache Information

Socket Designation: L3 Cache
Configuration: Enabled, Not Socketed, Level 3
Operational Mode: Write Back
Location: Internal
Installed Size: 8192 kB
Maximum Size: 8192 kB
Supported SRAM Types:

Synchronous
Installed SRAM Type: Synchronous
Speed: Unknown
Error Correction Type: Multi-bit ECC
System Type: Unified
Associativity: 16-way Set-associative

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 158

CPU cache
not_root> getconf -a | grep -i cache
LEVEL1_ICACHE_SIZE 32768
LEVEL1_ICACHE_ASSOC 8
LEVEL1_ICACHE_LINESIZE 64
LEVEL1_DCACHE_SIZE 32768
LEVEL1_DCACHE_ASSOC 8
LEVEL1_DCACHE_LINESIZE 64
LEVEL2_CACHE_SIZE 262144
LEVEL2_CACHE_ASSOC 4
LEVEL2_CACHE_LINESIZE 64
LEVEL3_CACHE_SIZE 8388608
LEVEL3_CACHE_ASSOC 16
LEVEL3_CACHE_LINESIZE 64
LEVEL4_CACHE_SIZE 0
LEVEL4_CACHE_ASSOC 0
LEVEL4_CACHE_LINESIZE 0

Tools : lscpu, dmidecode, lshw, getconf
Different tools may aggregate information
differently (e.g., how total as opposed to per-core
cache is reported)
L1d cache is for data, L1i is for instructions
(instructions must live somewhere in the cache
too!)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 159

CPU cache

.... SSSS SSll llll

For a 64 byte cache line, the least 6 bits of the address refer to the location inside the cache line. Not
relevant in determining parking spot in the cache
If we have 32kb of L1d cache, with a 64 byte line, we have 512 "parking spots" (lines)
An 8 way associative cache will then have 512/8 = 64 sets, and use the further 6 bits of a memory address
to assign a set
If we keep accessing random places in memory, it is very easy to run out of L1 cache: in the example here,
we have only 64 sets!
Address bits higher than the least 12 are not used in determining where in the cache a value is stored: any
two addresses separated by 212 map to the same set in the L1 cache.
Variables with memory addresses separated by setcount × linesize compete for the same cache line
For better performance, one should strive to write code utilising the whole cache line before it is evicted

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 160

Memory access patterns
1 std::vector<int> A(N * N, 0);
2 for (size_t i = 0; i < N; ++i) {
3 for (size_t j = 0; j < N; ++j) {
4 A[i * N + j] += j + i;
5 }
6 }

1 for (size_t i = 0; i < N; ++i) {
2 for (size_t j = 0; j < N; ++j) {
3 A[j * N + i] += j + i;
4 }
5 }

1 for (size_t i = 0; i < N * N; ++i) {
2 A[pos[i]] += i;
3 }

Q: Which way of accessing the “matrix” is faster,
and by how much ?
A: For N=10000, my laptop takes about 0.037
seconds for the row major pattern (top), and about
0.26 seconds for the column major pattern (middle),
and 1.86 seconds for random pattern (bottom)

See also: CppCon 2016: Timur Doumler “Want fast C++? Know your hardware!”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 161

https://www.youtube.com/watch?v=BP6NxVxDQIs&t=932s

Memory

1 constexpr size_t size = 2 << 26;
2 std::vector< long > A(size, 0);
3 for (size_t step = 1; step <= 2048; step *= 2) {
4 for (size_t i = 0; i < size; i += step) A[i]++;
5 }

Step Time
1 0.0967211
2 0.0943902
4 0.0929546
8 0.113927
16 0.137341
32 0.120449
64 0.0675447
128 0.0415029
256 0.016718
512 0.00694461
1024 0.00357155
2048 0.00178591

For small step sizes, increasing the number of writes to the array does not change the
total time.
Multiple accesses inside a cache line has minimal extra cost.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 162

4K aliasing
1 // Layout :
2 // x0, x1, x2 ... xn-1, y0, y1 ... yn-1,
3 // z0, z1 ... zn-1, wx0, wx1 ... wxn-1,
4 // wy0, wy1 ... wyn-1, wz0 ... wzn-1
5
6 for (size_t i=0;i<npart;++i) {
7 wx(i)=R(0,0)*x(i)+R(0,1)*y(i)+R(0,2)*z(i));
8 wy(i)=R(1,0)*x(i)+R(1,1)*y(i)+R(1,2)*z(i));
9 wz(i)=R(2,0)*x(i)+R(2,1)*y(i)+R(2,2)*z(i));

10 }

Innocent looking code can sometimes produce weird changes in performance based on array sizes
The spike in required time here comes for a particle count of about 512, when the different components of
the data for one particle are separated by exactly 4kB.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 163

Exercise 2.9: Memory effects
The following examples illustrate the cache effects discussed so far:

traverse0.cc can be used to compare contiguous and non-contiguous access of a large array
every_nth.cc compares times for accessing every n’th element, and highlights the cache line
transpose.cc transpose operation on a matrix, which involves lots of non-contiguous access

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 164

Recommendations
Prefer std::array and std::vector for all your container needs as a default. Many libraries also
provide other containers with contiguous storage providing advantages for specific use cases. Anything with
non-contiguous storage needs to be carefully justified
Organise code to maximise the use of any cache line that has been fetched:

Collate processing of nearby memory locations
Organise data structures so that things processed together are also stored near each other

Keep variables as local as possible

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 165

Instruction pipeline
A processor consists of many units,
responsible for different actions, e.g.,
fetching instructions or data from
memory, arithmetics, writing
computed results back to memory
When executing a program, pipelining
helps keep different units busy
throughout, improving throughput

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 166

Instruction pipeline

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 167

Instruction pipeline

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 168

Instruction pipeline
CPUs do not have to wait until one calculation is
totally finished before starting another
They “pipeline”. If the data required for another
instruction is available, that can start execution
before the first is finished
Because of pipelining, the processors are able to
perform more operations in time ∆t than ∆t

tlatency

Data dependencies create stalls in the pipeline
Some modern processors even execute instructions
“out of order”, to keep the pipeline busy

Exercise 2.10:
The program examples/ilp.cc demonstrates the effects of data dependencies. Two alternative versions of a loop
are given, performing the same total number of computations. One of them runs more than 5 times faster,
because it avoids dependencies between successive calculations.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 169

Pipeline and branched code
Program execution flows
through different units
responsible for different work
Branching can introduce
holes in the pipeline without
some workaround

Instruction fetch
Instruction decode
Instruction execute
Memory access
Register write back

1 if (x+y>5) f();
2 else g();

request mem x

request mem y

calc x+y

calc res > 5

?

The "next instruction" depends on the outcome of an instruction.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 170

Branch prediction
1 for (int i = 0; i < N; ++i) {
2 if (p[i] > gen()) {
3 b[i] = a[i] + c[i];
4 ++fwd;
5 } else {
6 a[i] = b[i] + c[i];
7 ++rev;
8 }
9 }

10 nngb = 0;
11 while (a) {
12 dist[nngb++] = distf(a,i);
13 }

For efficient execution, different units in the
pipeline must be kept busy as much as possible

When branches are encountered, the CPU simply
guesses which way it will go, and fetches
instructions accordingly
If the guess is right, no pipeline stall
If it is wrong, all operations done with that guess
must be purged

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 171

Branch mis-prediction penalty
1 for (int i = 0; i < N; ++i) {
2 if (p[i] > gen()) {
3 a[i] = (b[i] > r0 && b[i] < r1
4 && c[i] < b[i]);
5 } else {
6 a[i] = b[i] + c[i];
7 ++rev;
8 }
9 }

10 nngb=0;
11 while (a) {
12 dist[nngb++] = distf(a,i);
13 }

If statements, switches, loops contain obvious
branches
The ternary operator a = cond ? v1 : v2 is
(sometimes) a branch

Not so obvious branches include boolean || and
&& operators:

In a sequence of operations like
a || b || c || ... , the operands are

evaluated left to right until the first true value is
obtained
In a sequence of operations like
a && b && c && ... , the operands are

evaluated left to right until the first false value is
obtained

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 172

Not branches
1 auto f(int i) -> int
2 {
3 static const int a[4]={4,3,2,1};
4 int ans=0;
5 ans += (a[1]<i)?1:2;
6 return ans;
7 }

1 0000000000000000 <_Z1fi>:
2 cmp edi,0x4
3 setl al
4 movzx eax,al
5 inc eax
6 ret

Conditional assignments are often reorganised as
simple sequential instructions by compilers using
special assembler instructions when available
Loops with small loop counts may be automatically
unrolled at compile time leaving simple linear code

1 0000000000000000 <_Z1fdPd>:
2 subsd xmm0,QWORD PTR [rdi]
3 subsd xmm0,QWORD PTR [rdi+0x8]
4 subsd xmm0,QWORD PTR [rdi+0x10]
5 subsd xmm0,QWORD PTR [rdi+0x18]
6 ret

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 173

Not branches
1 auto f(double x, double A[4]) -> double
2 {
3 double a=x;
4 for (int i=0;i<4;++i) a-=A[i];
5 return a;
6 }

Conditional assignments are often reorganised as
simple sequential instructions by compilers using
special assembler instructions when available
Loops with small loop counts may be automatically
unrolled at compile time leaving simple linear code

1 0000000000000000 <_Z1fdPd>:
2 subsd xmm0,QWORD PTR [rdi]
3 subsd xmm0,QWORD PTR [rdi+0x8]
4 subsd xmm0,QWORD PTR [rdi+0x10]
5 subsd xmm0,QWORD PTR [rdi+0x18]
6 ret

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 173

Exercise 2.11:
Branch prediction effectiveness using the example program examples/branch_prediction.cc, compare
the processor on your own computer with the processors on JUSUF login nodes or compute nodes. The program
partitions an array of integers into 3 ranges. Running it with a command line argument (value ignored) causes it
to first sort the array and then perform the same partitioning actions. In the sorted array, the branches are easier
to predict. What do you observe ? How do different compilers compare ?

Exercise 2.12:
The program examples/branch_prediction1.cc further illustrates hardware branch prediction. Here, two
alternative kinds of calculations need to be done and accumulated separately. Depending on the value inside a
random array of numbers, we decide between the two calculations. It is impossible for the compiler to
pre-determine the branches. Adjust the threshold to shift the probability of the two branches and observe the
performance. Again, compare the 3 compilers!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 174

Class inheritance, virtual functions and performance
Class hierarchies constitute a flexible and beginner
friendly tool kit
In a fairly wide variety of applications, such as
graphics, and many simulations, they may form the
backbone of a robust, flexible code base
Because of their success in some areas, they have
been massively overused, leading to elaborate Rube
Goldberg machines, which are neither easy to read
nor particularly fast
In modern C++, we should explore alternative
ways to solve our problems
Understanding how it works can help us more easily
identify situations where a deep class hierarchy will
be a bad idea.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 175

Inheritance
Inheriting class may add more data, but it retains
all the data of the base
The base class functions, if invoked, will see a base
class object
The derived class object is a base class object, but
with additional properties

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 176

Inheritance
A pointer to a derived class always points to an
address which also contains a valid base class
object.
baseptr=derivedptr is called "upcasting".
Always allowed.
Implicit downcasting is not allowed. Explicit
downcasting is possible with static_cast and
dynamic_cast

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 177

Inheritance
1 class Base {
2 public:
3 void f(){std::cout<<"Base::f()\n";}
4 protected:
5 int i{4};
6 };
7 class Derived : public Base {
8 int k{0};
9 public:

10 void g(){std::cout<<"Derived::g()\n";}
11 };
12 auto main() -> int
13 {
14 Derived b;
15 Base *ptr=&b;
16 ptr->g(); // Error!
17 static_cast<Derived *>(ptr)->g(); //OK
18 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 178

Class inheritance with virtual functions

1 auto main() -> int
2 {
3 vector<unique_ptr<Shape>> shapes;
4 shapes.push_back(make_unique<Circle>(0.5, Point(3,7)));
5 shapes.push_back(make_unique<Triangle>(Point(1,2),Point(3,3),Point(2.5,0)));
6 ...
7 for (auto&& shape : shapes) {
8 std::cout << shape->area() << '\n';
9 }

10 }

A [smart] pointer to a base class is allowed to point to an object of a derived class
Here, shape[0]->area() will call Circle::area(), shape[1]->area() will call
Triangle::area()

But, how does it work ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 179

Calling virtual functions: how it works
For classes with virtual functions, the compiler
inserts an invisible pointer member to the data and
additional book keeping code
There is a table of virtual functions for each derived
class, with entries pointing to function code
somewhere
The vptr pointer points to the vtable of that
particular class

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 180

Calling virtual functions: how it works
Virtual function call proceeds by first finding the
right vtable, then the correct entry for the called
function, dereferencing that function pointer and
then executing the correct function body
Branch mispredictions, cache misses ...
For HPC applications, use of virtual functions in
hot sections will hurt performance

Often, the polymorphic behaviour sought after
using virtual functions can be implemented with
CRTP without the virtual function overhead

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 181

Expressing assumptions
Sometimes, relationships between function inputs can not be expressed through their types. The application
developer might know that

the floating point input to a function is always between 0 and 1.
two integer inputs are always ordered smaller, greater
an array is never empty
· · ·

When the compiler translates our code, such information is usually not available.
To ensure correct results, code is generated to handle all kinds of corner cases, which we are certain can not
ever happen
C++23 introduced one such way to express such relations in code: [[assume(expr)]]
[[assume()]] expressions may be placed anywhere in the function body and allow the compiler to make
those assumptions at that point in code
This gives a license to the compiler to make those assumptions and hence possibly generate some faster
code. But faster code is not guaranteed.
If the explicitly expressed assumptions are violated at the runtime, the result is undefined behaviour.
It is usually better to use [[assume(expr)]] along with assert so that violations are detected during
debugging

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 182

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 183

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 183

Using notifying special functions to learn

Exercise 2.13:
The course material includes a class called Vbose where the special member functions like constructors and the
destructor emit messages when they are used. Such a class can be used to develop a better understanding of
many run time effects. Three notebooks are provided in the folder examples/. They are meant for self study and
experimentation. Open them by browsing in the left panel of your Jupyter session and double clicking on the
notebook name. Go through them in the following order:

grow_vector.ipynb

ref_qual_members.ipynb

perfect_forwarding.ipynb

The ideas introduced in these notebooks will be used later.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 184

Reference qualified member functions
1 struct Box {
2 value_type r{};
3 auto value() const -> const value_type&
4 {
5 return r;
6 }
7 auto value() -> value_type& { return r; }
8 };

If b is of the type Box, b.value() is a
const value_type& or just value_type&
depending on whether b is const or not

Since C++11, more overloads are possible: one can
have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.
Potentially quadruples the number of variations of a
member function depending on the calling instance
Sometimes, it is possible to provide some
optimisations in situations where the calling
instance is an R-value. An example demonstrating
this can be explored in the notebook
ref_qual_members.ipynb

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 185

Reference qualified member functions
1 // Since C++11
2 struct Box {
3 value_type r{};
4 auto value() const & -> const value_type&
5 {
6 return r;
7 }
8 auto value() & -> value_type& { return r; }
9 auto value() const && -> const value_type&&

10 {
11 return r;
12 }
13 auto value() && -> value_type&& { return r; }
14 };

If b is of the type Box, b.value() is a
const value_type& or just value_type&
depending on whether b is const or not
Since C++11, more overloads are possible: one can
have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.

Potentially quadruples the number of variations of a
member function depending on the calling instance
Sometimes, it is possible to provide some
optimisations in situations where the calling
instance is an R-value. An example demonstrating
this can be explored in the notebook
ref_qual_members.ipynb

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 185

Reference qualified member functions
1 // Since C++11
2 struct Box {
3 value_type r{};
4 auto value() const & -> const value_type&
5 {
6 return r;
7 }
8 auto value() & -> value_type& { return r; }
9 auto value() const && -> const value_type&&

10 {
11 return r;
12 }
13 auto value() && -> value_type&& { return r; }
14 };

If b is of the type Box, b.value() is a
const value_type& or just value_type&
depending on whether b is const or not
Since C++11, more overloads are possible: one can
have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.
Potentially quadruples the number of variations of a
member function depending on the calling instance

Sometimes, it is possible to provide some
optimisations in situations where the calling
instance is an R-value. An example demonstrating
this can be explored in the notebook
ref_qual_members.ipynb

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 185

Reference qualified member functions
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4
5 auto header() const & -> const std::string&
6 {
7 return header_text;
8 }
9 auto header() & -> std::string&

10 {
11 return header_text;
12 }
13 auto header() const && -> const std::string&&
14 {
15 return std::move(header_text);
16 }
17 auto header() && -> std::string&&
18 {
19 return std::move(header_text);
20 }
21 };
22
23 auto readfile(std::filesystem::path fn) -> FileData;

If b is of the type Box, b.value() is a
const value_type& or just value_type&
depending on whether b is const or not
Since C++11, more overloads are possible: one can
have different versions of member functions
depending on whether the calling instance is an
L-value or an R-value reference.
Potentially quadruples the number of variations of a
member function depending on the calling instance
Sometimes, it is possible to provide some
optimisations in situations where the calling
instance is an R-value. An example demonstrating
this can be explored in the notebook
ref_qual_members.ipynb

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 185

Using templates for deduplication
1 struct Entity {
2 Entity(const Vbose& x, const Vbose& y)
3 : l{x}, r{y} {}
4 Entity(const Vbose& x, Vbose&& y)
5 : l{x}, r{std::move(y)} {}
6 Entity(Vbose&& x, const Vbose& y)
7 : l{std::move(x)}, r{y} {}
8 Entity(Vbose&& x, Vbose&& y)
9 : l{std::move(x)}, r{std::move(y)} {}

10
11 Vbose l, r;
12 };

1 template <class T>
2 struct Entity {
3 template <class U, class V>
4 Entity(U&& x, V&& y)
5 : l{std::forward<U>(x)},
6 r{std::forward<V>(y)} {}
7
8 T l, r;
9 };

In the notebook perfect_forwarding.ipynb we
explored a vaguely similar situation
Instead of the 4 constructors in the first example,
we could write a single function template, using
forwarding references and std::forward

The forwarding references, U&& and V&& capture
the constantness L/R-value reference
characteristics of the inputs
The std::forward wrapping the uses of the
respective variables casts them into their fully CVR
qualified typenames.
Can we do something like that to reduce the clutter
in the previous examples?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 186

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4
5 auto header() const & -> const std::string&
6 {
7 return header_text;
8 }
9 auto header() & -> std::string&

10 {
11 return header_text;
12 }
13 auto header() const && -> const std::string&&
14 {
15 return std::move(header_text);
16 }
17 auto header() && -> std::string&&
18 {
19 return std::move(header_text);
20 }
21 };

Imagine that, instead of these class member
functions...

we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 };
5 auto header(const FileData& fd) -> const std::string&
6 {
7 return fd.header_text;
8 }
9 auto header(FileData& fd) -> std::string&

10 {
11 return fd.header_text;
12 }
13 auto header(const FileData&& fd) -> const std::string&&
14 {
15 return std::move(fd.header_text);
16 }
17 auto header(FileData && fd) -> std::string&&
18 {
19 return std::move(fd.header_text);
20 }
21 };

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing

We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 };
5 template <class C>
6 requires std::same_as<FileData,
7 std::remove_cvref_t<C>>
8 auto&& header(C&& fd)
9 {

10 return std::forward<C>(fd).header_text;
11 }

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.

Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4
5 auto header() const & -> const std::string&
6 {
7 return header_text;
8 }
9 auto header() & -> std::string&

10 {
11 return header_text;
12 }
13 auto header() const && -> const std::string&&
14 {
15 return std::move(header_text);
16 }
17 auto header() && -> std::string&&
18 {
19 return std::move(header_text);
20 }
21 };

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.

Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 template <class Self>
5 auto&& header(this Self&& self)
6 {
7 return std::forward<Self>(self)
8 .header_text;
9 }

10 };
11

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!

The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 template <class Self>
5 auto&& header(this Self&& self)
6 {
7 return std::forward<Self>(self)
8 .header_text;
9 }

10 };
11

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.

The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 template <class Self>
5 auto&& header(this Self&& self)
6 {
7 return std::forward<Self>(self)
8 .header_text;
9 }

10 };
11

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here

Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Using templates for deduplication
1 struct FileData {
2 std::string header_text{};
3 std::vector<std::byte> bulk{};
4 template <class Self>
5 auto&& header(this Self&& self)
6 {
7 return std::forward<Self>(self)
8 .header_text;
9 }

10 };
11

Imagine that, instead of these class member
functions...
we had a set of free standing functions doing the
same thing
We could easily write a single template version for
all this. This is doable, because the FileData
object is explicitly available, and therefore can be
made into a template parameter and so on.
Member functions don’t expose the calling instance
in the same way, since it is passed implicitly.
Good news! Since C++23, they can!
The names Self etc are not special. You choose.
The special syntax to explicitly name the calling
instance is shown here
Can’t use this in such member functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 187

Polymorphism without virtual functions
We have already seen how function overloading gives us a polymorphic unit : the overload set
Different variation of a function is picked based on the type of the input parameters, or the constraints
satisfied by the input parameters
This is one kind of static polymorphism

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 188

Tag dispatching
1 struct flying {};
2 struct swimming {};
3 template <class T>
4 void do_something(T && t, flying)
5 {
6 t.fly(a,b);
7 }
8 template <class T>
9 void do_something(T && t, swimming) {...}

10 //...
11 template <class T>
12 void do_something(T t)
13 {
14 do_something(t, typename T::preferred_mode{});
15 }

1 class Buzzard {
2 public:
3 using preferred_mode = typename flying;
4 };
5 class Whale {
6 public:
7 using preferred_mode = typename swimming;
8 };
9 //...

10 Buzzard b;
11 do_something(b);
12 Whale w;
13 do_something(w);

Logically similar operations on different types, where the operations depend on certain properties of the types

“Dispatch” functions to guide the compiler to a suitable implementation based on a “tag” in the incomming
type
Does not tie the overload to a specific type: dispatches based on some property of the input type

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 189

Tag dispatching
1 struct flying {};
2 struct swimming {};
3 template <class T>
4 void do_something(T && t, flying)
5 {
6 t.fly(a,b);
7 }
8 template <class T>
9 void do_something(T && t, swimming) {...}

10 //...
11 template <class T>
12 void do_something(T t)
13 {
14 do_something(t, typename T::preferred_mode{});
15 }

1 class Buzzard {
2 public:
3 using preferred_mode = typename flying;
4 };
5 class Whale {
6 public:
7 using preferred_mode = typename swimming;
8 };
9 //...

10 Buzzard b;
11 do_something(b);
12 Whale w;
13 do_something(w);

Logically similar operations on different types, where the operations depend on certain properties of the types
“Dispatch” functions to guide the compiler to a suitable implementation based on a “tag” in the incomming
type

Does not tie the overload to a specific type: dispatches based on some property of the input type

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 189

Tag dispatching
1 struct flying {};
2 struct swimming {};
3 template <class T>
4 void do_something(T && t, flying)
5 {
6 t.fly(a,b);
7 }
8 template <class T>
9 void do_something(T && t, swimming) {...}

10 //...
11 template <class T>
12 void do_something(T t)
13 {
14 do_something(t, typename T::preferred_mode{});
15 }

1 class Buzzard {
2 public:
3 using preferred_mode = typename flying;
4 };
5 class Whale {
6 public:
7 using preferred_mode = typename swimming;
8 };
9 //...

10 Buzzard b;
11 do_something(b);
12 Whale w;
13 do_something(w);

Logically similar operations on different types, where the operations depend on certain properties of the types
“Dispatch” functions to guide the compiler to a suitable implementation based on a “tag” in the incomming
type
Does not tie the overload to a specific type: dispatches based on some property of the input type

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 189

SFINAE : Substitution Failure is not an Error
1 // Examples/sfinae0.cc
2 template <class V>
3 void f(const V &v, typename V::iterator * jt=0)
4 {
5 std::cout << "Container overload\n";
6 for (auto x : v) std::cout << x <<" ";
7 std::cout << "\n";
8 }
9

10 void f(...)
11 {
12 std::cout << "Catch all overload\n";
13 }
14
15 auto main() -> int
16 {
17 std::list L{0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
18 int A[4]{4, 3, 2, 1};
19 f(A);
20 f(L);
21 }

Overload resolution of templates
If substitution fails, overload discarded
All parameters, expressions and the return type in
declarations
Substitution failure : ill-formed type or expression
when a substitution is made
Not in function body!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 190

enable_if
1 // enable_if and enable_if_t are defined
2 // in the namespace std. We show them
3 // here to explain how they are used.
4 template <bool B, class T> struct enable_if;
5 template <class T> struct enable_if<true, T> {
6 using type=T ;
7 };
8 template <bool B, class T=void>
9 using enable_if_t=typename enable_if<B,T>::type;

10
11 template <class T>
12 enable_if_t<is_integral<T>::value, T>
13 Power(T x, T y) {
14 // Implementation suitable for
15 // integral number parameters
16 }
17 template <class T>
18 enable_if_t<is_floating_point<T>::value, T>
19 Power(T x, T y) {
20 // Implementation suitable for
21 // floating point parameters
22 }

Only if the first parameter is true, the structure
enable_if has a member type called type set
to the second template parameter
Using the type member of an enable_if struct
in a declaration will lead to an ill-formed expression
when the condition parameter is false. That version
of the function will then be ignored

Let’s not do such things any more. We have
concepts now.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 191

Exercise 2.14:
The tag dispatching technique is demonstrated in examples/tag_dispatch.cc.

Exercise 2.15:
examples/sfinae0.cc is a simple syntax illustration for SFINAE. Knowledge of history is imporant, but let
this not be how you write your code in 2020s.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 192

Choosing algorithm based on API
1 template <class C> size_t algo(C&& x)
2 {
3 if constexpr (hasAPI<C>) {
4 x.helper();
5 return x.calculateFast();
6 } else {
7 return x.calculate();
8 }
9 }

We want to write a general algorithm for an
operation
In case the function argument has a certain member
function, we have a neat and quick solution
Otherwise, we have a fallback solution

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 193

Choosing algorithm based on API
1 template <class T> struct hasAPI_t {
2 using basetype =
3 typename remove_reference<T>::type;
4 template <class C>
5 static constexpr auto test(C * x) ->
6 decltype(x->calculateFast(),
7 x->helper(),
8 bool{})
9 {

10 return true;
11 }
12 static constexpr bool test(...) {
13 return false;
14 }
15 static constexpr auto value =
16 test(static_cast<basetype*>(nullptr));
17 };

The “template function” hasAPI_t has a member
value initialized via a constexpr function,
which passes information about the templated type
to the test function
Two variants of the test function exist, one always
returning false, to cover the “everything else” case

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 194

Choosing algorithm based on API
1 template <class T> struct hasAPI_t {
2 using basetype =
3 typename remove_reference<T>::type;
4 template <class C>
5 static constexpr auto test(C * x) ->
6 decltype(x->calculateFast(),
7 x->helper(),
8 bool{})
9 {

10 return true;
11 }
12 static constexpr bool test(...) {
13 return false;
14 }
15 static constexpr auto value =
16 test(static_cast<basetype*>(nullptr));
17 };

The positive version of the test function defines
its return type using decltype, but applying it to
a comma separated list of necessary API expressions
A comma separated list of expressions evaluates to
the last value, but each value in the list is checked
for syntax

If the type of the argument does not have the member functions, the return type of the function can not be
determined, and the overload is rejected

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 195

Choosing algorithm based on API
1 template <class T> struct hasAPI_t {
2 using basetype =
3 typename remove_reference<T>::type;
4 template <class C>
5 static constexpr auto test(C * x) ->
6 decltype(x->calculateFast(),
7 x->helper(),
8 bool{})
9 {

10 return true;
11 }
12 static constexpr bool test(...) {
13 return false;
14 }
15 static constexpr auto value =
16 test(static_cast<basetype*>(nullptr));
17 };

The positive version of the test function defines
its return type using decltype, but applying it to
a comma separated list of necessary API expressions
A comma separated list of expressions evaluates to
the last value, but each value in the list is checked
for syntax

If the type of the argument does not have the member functions, the return type of the function can not be
determined, and the overload is rejected

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 195

Choosing algorithm based on API
1 template <class T> struct hasAPI_t {
2 using basetype =
3 typename remove_reference<T>::type;
4 template <class C>
5 static constexpr auto test(C * x) ->
6 decltype(x->calculateFast(),
7 x->helper(),
8 bool{})
9 {

10 return true;
11 }
12 static constexpr bool test(...) {
13 return false;
14 }
15 static constexpr auto value =
16 test(static_cast<basetype*>(nullptr));
17 };

The positive version of the test function defines
its return type using decltype, but applying it to
a comma separated list of necessary API expressions
A comma separated list of expressions evaluates to
the last value, but each value in the list is checked
for syntax

If the type of the argument does not have the member functions, the return type of the function can not be
determined, and the overload is rejected

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 195

Choosing algorithm based on API

1 template <class T> constexpr bool hasAPI = hasAPI_t<T>::value;
2 template <class C> std::enable_if_t< hasAPI<C>, size_t > algo(C && x)
3 {
4 x.helper();
5 return x.calculateFast();
6 }
7 template <class C> std::enable_if_t< !hasAPI<C>, size_t > algo(C && x)
8 {
9 return x.calculate();

10 }

What remains, is to make a nice wrapper template variable so that we can say hasAPI<T>, instead of
hasAPI_t<T>::value when we need it.
The dispatch functions are written using enable_if_t, so that we pick the calculateFast function
over calculate, if it is available

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 196

Nah!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 197

Choosing algorithm based on API
1 template <class T>
2 concept FastCalculator = requires (T rex) {
3 { rex.calculateFast() };
4 { rex.helper() };
5 };
6 template <FastCalculator C> auto algo(C && x)
7 {
8 x.helper();
9 return x.calculateFast();

10 }
11 template <class C> auto algo(C && x)
12 {
13 return x.calculate();
14 }

Write a concept describing what member
functions, inner types (like value_type for
iterators) an object should have to satisfy the API
Overload based on whether the constraints are
satisfied!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 198

Choosing algorithm based on API

1 auto main() -> int
2 {
3 Machinery obj;
4 auto res = algo(obj);
5 std::cout << "Result = " << res << "\n";
6 }

Users of our great algorithm can simply call our algo() in their code
If there is a calculate function, everything will work.
If the author of the library providing Machinery goes on to implement calculateFast in the
Machinery class, without any changes on the client side, or in the algo function, the compiler will make
sure that the (hopefully) better, calculateFast function is used

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 199

Exercise 2.16:
The folder examples/apishimming contains the example hasAPI template function used in this section, with an
application that uses it. By freeing the commented implementation of calculateFast, and recompiling, you
will see that the call to algo automatically switches to use calculateFast.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 200

1 template <class T> struct hasAPI_t {
2 using basetype = typename remove_reference<T>::type;
3 template <class C> static constexpr auto test(C * x) ->
4 decltype(x->calculateFast(),
5 x->helper(),
6 bool{})
7 {
8 return true;
9 }

10 static constexpr bool test(...)
11 {
12 return false;
13 }
14 static constexpr auto value =
15 test(static_cast<basetype*>(nullptr));
16 };
17 template <class T>
18 constexpr bool hasAPI = hasAPI_t<T>::value;
19 template <class C>
20 std::enable_if_t< hasAPI<C>, size_t > algo(C && x)
21 {
22 x.helper();
23 return x.calculateFast();
24 }
25 template <class C>
26 std::enable_if_t< !hasAPI<C>, size_t > algo(C && x)
27 {
28 return x.calculate();
29 }

Will get the job done.

1 template <class T>
2 concept FastCalculator = requires (T rex) {
3 { rex.calculateFast() };
4 { rex.helper() };
5 };
6 template <FastCalculator C> auto algo(C && x)
7 {
8 x.helper();
9 return x.calculateFast();

10 }
11 template <class C> auto algo(C && x)
12 {
13 return x.calculate();
14 }

Will get the job done and keep you sane.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 201

Curiously Recurring Template Pattern
You need types A and B which have some properties in common, which can be calculated using similar data
There are a few polymorphic functions, but conceptually A and B are so different that you don’t expect to
store them in a single pointer container
The penalty of using virtual functions seems to matter
Option 1: implement as totally different classes, just copy and paste the common functions

Option 2: try the CRTP

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 202

Curiously Recurring Template Pattern
You need types A and B which have some properties in common, which can be calculated using similar data
There are a few polymorphic functions, but conceptually A and B are so different that you don’t expect to
store them in a single pointer container
The penalty of using virtual functions seems to matter
Option 1: implement as totally different classes, just copy and paste the common functions

Option 2: try the CRTP

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 202

Curiously Recurring Template Pattern
You need types A and B which have some properties in common, which can be calculated using similar data
There are a few polymorphic functions, but conceptually A and B are so different that you don’t expect to
store them in a single pointer container
The penalty of using virtual functions seems to matter
Option 1: implement as totally different classes, just copy and paste the common functions

Option 2: try the CRTP

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 202

Curiously Recurring Template Pattern
You need types A and B which have some properties in common, which can be calculated using similar data
There are a few polymorphic functions, but conceptually A and B are so different that you don’t expect to
store them in a single pointer container
The penalty of using virtual functions seems to matter
Option 1: implement as totally different classes, just copy and paste the common functions
Option 2: try the CRTP

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 202

Curiously Recurring Template Pattern
1 template <class D> struct ViewInterface {
2 auto der() const -> const D * {
3 return static_cast<const D *>(this);
4 }
5 auto begin() const {
6 // Wont compile if D does not inherit from this
7 return der()->begin_impl();
8 }
9 auto version() const -> int {

10 // Non-polymorphic "common" function
11 return 42;
12 }
13 };
14 struct Atoi : public ViewInterface<Atoi> {
15 auto begin_impl() const { return bg; }
16 };
17 struct List : public ViewInterface<List> {
18 auto begin_impl() const -> string {
19 return &basenode;
20 }
21 };

1 template <class T>
2 auto proc(ViewInterface<T> v) {
3 auto b = v.begin();
4 // ...
5 }
6 auto main() -> int {
7 List H;
8 proc(H);
9 proc(Atoi{33});

10 }

A function can demand that the inputs have a
particular interface defined in the CRTP base
Any input type inheriting from the CRTP
base will be usable
Polymorphism without virtual functions
Enforces an interface at compile time
Usually faster than virtual functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 203

“Mixin”
1 // examples/crtp3.cc
2 template <class Derived> struct EnableCheckedAccess {
3 auto at(std::size_t i) const {
4 auto* d = static_cast<const Derived*>(this);
5 if (i >= d->size())
6 throw std::out_of_range(
7 std::format("Index {} is out of range for container size {}", i, d->size()));
8 return (*d)[i];
9 }

10 };
11 struct MyVec : EnableCheckedAccess<MyVec> {
12 auto operator[](std::size_t i) const { return i * i; }
13 auto size() const -> std::size_t { return 5UL; }
14 };
15 auto main(int argc, char* argv[]) -> int {
16 auto lim = argc > 1 ? std::stoul(argv[1]) : 5UL;
17 MyVec v;
18 try {
19 for (auto i = 0UL; i < lim; ++i)
20 std::print("Index = {}, value = {} \n", i, v.at(i));
21 } catch (std::exception& err) { std::print("{}\n", err.what()); }
22 }

Statically inject functionality into classes
No virtual dispatch required

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 204

“Mixin”
1 // examples/crtp4.cc
2 struct EnableCheckedAccess {
3 template <class Self>
4 auto at(this Self&& self, std::size_t i) {
5 if (i >= self.size())
6 throw std::out_of_range(
7 std::format("Index {} is out of range for container size {}", i, self.size()));
8 return self[i];
9 }

10 };
11 struct MyVec : EnableCheckedAccess {
12 auto operator[](std::size_t i) const { return i * i; }
13 auto size() const -> std::size_t { return 5UL; }
14 };
15 auto main(int argc, char* argv[]) -> int {
16 auto lim = argc > 1 ? std::stoul(argv[1]) : 5UL;
17 MyVec v;
18 try {
19 for (auto i = 0UL; i < lim; ++i)
20 std::print("Index = {}, value = {} \n", i, v.at(i));
21 } catch (std::exception& err) { std::print("{}\n", err.what()); }
22 }

Using the deducing this feature of C++23, we can make it much less weird!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 205

Expression Templates
1 template <typename T>
2 class vec {
3 std::vector<T> dat;
4 public:
5 vec(size_t n) : dat(n) {}
6 auto operator[](size_t i) const -> T {
7 return dat[i];
8 }
9 auto operator[](size_t i) -> T & {

10 return dat[i];
11 }
12 size_t size() const{return dat.size();}
13 };
14 template <typename T>
15 auto operator+(const vec<T> & v1,
16 const vec<T> & v2) -> vec<T>
17 {
18 assert(v1.size() == v2.size());
19 auto ans = v1;
20 for (size_t i = 0; i < ans.size(); ++i)
21 ans[i] += v2[i];
22 return ans;
23 }

1 vec<double> W(N), X(N), Y(N), Z(N);
2 //..
3 W = a * X + 2 * a * Y + 3 * a * Z;

Naive implementation which expresses our intent
elegantly
Each multiplication and addition creates a
temporary and does a loop over elements
Poor performance

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 206

Expression templates
If only we had a special class ...

... which stored references to X, Y and Z

and had an operator[] which returns a * X[i] + 2 * a * Y[i] + 3 * a * Z[i]

We could equip our vec class with a special assignment operator taking this special class as the right hand
side

1 template <typename T>
2 class vec {
3 template <class XPR>
4 auto operator=(const XPR & r) -> vec &
5 {
6 for (size_t i = 0; i < size(); ++i) {
7 dat[i] = r[i]; // and r[i] returns a*X[i]+2*a*Y[i]+3*a*Z[i]
8 } // One single loop, no temporaries
9 return *this;

10 }
11 };

We need a different special class for every expression we have to evaluate

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 207

Expression templates
If we make a class like :

template <typename LHS, typename RHS>
class vecsum {

const LHS & lhs;
const RHS & rhs;

public:
vecsum(const LHS & l, const RHS & r) : lhs{l}, rhs{r} {

assert(l.size() == r.size());
}
auto operator[](size_t i) const { return lhs[i] + rhs[i]; }
auto size() const { return lhs.size(); }

};

We can define the sum of two vec objects to be a vecsum type
template <typename LHS, typename RHS>
auto operator+(const LHS& v1, const RHS& v2) -> vecsum<LHS, RHS>
{

return vecsum<LHS, RHS>(v1, v2);
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 208

Expression templates
If we try vec1+vec2, no evaluation happens, and we get a vecsum<vec, vec> object, we can call []
on this object and cause the calculation to happen.
But, if we try vec1 + 54 or 34 + "dino", we get nonsensical compound objects
If we write our operator+ like :

template <typename LHS, typename RHS>
auto operator+(const expr<LHS> & v1, const expr<RHS> & v2) -> vecsum<LHS, RHS> const
{

return vecsum<LHS, RHS>(v1, v2);
}

, we can restrict the template to objects which match the pattern expr<something>

If we further want composability of the operations, we need vecsum<LHS,RHS> to also match the pattern
expr<something>

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 209

Expression templates
Design with CRTP

CRTP: a base template vecxpr to use as a base for all expressions of vec objects
template <typename X> struct vecxpr {

X& der() noexcept { return *static_cast<X*>(this); }
const X& der() const { return *static_cast<const X*>(this); }

};

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 210

Expression templates
Design with CRTP

We make our expression classes like vecsum inherit from the template vecxpr instantiated on themselves:

1 template <typename T1, typename T2> class vecsum : public vecxpr<vecsum<T1,T2>> {
2 const T1 & lhs;
3 const T2 & rhs;
4 public:
5 using value_type = typename T1::value_type;
6 vecsum(const vecxpr<T1> & l, const vecxpr<T2> & r) : lhs{ l.der() }, rhs{ r.der() } {
7 assert(lhs.size() == rhs.size());
8 }
9 const auto operator[](size_t i) const { return lhs[i] + rhs[i]; }

10 size_t size() const { return lhs.size(); }
11 };

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 211

Expression templates
Design with CRTP

operator+ can now be written as:

1 template <typename T1, typename T2>
2 auto operator+(const vecxpr<T1> & v1, const vecxpr<T2> & v2)
3 -> const vecsum<T1, T2> {
4 return vecsum<T1, T2>{ l, r };
5 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 212

Expression templates
Design with CRTP

We also make the original vec class inherit from vecxpr

1 template <typename T> class vec : public vecxpr<vec<T>> {
2 std::vector<T> dat;
3 public:
4 using value_type = T;
5 vec(size_t n) : dat(n) {}
6 auto operator[](size_t i) const -> const T& { return dat[i]; }
7 auto operator[](size_t i) -> T& { return dat[i]; }
8 size_t size() const { return dat.size(); }
9 size_t n_ops() const { return 0; }

10 template <typename X>
11 auto operator=(const vecxpr<X> & y) -> vec & {
12 dat.resize(y.der().size());
13 for (size_t i = 0; i < y.size(); ++i)
14 dat[i] = y.der()[i];
15 return *this;
16 }
17 };

Notice the special assignment operator from an expression!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 213

Expression templates
Design with CRTP

We also make the original vec class inherit from vecxpr

1 template <typename T> class vec : public vecxpr<vec<T>> {
2 std::vector<T> dat;
3 public:
4 using value_type = T;
5 vec(size_t n) : dat(n) {}
6 auto operator[](size_t i) const -> const T& { return dat[i]; }
7 auto operator[](size_t i) -> T& { return dat[i]; }
8 size_t size() const { return dat.size(); }
9 size_t n_ops() const { return 0; }

10 template <typename X>
11 auto operator=(const vecxpr<X> & y) -> vec & {
12 dat.resize(y.der().size());
13 for (size_t i = 0; i < y.size(); ++i)
14 dat[i] = y.der()[i];
15 return *this;
16 }
17 };

Notice the special assignment operator from an expression!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 213

Expression templates

a * X + b * Y + Z;

vecsum<
vecsum<
vecscl<vec<double>>,
vecscl<vec<double>>

>,
vec<double>> ({{a,X},{b,Y}},Z);

// Let's call this type EXPR

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 214

Expression templates

W = a * X + b * Y + Z;

vec<double> &
vec<double>::operator=(const EXPR & E)
{

dat.resize(E.size());
for (size_t i = 0; i < E.size(); ++i)

dat[i] = E[i];
return *this;

}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 214

Expression templates

W = a * X + b * Y + Z;

vec<double> &
vec<double>::operator=(const EXPR & E)
{

dat.resize(E.size());
for (size_t i = 0; i < E.size(); ++i)

dat[i] = E[i];
return *this;

}
const auto vecsum<L,R>::operator[](size_t i) const {

return lhs[i] + rhs[i];
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 214

Expression templates

W = a * X + b * Y + Z;

vec<double> &
vec<double>::operator=(const EXPR & E)
{

dat.resize(E.size());
for (size_t i = 0; i < E.size(); ++i)

dat[i] = E[i];
return *this;

}
const auto vecsum<L,R>::operator[](size_t i) const {

return lhs[i] + rhs[i];
}
const auto vecscl<T>::operator[](size_t i) const {

return lhs * rhs[i];
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 214

Expression templates

W = a * X + b * Y + Z;

vec<double> &
vec<double>::operator=(const EXPR & E)
{

dat.resize(E.size());
for (size_t i = 0; i < E.size(); ++i)

dat[i] = E[i];
return *this;

}
const auto vecsum<L,R>::operator[](size_t i) const {

return lhs[i] + rhs[i];
}
const auto vecscl<T>::operator[](size_t i) const {

return lhs * rhs[i];
}
const auto vec<T>::operator[](size_t i) const {

return data[i];
}

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 214

Expression templates
Elegant high level syntax
Reduce temporaries
Loop fusion
Delayed evaluation: apply algorithmic optimizations on the entire expression, e.g.,

Evaluate Matrix1 * Matrix2 * Vector as Matrix1 * (Matrix2 * Vector)
Detect and eliminate cancelling operations, e.g., Matrix_xpr1.transpose().transpose()
Use optimized low level kernels with assembler, intrinsics, calls to vendor libraries etc to do the work

However, can greatly increase compilation times

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 215

Exercise 2.17:
In examples/xtmp0, you will find a program which takes two numbers N and a as command line arguments,
and creates 4 arrays W, X, Y, Z of size N (user defined array type vec). It fills X, Y and Z with random
numbers and then calculates W = a ∗ X + 2 ∗ a ∗ Y + 3 ∗ a ∗ Z , and times this operation by repeating the
calculation 10 times. Two implementations of the user defined array type vec can be found: naive_vec.hh
and xtmp_vec0.hh. Compile and run the program by alternating between the two headers. Study the code in
xtmp_vec0.hh, which illustrates the ideas presented here about expression templates. The xtmp_vec1.hh
implementation is almost the same, except using aligned allocation to store the arrays in the vec type. Test that
as well.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 216

Exercise 2.18:
Introduce your own matrix class in the set up used in examples/xtmp0, so that matrix vector multiplications
can be parts of vector expressions and M1*M2*v is evaluated as two matrix vector products rather than a
matrix-matrix product followed by a matrix vector product.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 217

SIMD registers and operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 218

SIMD registers and operations

Increasingly sophisticated instructions in newer CPUs
Arithmatics, logical operations, shuffles, masked operations, trigonometry, cryptography . . .

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 219

SIMD registers and operations

xmm0, xmm1, . . .xmm7 (SSE)
xmm0 . . .xmm15, ymm0 . . .ymm15 (AVX, AVX2, FMA)
xmm0 . . .xmm31, ymm0 . . .ymm31, zmm0 . . .zmm31 (AVX512)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 220

SIMD registers and operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 221

SIMD registers and operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 221

SIMD registers and operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 221

SIMD registers and operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 221

Automatic vectorization
Compilers try to automatically identify opportunities to use SIMD instructions and generate appropriate code
We write code exactly (or at least more or less) as before, and the vectorizer brings more speed
Sometimes you may have to be careful about alignment of the arrays (alignas(),
std::assume_aligned())

Sometimes you might need to indicate to the compiler that the multiple arrays involved in a loop do not
overlap, can be assumed to be independent (#pragma ivdep)
You may want to allow the compiler to proceed with the assumption that floating point arithmetic is
associative (-fassociative-math)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 222

Automatic vectorization

1 void f(double x[], double y[], unsigned N)
2 {
3 for (unsigned i=0U; i<N; ++i) x[i] = 5. * x[i] + y[i];
4 }

Compiler asks : Can this loop be run in blocks of 4 or 8 for all inputs x and y ? What, if y = x+1 !
Then it makes careful decisions so that the results are correct for every possible input
Sometimes, we don’t care about every possible input. Our functions are often mere cogs in a bigger
machine, and their contract is more limited

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 223

OpenMP SIMD directives
Reorganize loop to run in chunks suitable for SIMD
execution
Syntax in C and C++ :

1 #pragma omp simd [clause [,clause] ...]
2 for (...) {}

Often possible to call straight forward inline
functions or vector enabled functions
#pragma omp declare simd

Can only be a traditional for loop. Loop count
must be possible to determine at entry. No breaks.

1 template <typename T>
2 auto Vexv(T r2, T sigsa12) -> T {
3 auto sg2
4 = static_cast<T>(sqr(Lambda * sigsa12));
5 auto a
6 = static_cast<T>(icut2 * sqr(sigsa12));
7 a = a * a * a;
8 a = a * a;
9 auto b = static_cast<T>(sixdivLLcut2 * a);

10 a = 7.0 * a;
11 T r6 = sg2 / r2;
12 r6 = r6 * r6 * r6;
13 return ksa * (r6 * r6 + a + b * r2);
14 }
15 auto addup(___) -> double {
16 double tot{};
17 #pragma omp simd reduction(+:tot)
18 for (size_t i=vec_size; i<R2.size(); ++i)
19 tot += Vexv(R2[i], S12[i]);
20 return tot;
21 }

For an excellent overview, search for “Michael Klemm, Intel, SIMD Vectorization with OpenMP”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 224

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 225

Digging deeper
1 double pairwise(unsigned i, unsigned j,
2 SOA * particle_record)
3 {
4 // very clever calculations
5 }
6 auto energy() -> double
7 {
8 double ans = 0.;
9 for (auto i = 0; i < npt; ++i) {

10 #pragma omp please vectorize
11 for (auto j = i + 1; j < npt; ++j) {
12 ans +=
13 pairwise(i, j, my_particle_record);
14 }
15 }
16 return ans;
17 }

Convenient. But what are we not doing ?
Coding to load groups of 2 or 4 or 8 numbers,
working with them and storing the results
Comparing different ways to use SIMD instructions
to solve the problem for our actual inputs
Choosing to use relaxed assumptions about floating
point arithmetic at specific places in the code

Deviate only for special situations!
As HPC C++ programmers, we should know how to
take full control of vectorization. But automatic or
OpenMP based vectorization should be your first choice
for production code. Most often they provide a cleaner,
easier path. Sometimes, when the easier way does not
provide enough low level access, we have ways to go
beyond them.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 226

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 227

Introduction to intrinsics
Recognizing how numbers are stored and manipulated in the computer opens up new opportunities
Computer arithmetic has more "fundamental" operations than normal mathematics : +, -, *, /, %, &, |,
<<, >>

1 auto morton_plain(unsigned long x,
2 unsigned long y,
3 unsigned long z)
4 {
5 auto ans = 0UL;
6 unsigned long i=0;
7 while (i<22) {
8 unsigned long bx = (x & (1 << i));
9 unsigned long by = (y & (1 << i));

10 unsigned long bz = (z & (1 << i));
11 auto j = 2*i;
12 ans = ans | (bx << j)
13 | (by << (j+1))
14 | (bz << (j+2));
15 ++i;
16 }
17 return ans;
18 }

1 auto morton(unsigned long x, unsigned long y,
2 unsigned long z)
3 {
4 constexpr unsigned long mask[]{
5 0x9249249249249249,// 0b100100100...1001001
6 0x2492492492492492,// 0b001001001...0010010
7 0x4924924924924924 // 0b010010010...0100100
8 };
9 // On x86 ...

10 return _pdep_u64(x, mask[0])
11 | _pdep_u64(y, mask[1])
12 | _pdep_u64(z, mask[2]);
13 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 228

Intrinsics : high(er) level interface to CPU instructions
Interface to SSE and AVX registers

include "nmmintrin.h" (SSE 4.2) or "immintrin.h"
(AVX)
__m128i : integer register with 128 bits
__m128 : 128 bits with 4 packed floats
__m128d : 128 bits with 2 doubles
__m256i : 256 bit octint
__m256 : octfloat
__m256d : quaddouble

Interface to SSE and AVX operations
_mm_add_ps(__m128, __m128)

_mm_sub_ps(,), _mm_sqrt_ps() . . .
_mm256_add_pd(__m256d, __m256d)

Convention:
(sizecode)(operation)_(suffix)

sizecode is mm for SSE, mm256 for AVX and
mm512 for AVX512
operation is "add", "sub", "mul" etc.
suffix indicates data type in the register arguments.
ps => float, pd => double, epi32 => 32 bit
signed int, epu32 => 32 bit unsigned int

Intel x86 optimization manual
Intel intrinsics guide

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 229

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide

Example: direct use of intrinsics
1 float sprod_sane(size_t n, const float a[],
2 const floatb[]) {
3 double res{};
4 for (size_t i=0UL; i<n; ++i)
5 res += a[i] * b[i];
6 return res;
7 }

(RHS) Feels C++’ish, but commits too much to
machine level details
This is just an example to show what bare intrinsics
based code looks like. It is almost never a good
idea to use raw intrinsics in application code. It’s
lazy and dangerous, and ends up costing you more
time anyway.

1 float sse_sprod(size_t n, const float a[],
2 const float b[]) {
3 assert(0 == n % 4);// simplifying assumption
4 __m128 res, prd, ma, mb;
5 res = _mm_setzero_ps();
6 for (size_t i=0; i<n; i += 4) {
7 ma = _mm_loadu_ps(&a[i]);
8 mb = _mm_loadu_ps(&b[i]);
9 prd = _mm_mul_ps(ma, mb);

10 res = _mm_add_ps(prd, res);
11 }
12 prd = _mm_setzero_ps();
13 res = _mm_hadd_ps(res, prd);
14 res = _mm_hadd_ps(res, prd); // not a typo!
15 float tmp;
16 _mm_store_ss(&tmp, res);
17 return tmp;
18 }

Beware of persistant superstition surrounding abstractions. Overreaching advice against compile time
abstractions such as static polymorphism, template or constexpr metaprogramming is usually bad advice.
Always check.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 230

Wrapping intrinsics in zero (/low) cost abstractions

1 #include <immintrin.h>
2 union alignas(32) QuadDouble {
3 __m256d mm;
4 double d[4];
5 QuadDouble(__m256d oth) : mm{oth} {}
6 constexpr QuadDouble(double x, double y,double z=0., double t=0.) : d{x, y, z, t} {}
7
8 void aligned_load(double * v) {
9 assert(get_alignment(v) >= 32);

10 mm = _mm256_load_pd(v);
11 }
12 void unaligned_load(double * v) { mm = _mm256_loadu_pd(v); }
13
14 [[nodiscard]]auto operator[](unsigned i) const -> double { return d[i%4]; }
15 auto operator[](unsigned i) -> double & { return d[i%4]; }
16
17 void operator=(double x) { mm = _mm256_broadcast_sd(&x); }
18 [[nodiscard]] auto horizontal_add() const -> double { return d[0] + d[1] + d[2] + d[3]; }
19 };

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 231

Wrapping intrinsics in zero (/low) cost abstractions

1 auto get_alignment(void * var) {
2 auto n = reinterpret_cast<unsigned long>(var);
3 return (-n) & n;
4 }
5 auto operator+(QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_add_pd(a.mm, b.mm);}
6 auto operator-(QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_sub_pd(a.mm, b.mm);}
7 auto operator*(QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_mul_pd(a.mm, b.mm);}
8 auto operator/(QuadDouble a, QuadDouble b) -> QuadDouble {return _mm256_div_pd(a.mm, b.mm);}
9

10 auto main() -> int
11 {
12 QuadDouble a{3.1}, b{0.2, 5.4, 2.1, 9.8};
13 auto c = a * b - (a / b);
14 return c[2] < -1.;
15 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 232

Wrapping intrinsics in zero(/low) cost abstractions
Notational simplification, more readable and maintainable code, at no (or rather low) run time cost
Need to wrap all operations used by your application (but only those)
Need to hide vendor specific differences

auto operator*(QuadDouble a, QuadDouble b) -> QuadDouble
{

return _mm256_mul_pd(a.mm, b.mm);
}

1 # With Clang 7
2 operator*(QuadDouble, QuadDouble): # @operator*(QuadDouble, QuadDouble)
3 vmulpd ymm0, ymm0, ymm1
4 ret

Note on alignment: Dynamically allocated arrays of our abstraction can cause unexpected crashes for C++98
. . . C++14, as the new operator could not align “over aligned” types on the heap. This was fixed in C++17,
and optionally provided for C++11 and C++14 with compiler flags (GCC: -faligned-new Clang:
-faligned-allocation).

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 233

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 234

Using our DIY SIMD library

1 // examples/diy/daxpy.cc
2 void daxpy_explicit(const std::vector<double> & x, std::vector<double> & y, double a) {
3 QuadDouble bx{0.}, by{0.};
4 const QuadDouble ba{a};
5 unsigned long vsize = x.size() - x.size() % 4;
6 const double * xptr0 = x.data();
7 const double * xptr1 = x.data() + vsize;
8 double * yptr = y.data();
9 for (; xptr0 != xptr1; xptr0 += 4, yptr += 4) {

10 bx.unaligned_load(xptr0);
11 by.unaligned_load(yptr);
12 by = by + bx * ba;
13 by.unaligned_store(yptr);
14 }
15 for (auto i=vsize; i<x.size(); ++i) y[i] += a* x[i];
16 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 235

Using our DIY SIMD library

1 // examples/diy/sprod.cc
2 #include "QuadDouble.hh"
3 auto sprod_explicit(size_t n, const double x[], const double y[]) -> double {
4 QuadDouble bx{0.}, by{0.}, tot{0.};
5 unsigned long vsize = n - n % 4;
6 const double * xptr0 = x;
7 const double * xptr1 = x + vsize;
8 for (; xptr0 != xptr1; xptr0 += 4, y += 4) {
9 bx.unaligned_load(xptr0);

10 by.unaligned_load(y);
11 tot = tot + bx * by;
12 }
13 auto res = tot.horizontal_add();
14 for (auto i = vsize; i < x.size(); ++i) res += x[i] * y[i];
15 return res;
16 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 236

Conditional selection using masks and blend

Different lanes in a SIMD register can not execute
different instructions =⇒ problems with general
branched code

Various kinds of conditional selection can be
executed as single instructions: picking out the
larger of the corresponding elements between two
arrays

Large number of “masked” instructions, e.g.,
_mm256_mask_[op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The
...maskz... variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask... variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.
Masked selection between two alternatives is also
possible using “blend instructions”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 237

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection using masks and blend

Different lanes in a SIMD register can not execute
different instructions =⇒ problems with general
branched code

Various kinds of conditional selection can be
executed as single instructions: picking out the
larger of the corresponding elements between two
arrays
Large number of “masked” instructions, e.g.,
_mm256_mask_[op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The
...maskz... variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask... variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.

Masked selection between two alternatives is also
possible using “blend instructions”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 237

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection using masks and blend

Different lanes in a SIMD register can not execute
different instructions =⇒ problems with general
branched code

Various kinds of conditional selection can be
executed as single instructions: picking out the
larger of the corresponding elements between two
arrays
Large number of “masked” instructions, e.g.,
_mm256_mask_[op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The
...maskz... variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask... variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.
Masked selection between two alternatives is also
possible using “blend instructions”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 237

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Conditional selection using masks and blend

Different lanes in a SIMD register can not execute
different instructions =⇒ problems with general
branched code

Various kinds of conditional selection can be
executed as single instructions: picking out the
larger of the corresponding elements between two
arrays
Large number of “masked” instructions, e.g.,
_mm256_mask_[op]_[type] and
_mm256_maskz_[op]_[type]. A mask is a bit
field of the appropriate size storing 0 or 1. The
...maskz... variants zero out the positions in
the destination corresponding to the entries where
the mask is unset. The ...mask... variants take
an additional src argument, and copy the result
from there, if the mask is unset. Both store the
result of the computation if the mask bit is in fact
set.
Masked selection between two alternatives is also
possible using “blend instructions”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 237

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Creating and manipulating masks
Masks are bit fields. Conceptually they are like arrays of boolean variables with the same number of
elements as the corresponding SIMD register
Many SIMD functions return mask types:

_mm256_cmpeq_epi32_mask(__m256i, __m256i) : element wise comparison. All corresponding bits of
the mask set if equality comparison returns true for an element
_mm256_cmplt_epi32_mask(__m256i, __m256i) : As with cmpeq, but for “less than” comparison

Masks can be combined with usual bit wise operations _mm256_and_pd, _m256_or_pd etc.

1 auto m1 = _mm256_cmpge_epi32_mask(vi, vj);
2 auto m2 = _mm256_cmpeq_epi32_mask(vk, _mm256_setzero_epi32());
3 auto mask = _mm256_and_si256(m1, m2);
4 res = _mm256_fmask_fmadd_pd(x, mask, y, z);

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 238

Great! Now, what about AVX512 ? Power ? ARM ?
Application code can operate using the abstraction
Architecture specific details can be hidden inside the SIMD library
No run-time indirection is needed. The compiler can be made to choose one specific version (macros,
template specializations . . .)
The author(s) of the SIMD library have to deal with the available capabilities in different instruction sets
The library can also provide additional benefits: SIMD implementation of widely used functions, e.g.,
trigonometric, exponential functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 239

XSIMD
C++ wrappers for SIMD intrinsics from “QuantStack”. Include only. BSD-3-Clause license.
git clone https://github.com/QuantStack/xsimd.git

Abstractions for batches of values for SIMD calculations, e.g.,
xsimd::batch<double, xsimd::avx2>

using Arch = xsimd::avx2;
xsimd::batch<double, Arch> x{1.,2.,3.,4.}, y{4.,3.,2.,1.};
std::cout << x + y << "\n";

The second template argument can be left out. The default value: target architecture
Vectorized forms of commonly used mathematical functions, such as trigonometric, exponential functions,
error functions, e.g., xsimd::asin(xsimd::batch<double, Arch>),
xsimd::exp(xsimd::batch<double, Arch>)

Regular arithmatic operations along with fma functions, e.g., xsimd::fma(a, x, y)

Auto-detection and parametrisation based on available instruction set, e.g., based on vector width,
xsimd::batch<double, xsimd::avx2>

Aligned allocator:
template <class T> using myvector = std::vector<T, xsimd::aligned_allocator<T>>;
myvector<double> V(1000000, 1.2); // Aligned to cache line

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 240

https://xsimd.readthedocs.io/en/latest/index.html

XSIMD
Useful to write with a placeholder tag type Arch, to allow runtime architecture selection
We will be using an alias using btype = xsimd::batch<double, Arch> in the following.
Depending on the architecture, it may represent a batch of 2, 4 or 8 double values
To load from an address in memory xptr, use auto xb = btype::load_unaligned(xptr). If you
know that the address is properly aligned for the batch, you can use
auto xb = btype::load_aligned(xptr). You can not load from an unaligned address using
load_aligned.
Loading can be controlled using a tag type: auto xb = btype::load(xptr, alignment_tag),
where alignment_tag is an object of one of the tag types xsimd::aligned_mode or
xsimd::unaligned_mode.
You can broadcast a scalar value to all positions in a SIMD batch like this:
auto ab = btype::broadcast(a);.
Batch objects can be combined using arithmetic operators, used in XSIMD mathematical functions etc to
produce other batch objects
To store the result to a location in memory, use the appropriate member function:
xb.store_unaligned(xptr), xb.store_aligned(xptr) or
xb.store(xptr, alignment_tag).

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 241

XSIMD

1 void daxpy(double a, std::span<const double> x, std::span<const double> y,
2 std::span<double> res) {
3 for (size_t i = 0UL; i < x.size(); ++i) {
4 res[i] = a * x[i] + y[i];
5 }
6 }
7 void daxpy_xsimd(double a, std::span<const double> x, std::span<const double> y,
8 std::span<double> res) {
9 using btype = batch<double>;

10 constexpr auto vwidth = btype::size;
11 const auto ablk = btype::broadcast(a);
12 const auto vreps = x.size() - x.size() % vwidth;
13 for (size_t i = 0UL; i < vreps; i += vwidth) {
14 auto xblk = btype::load_unaligned(&x[i]);
15 auto yblk = btype::load_unaligned(&y[i]);
16 auto zblk = a * xblk + yblk;
17 zblk.store_unaligned(&res[i]);
18 }
19 for (size_t i = vreps; i < x.size(); ++i) { res[i] = a * x[i] + y[i]; }
20 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 242

Alignment and SIMD operations

Peel a few from the front and start aligned loads...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 243

Alignment and SIMD operations

How many elements would you peel now ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 243

Alignment and SIMD operations

On Intel processors > Haswell, penalty low

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 243

SIMD with complex numbers
std::complex<T> has a fixed data layout,
(real , imag) to be compatible with C
Arrays of complex numbers have the real parts at
non-adjacent, but statically predictable, locations
(same applies to the imaginary parts)
Many ways to code vectorized operations on
complex numbers
XSIMD (batch<complex<double>, Arch>)
has abstractions for working with complex numbers
Without such abstractions to aid us, explicit SIMD
programming with complex number would be
needlessly complicated

1 #include <xsimd/xsimd.hpp>
2 #include <complex>
3 #include <vector>
4 using namespace std;
5 void caxpy_xsimd(complex<double> a,
6 span<complex<double>> x,
7 span<const complex<double>> y)
8 {
9 using b_type =

10 xsimd::batch<complex<double>>;
11 b_type c = b_type::broadcast(a);
12 b_type xl, yl;
13 for (size_t i=0; i<x.size();
14 i+=b_type::size) {
15 xl.load_unaligned(&x[i]);
16 yl.load_unaligned(&y[i]);
17 xl = c * xl + yl;
18 xl.store_unaligned(&x[i]);
19 }
20 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 244

XSIMD: architectures and dispatching
It is possible to write programs for multiple
architectures
An appropriate instruction set is chosen based on
architectures available at runtime
Architecture adapted (“dispatched”) functions are
generated using xsimd::dispatch()

Recipe:
Implement the function for a task as a functional
with a template call operator
The template parameter Arch for the call operator
serves the same purpose as our placeholder in the
examples so far.
Generate a dispatched function using
xsimd::dispatch(functional)
Use the return value of the dispatch function as a
callable object with a signature without the Arch
parameter.

1 struct daxpy_xsimd_t {
2 template <class Arch>
3 void operator()(Arch,
4 std::span<const double> x,
5 std::span<double> y,
6 double a) const
7 {
8 using b_type = xsimd::batch<double, Arch>;
9 b_type bx{}, by{};

10 const b_type ba{b_type::broadcast(a)};
11 // and so on...
12 }
13 };
14 inline auto daxpy_xsimd
15 = xsimd::dispatch(daxpy_xsimd_t{});
16 void elsewhere()
17 {
18 std::vector a(100UL, 4.3);
19 std::vector b(100UL, 3.2);
20 daxpy_xsimd(a, b, 8.0);
21 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 245

Exercise 2.19:
In the folder examples/SIMD, you will find several versions of a few short functions.

Many examples here are not full programs and do not have main function.
The DIY version does not require any libraries to compile, although it does need immintrin.h, which
should be found in your system
You should compile with the best available instruction set on your system (-march=native for GCC and
Clang) and with optimization for speed
The examples with XSIMD are in the next exercise.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 246

Exercise 2.20:
examples/SIMD/xsimd: XSIMD demos

For the examples with XSIMD, you will need to pass -I /path/to/xsimdroot/include to the
compiler. There is nothing to link.

Example compile command :

$ g++ -std=c++23 -O3 -march=native -I $XSIMD_INCLUDE_DIR exvol1.cc -o exvol1.g

The examples x0.cc, x1.cc and x2.cc show the basic syntax. x0.cc shows an explicitly set architecture. But
x1.cc and x2.cc use the default batch. Build them with and without -march=native and run them, to
understand the role of the compiler option. The examples exvol1.cc and daxpy1.cc demonstrate architecture
dispatching. The remaining two examples, brighten.cc and nn_relu.cc show two tiny applications:
brighten.cc brightens the pixels of an image. The nn_relu.cc shows a single layer feed forward neural
network with a reLU activation function.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 247

Exercise 2.21:
The folder examples/SIMD/stdx_simd contains the corresponding implementation for the programs in the XSIMD
exercise, implemented using the proposed C++ standard library SIMD functionality. This is currently part of the
so called parrallelism TS-2, and not really standard. But, there are partial implementations in both GCC and
Clang. The README file in the directory contains lots of comments about the programs. Learn how to use
SIMD functionality from std::experimental namespace using the files in this example.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 248

Summary
Directly coding with SIMD types exposes algorithmic challenges concerning vectorization
We are much more directly in control
Quite often, correctly done OpenMP will bring you most of the benefits, but, knowing how to work with
intrinsics gives you a fallback option when the simple approach fails. At the very least, when you try to
vectorize yourself, you might see why OpenMP didn’t do as you had hoped.
If you work with C++, use its strengths: strive for zero-overhead abstractions instead of resigning to a life
of verbose and error-prone misery
Alternatively, use a SIMD library with a compatible license

They aleady exist, and others have already created the necessary abstractions
They support multiple instruction sets and CPU architectures
Often come with vectorized versions of common mathematical functions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 249

Chapter 3

Lessons from matrix multiplication

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 250

Lessons from matrix multiplication

Exercise 4.1:
In the examples folder, you will find a MatMul subfolder, containing a written lesson called SessionMatrix.pdf.
This file contains 8 stages organised as exercises starting with a naive implementation of a matrix type in C++,
and ending with something with reasonably respectable performance (comparable to what is possible with, e.g.,
Eigen, or other BLAS libraries) on a single node on JUSUF. It only uses concepts introduced in this course, and
does not call any linear algebra library function. Work through the exercises and test the different stages on
JUSUF!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 251

Chapter 4

Parallelisation using PSTL and TBB

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 252

Parallel computing
Engineering (power consumption) challenges make
processors with higher and higher clock rates
impractical
Computers in the last 20 years have instead
increased processing power by adding more
hardware for parallel processing

A sequence of dependent operations on a small set
of entities is ill-suited for processing with many
workers
Given a large amount of information to be
processed, or a task with a large number of
independent sub-tasks, it is possible to reduce the
overall processing time.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 253

Parallel computing
1 auto gcd(unsigned s, unsigned l) -> unsigned
2 {
3 if (s > l)
4 std::swap(s, l);
5 while (s != 0) {
6 auto r = l % s;
7 l = s;
8 s = r;
9 }

10 return l;
11 }

Engineering (power consumption) challenges make
processors with higher and higher clock rates
impractical
Computers in the last 20 years have instead
increased processing power by adding more
hardware for parallel processing
A sequence of dependent operations on a small set
of entities is ill-suited for processing with many
workers

Given a large amount of information to be
processed, or a task with a large number of
independent sub-tasks, it is possible to reduce the
overall processing time.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 253

Parallel computing
Engineering (power consumption) challenges make
processors with higher and higher clock rates
impractical
Computers in the last 20 years have instead
increased processing power by adding more
hardware for parallel processing
A sequence of dependent operations on a small set
of entities is ill-suited for processing with many
workers
Given a large amount of information to be
processed, or a task with a large number of
independent sub-tasks, it is possible to reduce the
overall processing time.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 253

Parallel computing
What mechanisms do we have in C++ to exploit available parallelism in hardware?

Threads, mutexes, atomic operations
RAII for resource management
Libraries to partition and assign work to workers
Templates, lambda functions, CTAD
High-level STL style algorithms abstracting common programming building blocks
Containers and allocators for more efficient (and corrrect) parallel processing

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 254

Threads
1 auto calc1 = [=]() {
2 auto tot1 = 0.;
3 for (auto i = 0UL; i < N; ++i) {
4 auto ang = 2 * i * pi / N;
5 tot1 += std::cos(ang) * std::cos(ang);
6 }
7 };
8 auto calc2 = [=]() {
9 auto tot1 = 0.;

10 for (auto i = 0UL; i < N; ++i) {
11 auto ang = 2 * i * pi / N;
12 tot1 += std::sin(ang) * std::sin(ang);
13 }
14 };
15 std::jthread j1 { calc1 };
16 std::jthread j2 { calc2 };

std::thread, std::async ... since C++11
Parallel algorithms since C++17
std::jthread, std::stop_token since
C++20
std::jthread joins in the destructor

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 255

Threads
1 auto calc1 = [=]() {
2 auto tot1 = 0.;
3 for (auto i = 0UL; i < N; ++i) {
4 auto ang = 2 * i * pi / N;
5 tot1 += std::cos(ang) * std::cos(ang);
6 }
7 };
8 auto calc2 = [=]() {
9 auto tot1 = 0.;

10 for (auto i = 0UL; i < N; ++i) {
11 auto ang = 2 * i * pi / N;
12 tot1 += std::sin(ang) * std::sin(ang);
13 }
14 };
15 std::jthread j1 { calc1 };
16 std::jthread j2 { calc2 };

std::thread, std::async ... since C++11
Parallel algorithms since C++17
std::jthread, std::stop_token since
C++20
std::jthread joins in the destructor

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 255

Threads
1 auto tot = 0.;
2 {
3 std::jthread j1 { [&]() {
4 for (auto i = 0UL; i < N; ++i) {
5 auto ang = 2 * i * pi / N;
6 tot += std::cos(ang) * std::cos(ang);
7 }
8 } };
9 std::jthread j2 { [&]() {

10 for (auto i = 0UL; i < N; ++i) {
11 auto ang = 2 * i * pi / N;
12 tot += std::sin(ang) * std::sin(ang);
13 }
14 } };
15 }
16 std::cout << "Total " << tot << "\n";

Modification of data at the same address from
multiple threads can lead to “data races”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 256

Threads
1 auto tot = 0.;
2 {
3 std::jthread j1 { [&]() {
4 for (auto i = 0UL; i < N; ++i) {
5 auto ang = 2 * i * pi / N;
6 tot += std::cos(ang) * std::cos(ang);
7 }
8 } };
9 std::jthread j2 { [&]() {

10 for (auto i = 0UL; i < N; ++i) {
11 auto ang = 2 * i * pi / N;
12 tot += std::sin(ang) * std::sin(ang);
13 }
14 } };
15 }
16 std::cout << "Total " << tot << "\n";

The result can be incorrect, since the
load-modify-commit operations from the two
threads can overlap

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 256

Threads
1 std::mutex totmutex;
2 {
3 std::jthread j1 { [&]() {
4 for (auto i = 0UL; i < N; ++i) {
5 auto ang = 2 * i * pi / N;
6 std::scoped_lock lck { totmutex };
7 tot += std::cos(ang) * std::cos(ang);
8 }
9 } };

10 std::jthread j2 { [&]() {
11 for (auto i = 0UL; i < N; ++i) {
12 auto ang = 2 * i * pi / N;
13 std::scoped_lock lck { totmutex };
14 tot += std::sin(ang) * std::sin(ang);
15 }
16 } };
17 }
18 std::cout << "Total " << tot << "\n";

Fix 1: std::mutex: A resource which can be
acquired by only one thread at a time. Must be
released by the acquiring thread.
std::scoped_lock manages mutex
acquisition/release using RAII

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 256

Threads
1 std::atomic<double> tot {};
2 {
3 std::jthread j1 { [&]() {
4 for (auto i = 0UL; i < N; ++i) {
5 auto ang = 2 * i * pi / N;
6 tot += std::cos(ang) * std::cos(ang);
7 }
8 } };
9 std::jthread j2 { [&]() {

10 for (auto i = 0UL; i < N; ++i) {
11 auto ang = 2 * i * pi / N;
12 tot += std::sin(ang) * std::sin(ang);
13 }
14 } };
15 }
16 std::cout << "Total " << tot << "\n";

std::atomic<T> gives us “atomic”
load-modify-commit operations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 256

Threads
1 struct wrapped1 {
2 int val {};
3 };
4 template <class W>
5 struct func {
6 void operator()(volatile W* var)
7 {
8 for (unsigned i = 0; i < WORKLOAD / PARALLEL; ++i) {
9 var->val = var->val + 1;

10 }
11 }
12 };
13 {
14 std::array<wrapped2, PARALLEL> arr {};
15 {
16 std::array<std::jthread, PARALLEL> threads;
17 for (unsigned i = 0U; i < PARALLEL; ++i) {
18 threads[i] =
19 std::jthread(func<wrapped2>{}, &arr[i]);
20 }
21 }
22 }

Even when threads write to
different addresses, there can
be a significant slowdown
because of “false sharing”

Mitigation: alignment or
padding

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 257

Threads
1 struct align_as(std::hardware_destructive_interference_size)
2 wrapped1 {
3 int val {};
4 };
5 template <class W>
6 struct func {
7 void operator()(volatile W* var)
8 {
9 for (unsigned i = 0; i < WORKLOAD / PARALLEL; ++i) {

10 var->val = var->val + 1;
11 }
12 }
13 };
14 {
15 std::array<wrapped2, PARALLEL> arr {};
16 {
17 std::array<std::jthread, PARALLEL> threads;
18 for (unsigned i = 0U; i < PARALLEL; ++i) {
19 threads[i] =
20 std::jthread(func<wrapped2>{}, &arr[i]);
21 }
22 }
23 }

Even when threads write to
different addresses, there can
be a significant slowdown
because of “false sharing”
Mitigation: alignment or
padding

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 257

Parallel STL
Parallel versions of the high-level building blocks
such as std::sort, std::reduce etc.
C++17 parallel STL provides a way to express that
something can be done in parallel, but does not
mandate implementation strategy
Programs already written using algorithms will offer
many opportunities for exploiting parallelism
A TBB based implementation is used since GCC
9.1. Intel and Microsoft compilers have their
implementations as well.
std::sort sorts.
std::sort(std::execution::par, ...)
sorts in parallel
std::reduce adds up elements from a range.
std::reduce(std::execution::par, ...)
adds up elements in parallel

1 std::sort(std::execution::par,
2 points.begin(), points.end(),
3 [](auto p1, auto p2) {
4 return p1.x() < p2.x();
5 });
6 std::for_each(std::execution::par_unseq,
7 points.begin(), points.end(),
8 [](auto & p) {
9 p.norm(1);

10 });

As of GCC 15.2, to compile programs using parallel
algorithms, we need to link with libtbb and
libtbbmalloc, e.g.,
G par_user.cc -ltbb -ltbbmalloc

As of Clang 19.1, parallel STL remains an
experimental feature in libc++, and must be
enabled through -fexperimental-library

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 258

Execution policies
std::execution::sequenced_policy : Parallel algorithm’s execution may not be parallelised.
Element wise operations are indeterminately sequenced in the calling thread. An instance called,
std::execution::seq is usually used to disambiguate overload resolution
std::execution::parallel_policy : May be parallelised. Element wise operations can happen in
the calling thread, or on another. Relative sequencing is indeterminate. Convenience instance:
std::execution::par

std::execution::parallel_unsequenced_policy May be parallelised and vectorised. Element
wise operations can run in unspecified threads, and can be unordered in each thread.
std::execution::par_unseq

std::execution::unsequenced_policy Only vectorised. std::execution::unseq

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 259

Parallel STL examples

Exercise 5.1:
The program examples/pstl/inner_product.cc demonstrates the use of the parallel STL library,
performing a simple inner product calculation. Use -ltbb -ltbbmalloc for linking, or use the CMake file in
the directory.

Exercise 5.2:
The program examples/pstl/transform_reduce.cc creates a vector of random points in 2D, and then
calculates the moment of inertia using STL algorithms. Just switching the execution policy parameter, the
ptogram can be parallelised and vectorised. Test!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 260

Parallel STL examples

Exercise 5.3:
Parallelise the program exercises/pstl/mandelbrot0.cc using parallel STL.

Exercise 5.4:
At what size of a group of random strangers does the chance of two people sharing a birthday become greater
than 0.5? The program birthday_problem.cc solves it using a crude, brute force Monte Carlo simulation.
Parallelise it using parallel STL.

Examples in this section can be done with both GCC and Clang, with some caveats when using Clang.
clang++ -std=c++23 -stdlib=libc++ -fexpermental-library -O3 -march=native ___.cc
and
clang++ -std=c++23 -stdlib=libstdc++ -O3 -march=native ___.cc
will both will work. As of October 2025, libc++ hasn’t optimised performance when using parallel algorithms.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 261

TBB: Threading Building Blocks I
Provides utilities like parallel_for, parallel_reduce to simplify the most commonly used
structures in parallel programs
Provides scalable concurrent containers such as vectors, hash tables and queues for use in multi-threaded
environments
No direct support for vector parallelism. But can be combined with auto-parallelisation and
#pragma omp simd etc or explicit SIMD with a SIMD library
Supports complex models such as pipelines, data flow and unstructured task graphs
Scalable memory allocation, avoidance of false sharing, thread local storage
Low level synchronisation tools like mutexes and atomics
Work stealing task scheduler
http://www.threadingbuildingblocks.org

Structured Parallel Programming, Michael McCool, Arch D. Robinson, James Reinders

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 262

http://www.threadingbuildingblocks.org

Using TBB
Public names are available under the namespaces tbb and tbb::flow

You indicate "available parallelism", scheduler may run it in parallel if resources are available
Unnecessary parallelism will be ignored

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 263

parallel invoke

1 void prep(Population &p);
2 void iomanage();
3 tbb::parallel_invoke(
4 [&] {
5 noise_w(0., pars.sigma, wns);
6 std::copy(wns.begin(), wns.end(), wnoisemat.begin());
7 },
8 [&] {
9 noise_phi(0., pars.sigma, phins);

10 std::copy(phins.begin(), phins.end(), phinoisemat.begin());
11 });

Exercise 5.5: examples/tbb/parallel_invoke.cc
Compile with
G parallel_invoke.cc -ltbb -ltbbmalloc

A few adhoc tasks which do not depend on each
other
Runs them in parallel
waits until all of them are finished

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 264

TBB task groups
1 struct Equation {
2 void solve();
3 };
4
5 std::list<Equation> equations;
6 tbb::task_group g;
7 for (auto eq : equations)
8 g.run([]{eq.solve();});
9

10 g.wait();

Run an arbitrary number of callable objects in
parallel
In case an exception is thrown, the task group is
cancelled

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 265

TBB task arena
1 auto main(int argc, char *argv[]) -> int
2 {
3 size_t nthreads=std::stoul(argv[1]);
4 tbb::task_arena main_executor;
5 main_executor.initialize(nthreads);
6 main_executor.execute([&]{
7 haha();
8 });
9 }

10 void haha()
11 {
12 ...
13 tbb::parallel_invoke(a,b,c,d,e);
14 }
15 void a()
16 {
17 tbb::parallel_for(...);
18 }

Task arena to manage tasks, maps them to threads
etc.
Number of threads in an arena limited by its
concurrency level
Execute function, with a function object as
argument.
Returns the same thing as the function it is
executing.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 266

Parallel for loops
Template function modelled after the for loops,
like many STL algorithms
Takes a callable object as the third argument
Using lambda functions, you can expose parallelism
in sections of your code

1 tbb::parallel_for(first,last,f);
2 // parallel equivalent of
3 // for (auto i=first;i<last;++i) f(i);
4
5 tbb::parallel_for(first,last,stride,f);
6 // parallel equivalent of
7 // for (auto i=first;i<last;i+=stride)
8 // f(i);
9

10 tbb::parallel_for(first,last,
11 [captures](anything){
12 //Code that can run in parallel
13 });
14

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 267

Parallel for with ranges
Splits range into smaller ranges, and applies f to
them in parallel
Possible to optimize f for sub-ranges rather than a
single index
Any type satisfying a few design conditions can be
used as a range
Multidimensional ranges possible

1 tbb::parallel_for(0,1000000,f);
2 // One parallel invocation for each i!
3 tbb::parallel_for(range,f);
4
5 // A type R can be a range if the
6 // following are available
7 R::R(const R &);
8 R::~R();
9 bool R::is_divisible() const;

10 bool R::empty() const;
11 R::R(R & r,split);//Split constructor

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 268

Parallel for with ranges

1 tbb::blocked_range<int> r{0,30,20};
2 assert(r.is_divisible());
3 blocked_range<int> s{r};
4 //Splitting constructor
5 assert(!r.is_divisible());
6 assert(!s.is_divisible());
7

tbb::blocked_range<int>(0,4) represents an integer range 0..4
tbb::blocked_range<int>(0,50,30) represents two ranges, 0..25 and 26..50

So long as the size of the range is bigger than the "grain size" (third argument), the range is split

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 269

Parallel for with ranges

1 void dasxpcy_tbb(double a, std::span<const double> x, std::span<double> y) {
2 tbb::parallel_for(tbb::blocked_range<int>(0, x.size()),
3 [&](tbb::blocked_range<int> r) {
4 for (size_t i = r.begin(); i != r.end(); ++i) {
5 y[i] = a * sin(x[i]) + cos(y[i]);
6 }
7 });
8 }

parallel_for with a range uses split constructor to split the range as far as possible, and then calls
f(range), where f is the functional given to parallel_for

It is unlikely that you wrote your useful functions with ranges compatible with parallel_for as
arguments
But with lambda functions, it is easy to fit the parts!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 270

Exercise 5.6: TBB parallel for demo
The program examples/dasxpcy.cc demonstrates the use of parallel for in TBB. It is a slightly modified
version of the commonly used DAXPY demos. Instead of calculating y = a ∗ x + y for scalar a and large vectors
x and y , we calculate y = a ∗ sin(x) + cos(y). To compile, you need to load your compiler and TBB modules,
and use them like this:

1 G dasxpcy.cc -ltbb -ltbbmalloc

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 271

2D ranges

1 void f(size_t i, size_t j);
2 tbb::blocked_range2d<size_t> r{0, N, 0, N};
3 tbb::parallel_for(r, [&](tbb::blocked_range2d<size_t> r) {
4 for (auto i = r.rows().begin(); i != r.rows().end(); ++i) {
5 for (auto j = r.cols().begin(); j != r.cols().end(); ++j) {
6 f(i, j);
7 }
8 }
9 });

rows() is an object with a begin() and an end() returning just the integer row values in the range.
Similarly: cols() ...
2D range can also be split
The callable object argument should assume that the original 2D range has been split many times, and we
are operating on a smaller range, whose properties can be accessed with these functions.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 272

Parallel reductions with ranges

1 T result = tbb::parallel_reduce(range, identity, subrange_reduction, combine);

range : As with parallel for
identity : Identity element of type T. The type determines the type used to accumulate the result
subrange_reduction : Functor taking a "subrange" and an initial value, returning reduction
combine : Functor taking two arguments of type T and returning reduction over them over the subrange.
Must be associative, but not necessarily commutative.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 273

Parallel reduce with ranges

1 double inner_prod_tbb(std::span<const double> x, std::span<double> y) {
2 return tbb::parallel_reduce(
3 tbb::blocked_range<int>(0, n), // range
4 double{}, // identity
5 [&](tbb::blocked_range<int> &r, float in){
6 return std::inner_product(x.begin() + r.begin(), x.begin() + r.end(),
7 y.begin() + r.begin(), in);
8 }, // subrange reduction
9 std::plus<double>{} // combine

10);
11 }

With TBB ranges, we can use blocked implementations with hopefully vectorisable calculations in subranges
Two functors are required, either of which could be lambda functions
Important to add the contribution of initial value in subrange reductions

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 274

Exercise 5.7: TBB parallel reduce
The program tbbreduce.cc is a demo program to calculate an integral using tbb::parallel_reduce
What kind of speed up do you see relative to the serial version ? Does it make sense considering the number of
physical cores in your computer ?

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 275

Atomic variables
"Instantaneous" updates
Lock-free synchronization
For std::atomic<T>, T can be integral, enum
or pointer type, and since C++20, also floating
point, std::shared_ptr and std::weak_ptr

If index.load() == k simultaneous calls to
index++ by n threads will increase index to
k + n. Each thread will use a distinct value
between k and k + n

1 std::array<double, N> A;
2 std::atomic<int> index;
3
4 void append(double val)
5 {
6 A[index++] = val;
7 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 276

Atomic variables
"Instantaneous" updates
Lock-free synchronization
For std::atomic<T>, T can be integral, enum
or pointer type, and since C++20, also floating
point, std::shared_ptr and std::weak_ptr

If index.load() == k simultaneous calls to
index++ by n threads will increase index to
k + n. Each thread will use a distinct value
between k and k + n

1 std::array<double, N> A;
2 std::atomic<int> index;
3
4 void append(double val)
5 {
6 A[index++] = val;
7 }

But it is important that we use the return value of
index++ in the threads!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 276

Enumerable thread specific

1 tbb::enumerable_thread_specific<double> E;
2 double Eglob=0;
3 double f(size_t i, size_t j);
4 tbb::blocked_range2d<size_t> r{0, N, 0, N};
5 tbb::parallel_for(r, [&](tbb::blocked_range2d<size_t> r){
6 auto & eloc = E.local();
7 for (size_t i = r.rows().begin(); i != r.rows().end(); ++i) {
8 for (size_t j = r.cols().begin();j != r.cols().end(); ++j) {
9 if (j > i) eloc += f(i,j);

10 }
11 }
12 });
13 Eglob = 0;
14 for (auto& v : E) {Eglob += v; v = 0;}

Thread local "views" of a variable
behaves like an STL container of those views
Member function local() gives a reference to the local view in the current thread
Any thread can access all views by treating it as an STL container

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 277

TBB allocators
Dynamic memory allocation in a multithreaded program must avoid conflicts from new calls from different
threads
Global memory lock

TBB allocators
Interface like std::allocator, so that it can be used with STL containers. E.g.,
std::vector<T, tbb::cache_aligned_allocator<T>>

tbb::scalable_allocator<T> : general purpose scalable allocator type, for rapid allocation from
multiple threads
tbb::cache_aligned_allocator<T> : Allocates with cache line alignment. As a consequence,
objects allocated in different threads are guaranteed to be in different cache lines.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 278

Concurrent containers

1 #include <tbb/concurrent_vector.h>
2
3 auto v = tbb::concurrent_vector<int>(N, 0);
4
5 tbb::parallel_for(v.range(), [&](tbb::concurrent_vector::range_type r) {
6 //...
7 });

Random access by index
Multiple threads can grow container and add elements concurrently
Growing the container does not invalidate any iterators or indexes
Has a range() member function for use with parallel_for etc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 279

Chapter 5

Linear algebra with Eigen

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 280

Linear algebra
Operations on matrices, vectors, linear systems etc.
Data parallel, simple numerical calculations
Can be hand coded, but taking proper account of available CPU instructions, memory hierarchy etc is hard
Libraries with standardized syntax for wide applicability
Excellent vendor libraries are available on HPC systems

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 281

Eigen: A C++ template library for linear algebra
Include only library. Download from
http://eigen.tuxfamily.org/, unpack in a
location of your choice, and use. Nothing to link.
Small fixed size to large dense/sparse matrices
Matrix operations, numerical solvers, tensors ...
Expression templates: lazy evaluation, smart
removal of temporaries

1 // examples/Eigen/eigen1.cc
2 #include <iostream>
3 #include <Eigen/Dense>
4 using namespace Eigen;
5 using namespace std;
6 int main()
7 {
8 MatrixXd m=MatrixXd::Random(3,3);
9 m = (m + MatrixXd::Constant(3, 3, 1.2)) * 50;

10 cout << "m =" << "\n" << m << "\n";
11 VectorXd v(3);
12 v << 1, 2, 3;
13 cout << "m * v =" << "\n" << m * v << "\n";
14 }

G eigen1.cc

Explicit vectorization
Elegant API

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 282

http://eigen.tuxfamily.org/

Eigen: matrix types
MatirxXd : matrix of arbitrary dimensions
Matrix3d : fixed size 3 × 3 matrix
Vector3d : fixed size 3d vector
Element access m(i,j)
Output std::cout << m << "\n";

Constant : MatrixXd::Constant(a,b,c)
Random : MatrixXd::Random(n,n)
Products : m * v or m1 * m2

Expressions : 3 * m * m * v1 + u * v2 + m * m * m * v3

Column major matrix : Matrix<float, 3, 10, Eigen::ColMajor>

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 283

Eigen: matrix operations

1 #include <iostream>
2 #include <Eigen/Dense>
3 using namespace Eigen;
4 auto main() -> int {
5 Matrix3f A;
6 Vector3f b;
7 A << 1,2,3, 4,5,6, 7,8,10;
8 b << 3, 3, 4;
9 std::cout << "Here is the matrix A:\n" << A << "\n";

10 std::cout << "Here is the vector b:\n" << b << "\n";
11 Vector3f x = A.colPivHouseholderQr().solve(b);
12 std::cout << "The solution is:\n" << x << "\n";
13 }

Blocks m.block(start_r, start_c, nr, nc), or m.block<nr,nc>(start_r, start_c)

1 SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
2 if (eigensolver.info() != Success) abort();
3 std::cout << "Eigenvalues " << eigensolver.eigenvalues() << "\n";

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 284

Eigen: examples

Exercise 6.1:
There are a few example programs using Eigen in the folder examples/Eigen. Read the programs
eigen0.cc and eigen1.cc. To compile, use G program.cc.

Exercise 6.2:
The folder examples/Eigen contains a matrix multiplication example, matmul.cc using Eigen. Compare
with a naive version of a matrix multiplication program, matmul_naive.cc, by compiling and running both
programs. Try different matrix sizes. Then, you can use a parallel version of the Eigen matrix multiplication by
recompiling with -fopenmp.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 285

Exercise 6.3:
The file exercises/PCA has a data file with tabular data. Each column represents all measurements of a
particular type, while each row is a different trial. In each row, the first column, xi0, represents a pseudo-time
variable. Write a program using Eigen to perform a Principal Component Analysis on this data set, ignoring the
first column. Hint:
if Xi = [xi1, xi2, ...xim] is the data of row i , the covariance matrix is defined as,

Cab = 1
(n − 1)

∑
k

xkaxkb

The principal components of the data are obtained by right multiplying the data matrix by the matrix whose
columns are the eigen vectors of the matrix Cab, conventionally ordered by decreasing eigenvalues.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 286

Chapter 6

GPU programming

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 287

Data parallelism

Bus/motorcycle analogy and figure stolen from GPU course/lecture slides by Andreas Herten (JSC)

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 288

Priorities

CPU: faster clock speed, more cache, more sophisticated instructions and scheduling
GPU: More chip area dedicated to floating point computations

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 289

A separate device

Separate memories. GPU does not automatically know the state of any object in the memory of the CPU.
Must transfer data.
Must tell what to do with the data.
Must retrieve results with another information transfer.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 290

Can run C++ functions
A program running on a CPU can call special functions
designed to run on the GPU
The GPU understands a different set of hardware instructions
than the CPU, so any human readable function meant for the
GPU must be compiled to a different kind of hardware
instructions than code compiled for the CPU.
A set of function “execution space specifiers” are provided as
language extensions : __global__, __device__ and
__host__. These indicate to a CUDA aware compiler which
parts to translate to the CPU language and which parts to the
GPU language.
A function running on the GPU can call other functions
compiled for the GPU, leading to a call tree on the device side.

1 __device__ auto shuf(int id)
2 {
3 return (id + 1723) % 2000;
4 }
5 __global__
6 void gpufunc(int *ids, unsigned N)
7 {
8 // ...
9 ids[i] = shuf(ids[i]);

10 // ...
11 }
12 auto cpufunc() -> int
13 {
14 gpufunc<<<1, 100>>>(p, 3000);
15 }
16

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 291

Execution space specifiers

__device__ : the function runs on the device, and it can only be called from the device
__host__ : the function runs on the host, and it can only be called form the host
__global__: the function is a “kernel”. It runs on the device, and can be called from the host, or from
device (compute capability >= 3.2)

Must have void return type
Can not be a member function
It is asynchronous : the function returns before the device performs its work
Must be called along with an “execution configuration” e.g., gpufunc<<<1, 100>>>(p, 3000)

__device__ and __host__ can both be used for a function, in which case, it is compiled for both the host
and the device.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 292

Kernel call syntax
Kernel functions are called with the <<<GridSpec, BlockSpec>>>

notation, i.e., potentially in a large number of threads, arranged in
blocks
BlockSpec denotes a 3 dimensional object, 3 integers, specifying
the arrangement of threads in a thread block
GridSpec denotes a 3 dimensional object, 3 integers, specifying how
blocks are arranged in a grid
Each thread running a kernel function has a built in variable,
threadIdx, specifying the position of the thread in its block, and
another variable blockIdx to identify the block in the grid, and
blockDim = number of threads in a block
Overall x index: blockIdx.x * blockDim.x + threadIdx.x
etc.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 293

Kernel call syntax

1 __global__ void MatAdd(float A[N][N], float B[N][N],
2 float C[N][N])
3 {
4 int i = blockIdx.x * blockDim.x + threadIdx.x;
5 int j = blockIdx.y * blockDim.y + threadIdx.y;
6 if (i < N && j < N)
7 C[i][j] = A[i][j] + B[i][j];
8 }
9

10 auto main() -> int
11 {
12 ...
13 // Kernel invocation
14 dim3 threadsPerBlock{16, 16};
15 dim3 numBlocks{N / threadsPerBlock.x,
16 N / threadsPerBlock.y};
17 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
18 ...
19 }

The block and grid properties are often
chosen to reflect properties of the
problem being solved.
In this example, the threads are
organized in a 2D lattice: a natural fit
for a matrix sum
Each thread only needs to process one
element!
There is a maximum number of threads
allowed in a block: a limit coming from
hardware properties
It is therefore necessary to arrange
blocks into a grid

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 294

Kernel call syntax
Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?

Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space
We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware
availability, multiple blocks will run in parallel

If the iteration space is much larger then the total number of GPU threads, it is sometimes helpful to do
grid stride loops in the kernels. You have to take into account that gridDim._ * blockDim._ GPU
threads in the whole grid, which are processing lots of indexes together. That’s how many indexes you
would now jump over as a “stride”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 295

Kernel call syntax
Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?
Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space

We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware
availability, multiple blocks will run in parallel

If the iteration space is much larger then the total number of GPU threads, it is sometimes helpful to do
grid stride loops in the kernels. You have to take into account that gridDim._ * blockDim._ GPU
threads in the whole grid, which are processing lots of indexes together. That’s how many indexes you
would now jump over as a “stride”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 295

Kernel call syntax
Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?
Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space
We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware
availability, multiple blocks will run in parallel

If the iteration space is much larger then the total number of GPU threads, it is sometimes helpful to do
grid stride loops in the kernels. You have to take into account that gridDim._ * blockDim._ GPU
threads in the whole grid, which are processing lots of indexes together. That’s how many indexes you
would now jump over as a “stride”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 295

Kernel call syntax
Remember how you had to process an array of
double, 4 elements at a time and a stride of 4,
when using AVX style SIMD register?
Think of a block in CUDA as a potentially
3-dimensional stencil of tiny computations which
you repeat to cover the iteration space
We can use the grid to describe the iteration space
in terms of the blocks. Depending on hardware
availability, multiple blocks will run in parallel

If the iteration space is much larger then the total number of GPU threads, it is sometimes helpful to do
grid stride loops in the kernels. You have to take into account that gridDim._ * blockDim._ GPU
threads in the whole grid, which are processing lots of indexes together. That’s how many indexes you
would now jump over as a “stride”

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 295

Information transfer to and from the device
Any data the kernel needs to process
must be transferred using CUDA
memory transfer functions
Pointer/reference values received as
input parameters in a function are
interpreted on the same side of the
host-device boundary

Allocations on unified memory are
accessible from both the host and the
device.
Any data transfer required between the
physically separate host and device
memory happens automatically when
using unified memory

1 float *d_A, *d_B, *d_C;
2 auto size = N * sizeof(float);
3 cudaMalloc(&d_A, size);
4 cudaMalloc(&d_B, size);
5 cudaMalloc(&d_C, size);
6
7 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
8 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

1 __device__ float devData;
2 float value = 3.14f;
3 cudaMemcpyToSymbol(devData, &value, sizeof(float));

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 296

Information transfer to and from the device
Any data the kernel needs to process
must be transferred using CUDA
memory transfer functions
Pointer/reference values received as
input parameters in a function are
interpreted on the same side of the
host-device boundary
Allocations on unified memory are
accessible from both the host and the
device.
Any data transfer required between the
physically separate host and device
memory happens automatically when
using unified memory

1 float *u_A, *u_B, *u_C;
2 auto size = N * sizeof(float);
3 cudaMallocManaged(&u_A, size);
4 cudaMallocManaged(&u_B, size);
5 cudaMallocManaged(&u_C, size);

1 template <class T>
2 auto malloc_usm(size_t N,
3 std::optional<T> init = std::nullopt) -> T*
4 {
5 T* ans{};
6 cudaMallocManaged(&ans, N * sizeof(T));
7 if (init) {
8 for (size_t i = 0UL; i < N; ++i)
9 ans[i] = *init;

10 }
11 return ans;
12 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 296

Device side memory hierarchy and memory space specifiers
"Local memory" -> per thread memory
"Shared memory" -> private to a block, but shared
among the threads inside a block
"Global memory" -> visible from all threads in all
blocks
"Constant memory" -> also in the device space,
and cached in the constant cache

Memory address specifier __device__ declares a
variable which lives on the device
__constant__ declares a variable to be stored in
constant cache
__shared__ : variable for the shared memory inside
a block, and has the lifetime of the block
__managed__: A variable declared with managed
storage specifier can be accessed from both the
host and the device, We can determine its address,
and it can be read/written from both the host and
the device. Since the host and device memories are
physically separate, this behaviour is achieved by
transferring memory implicitly

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 297

Example
1 __global__ void mul(const double *A, const double *B, double *C, size_t N) {
2 auto i = threadIdx.x + blockIdx.x * blockDim.x;
3 auto j = threadIdx.y + blockIdx.y * blockDim.y;
4 double res{};
5 if (i < N && j < N)
6 for (size_t k = 0ul; k < N; ++k)
7 res += A[N * i + k] * B[N * k +j];
8 C[N*i + j] = res;
9 }

10 auto main(int argc, char *argv[]) -> int {
11 const unsigned N = (argc > 1) ? std::stoul(argv[1]) : 2048u;
12 auto a = malloc_usm<double>(N * N);
13 auto b = malloc_usm<double>(N * N);
14 auto c = malloc_usm<double>(N * N);
15 for (size_t i = 0UL; i < N * N; ++i) { a[i] = b[i] = 1.1; }
16 auto t0 = std::chrono::high_resolution_clock::now();
17 dim3 ThreadsPerBlock{16, 16};
18 dim3 NumBlocks{N / ThreadsPerBlock.x, N / ThreadsPerBlock.y};
19 mul<<<NumBlocks, ThreadsPerBlock>>>(a, b, c, N);
20 cudaDeviceSynchronize();

This is simply a syntax demonstration! Not a particularly clever implementation!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 298

Compiling CUDA code
With nvcc :

nvcc [--extended-lambda] [-std=__] source.cu

With clang++ :

clang++ [-std=__] -stdlib=libstdc++ source.cc --cuda-gpu-arch=____ \
-I /path/to/CUDA/include \
-L /path/to/CUDA/lib64 -lcudart_static -ldl -lrt -lpthread

In the classroom setup on JUSUF, the GPU architecture parameter should be given as sm_70. The -I and -L

options may be skipped.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 299

CUDA and C++
Except in some ancient versions, CUDA is parsed
by the rules of the C++ language. Many perfectly
valid code in C, e.g., using class, new, using
etc. as variable names can not be part of CUDA
programs
Valid C++ code, can often not be used, for a
variety of reasons:

Generally, the NVIDIA implementation of newer
language features arrives a few years after
standardization
Some language features may have to be modified
for use in the context of GPUs
CUDA 12 supports most of C++20. Our working
environment is based on CUDA 12.6.
No modules. No coroutines in device code. A few
other smaller restrictions
consteval functions defined for the host can be
invoked in the device code context: after all those
are supposed to be immediately evaluated by the
compiler!

Execution space specifiers, execution configuration
etc. are language extensions
This sometimes means additional rules are
necessary before a new language feature can be
used with CUDA. E.g., how do we make a lambda
function __device__ ? Should __host__ etc.
be considered parts of the functions signature or
not ? nvcc and clang++ disagree !

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 300

NVIDIA Thrust
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <thrust/generate.h>
4 #include <thrust/sort.h>
5 #include <thrust/copy.h>
6 #include <cstdlib>
7 using namespace thrust;
8 auto main() -> int
9 {

10 // generate 32 M random numbers on
11 // the host
12 host_vector<int> h_vec(32 << 20);
13 generate(h_vec.begin(), h_vec.end(), rand);
14
15 // transfer data to the device
16 device_vector<int> d_vec = h_vec;
17 sort(d_vec.begin(), d_vec.end());
18 // transfer data back to the host
19 copy(d_vec.begin(), d_vec.end(), h_vec.begin());
20 }

Template library like STL or TBB for CUDA
Elegant high level syntax (STL like iterator
interface for algorithms, clever use of operator
overloading ...) to clearly express the intent
of the programmer
The compiler translates the stated intents to
efficient code for the GPU
Primarily NVIDIA GPUs

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 301

NVIDIA Thrust
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <thrust/generate.h>
4 #include <thrust/sort.h>
5 #include <thrust/copy.h>
6 #include <cstdlib>
7 using namespace thrust;
8 auto main() -> int
9 {

10 // generate 32 M random numbers on
11 // the host
12 host_vector<int> h_vec(32 << 20);
13 generate(h_vec.begin(), h_vec.end(), rand);
14
15 // transfer data to the device
16 device_vector<int> d_vec = h_vec;
17 sort(d_vec.begin(), d_vec.end());
18 // transfer data back to the host
19 copy(d_vec.begin(), d_vec.end(), h_vec.begin());
20 }

Example: thrust::host_vector and
thrust::device_vector use the
assignment operator to transfer data between
the CPU and the GPU

Thrust algorithms like thrust::sort have
syntax like STL algorithms
Many data parallel general operations have
their own algorithms: transform, reduce,
inclusive_scan

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 302

NVIDIA Thrust
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <thrust/generate.h>
4 #include <thrust/sort.h>
5 #include <thrust/copy.h>
6 #include <cstdlib>
7 using namespace thrust;
8 auto main() -> int
9 {

10 // generate 32 M random numbers on
11 // the host
12 host_vector<int> h_vec(32 << 20);
13 generate(h_vec.begin(), h_vec.end(), rand);
14
15 // transfer data to the device
16 device_vector<int> d_vec = h_vec;
17 sort(d_vec.begin(), d_vec.end());
18 // transfer data back to the host
19 copy(d_vec.begin(), d_vec.end(), h_vec.begin());
20 }

Example: thrust::host_vector and
thrust::device_vector use the
assignment operator to transfer data between
the CPU and the GPU
Thrust algorithms like thrust::sort have
syntax like STL algorithms

Many data parallel general operations have
their own algorithms: transform, reduce,
inclusive_scan

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 302

NVIDIA Thrust
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <thrust/generate.h>
4 #include <thrust/sort.h>
5 #include <thrust/copy.h>
6 #include <cstdlib>
7 using namespace thrust;
8 auto main() -> int
9 {

10 // generate 32 M random numbers on
11 // the host
12 host_vector<int> h_vec(32 << 20);
13 generate(h_vec.begin(), h_vec.end(), rand);
14
15 // transfer data to the device
16 device_vector<int> d_vec = h_vec;
17 sort(d_vec.begin(), d_vec.end());
18 // transfer data back to the host
19 copy(d_vec.begin(), d_vec.end(), h_vec.begin());
20 }

Example: thrust::host_vector and
thrust::device_vector use the
assignment operator to transfer data between
the CPU and the GPU
Thrust algorithms like thrust::sort have
syntax like STL algorithms
Many data parallel general operations have
their own algorithms: transform, reduce,
inclusive_scan

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 302

Host and device vectors
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <iostream>
4 auto main() -> int
5 {
6 thrust::host_vector<int> H(4);
7 for (int i = 0; i < 4; ++i) H[i] = i;
8 // resize H
9 H.resize(2);

10 std::cout << "H now has size "
11 << H.size() << "\n";
12 // Copy host_vector H to
13 // device_vector D
14 thrust::device_vector<int> D = H;
15 // elements of D can be modified
16 D[0] = 99;
17 D[1] = 88;
18 // print contents of D
19 for(int i = 0; i < D.size(); ++i)
20 std::cout << "D[" << i << "] = "
21 << D[i] << "\n";
22 }

Containers host_vector and device_vector
are designed similar to std::vector, but, do not
have initializer list constructors or new member
functions of std::vector like emplace_back

The overloaded assignment operators can copy data
across devices

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 303

Host and device vectors
1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <iostream>
4 auto main() -> int
5 {
6 thrust::host_vector<int> H(4);
7 for (int i = 0; i < 4; ++i) H[i] = i;
8 // resize H
9 H.resize(2);

10 std::cout << "H now has size "
11 << H.size() << "\n";
12 // Copy host_vector H to
13 // device_vector D
14 thrust::device_vector<int> D = H;
15 // elements of D can be modified
16 D[0] = 99;
17 D[1] = 88;
18 // print contents of D
19 for(int i = 0; i < D.size(); ++i)
20 std::cout << "D[" << i << "] = "
21 << D[i] << "\n";
22 }

Containers host_vector and device_vector
are designed similar to std::vector, but, do not
have initializer list constructors or new member
functions of std::vector like emplace_back
The overloaded assignment operators can copy data
across devices

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 303

Other initialization options
1 // initialize all ten integers to 1
2 thrust::device_vector<int> D(10, 1);
3 // set the first seven elements to 9
4 thrust::fill(D.begin(), D.begin() + 7, 9);
5 // initialize a host_vector with
6 // the first five elements of D
7 thrust::host_vector<int> H(D.begin(), D.begin() + 5);
8 // set elements of H to 0, 1, 2, ...
9 thrust::sequence(H.begin(), H.end());

Many algorithms to provide initial values,
to serve different purposes.
There is also thrust::generate which
can call a functional for every element of
the vector
The type of the iterators tell the compiler
which version of the respective algorithms
to use. No run-time overhead

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 304

Exercise 4.1:
The example programs examples/thrust0.cu and examples/thrust1.cu contain the thrust code in the
previous slides. Run them on JUSUF using the following steps:

Load the NVidia HPC module: ml NVHPC

Compile using the nvcc or the nvc++ compiler: nvcc thrust0.cu

Try changing the file name to thrust0.cc and compiling

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 305

Thrust algorithms
1 device_vector<int> X(10), Y(10), Z(10);
2 // initialize X to 0, 1, 2, 3,
3 sequence(X.begin(), X.end());
4 // compute Y = -X
5 thrust::transform(X.begin(), X.end(),
6 Y.begin(), thrust::negate<int>());
7 // fill Z with twos
8 thrust::fill(Z.begin(), Z.end(), 2);
9 // compute Y = X mod 2

10 thrust::transform(X.begin(), X.end(),
11 Z.begin(), Y.begin(),
12 thrust::modulus<int>());
13 // replace all the ones in Y with 10
14 thrust::replace(Y.begin(), Y.end(), 1, 10);
15 // print Y
16 thrust::copy(Y.begin(), Y.end(),
17 std::ostream_iterator<int>(cout, "\n"));

Host and device versions
A set of elementary functionals are available in
thrust/functional.h

Notice the copy from a device vector to the
ostream iterator!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 306

Universal vectors
1 // examples/thrust_usm.cc
2 #include <thrust/universal_vector.h>
3 #include <thrust/sort.h>
4 #include <iostream>
5 auto main() -> int
6 {
7 thrust::universal_vector<int> h_vec(1 << 22);
8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate(thrust::host, h_vec.begin(), h_vec.end(), rand);

10 std::cout << "Done.\n";
11
12 std::cout << "Sorting vector on device\n";
13 thrust::sort(thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";
15 }

thrust::universal_vector is similar to thrust::host_vector and
thrust::device_vector, but uses unified memory for storage

Data does not need to be moved explicitly between host and device
Algorithms need to be told whether they are meant for host or device explicitly

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 307

Universal vectors
1 // examples/thrust_usm.cc
2 #include <thrust/universal_vector.h>
3 #include <thrust/sort.h>
4 #include <iostream>
5 auto main() -> int
6 {
7 thrust::universal_vector<int> h_vec(1 << 22);
8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate(thrust::host, h_vec.begin(), h_vec.end(), rand);

10 std::cout << "Done.\n";
11
12 std::cout << "Sorting vector on device\n";
13 thrust::sort(thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";
15 }

thrust::universal_vector is similar to thrust::host_vector and
thrust::device_vector, but uses unified memory for storage
Data does not need to be moved explicitly between host and device

Algorithms need to be told whether they are meant for host or device explicitly

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 307

Universal vectors
1 // examples/thrust_usm.cc
2 #include <thrust/universal_vector.h>
3 #include <thrust/sort.h>
4 #include <iostream>
5 auto main() -> int
6 {
7 thrust::universal_vector<int> h_vec(1 << 22);
8 std::cout << "Filling host vector with random numbers\n";
9 thrust::generate(thrust::host, h_vec.begin(), h_vec.end(), rand);

10 std::cout << "Done.\n";
11
12 std::cout << "Sorting vector on device\n";
13 thrust::sort(thrust::device, h_vec.begin(), h_vec.end());
14 std::cout << "Done.\n";
15 }

thrust::universal_vector is similar to thrust::host_vector and
thrust::device_vector, but uses unified memory for storage
Data does not need to be moved explicitly between host and device
Algorithms need to be told whether they are meant for host or device explicitly

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 307

Custom functionals for transforms
1 struct saxpy_functor {
2 const float a;
3 saxpy_functor(float _a) : a(_a) {}
4 __host__ __device__
5 auto operator()(const float& x,
6 const float& y) const -> float {
7 return a * x + y;
8 }
9 };

10 void saxpy_fast(float A,
11 const thrust::device_vector<float>& X,
12 thrust::device_vector<float>& Y)
13 {
14 // Y <- A * X + Y
15 thrust::transform(X.begin(), X.end(),
16 Y.begin(), Y.begin(),
17 saxpy_functor(A));
18 }

When pre-defined operations in
thrust/functional.h do not suffice, we can
write our own function objects
The overloaded operator() must be marked
with __host__ __device__

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 308

Custom functionals using placehoders
For very simple operations, custom functionals can be generated inline using the thrust::placehoders
namespace.

1 void saxpy_fast(float A,
2 thrust::device_vector<float>& X,
3 thrust::device_vector<float>& Y)
4 {
5 // Y <- A * X + Y
6 thrust::transform(X.begin(), X.end(),
7 Y.begin(), Y.begin(),
8 (A * _1 + _2));
9 }

_1, _2 ... are placehoders
Expressions involving placeholders yield a functional
mapping its arguments sequencially to _1, _2 ...

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 309

Custom functionals using lambda functions

1 void saxpy_fast(float A,
2 thrust::device_vector<float>& X,
3 thrust::device_vector<float>& Y)
4 {
5 // Y <- A * X + Y
6 thrust::transform(X.begin(), X.end(), Y.begin(), Y.begin(),
7 [A] __host__ __device__ (double x, double y) {
8 return A * x + y;
9 });

10 }

nvcc --extended-lambda saxpy0.cu

Note where we mark the lambda function to be for the host and device

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 310

Exercise 4.2: Placeholders and lambda functions
The example examples/saxpy0.cu shows how to use the placehoders with thrust algorithms for simple
inline functionality. There is also a commented out version of the same thing done using a lambda function. The
placeholder version is more compact, but the lambda version can have multiple statements, like a normal
function.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 311

Exercise 4.3: Mandelbrot set
The Mandelbrot set is the set of complex numbers c for which the function f (z) = z2 + c does not diverge when
iterated from z = 0. An image representing the set can be created by generating the sequence zn = z2

n−1 + c for
each pixel in the image, by treating the x and y values of the pixel as the real and imaginary components of c.
The sequence can be taken to have diverged if the magnitude of z exceeds 2. The program
exercises/mandelbrot_cpu.cc does it, using the standard C++ library. A modified version using
thrust, mandelbrot_gpu.cu is also present. Build nvcc and clang++ and run. Figure out the code differences
and why they are needed.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 312

STDPAR: standard C++ for GPUs
NVC++, the NVIDIA HPC SDK C++ compiler
No <<< >>>, no __device__ etc. Just plain C++ written with STL algorithms
std::execution::par regions automatically translated into GPU code!
There are restrictions, but they will likely be fewer and fewer in the future

std::transform_reduce(std::execution::par, R2.begin(),
R2.end(), S12.begin(), 0., std::plus<double>{},
[](auto r2, auto s12){

return Vexv(r2, s12);
});

nvc++ -O3 -std=c++23 -stdpar exvol.cc -o exvol.nv

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 313

STDPAR: standard C++ for GPUs
Only inline functions or function templates. nvc++ selects functions for GPU execution on its own, and that
only works if it can see the definitions
CUDA Unified Memory for all data movement between CPU and GPU: presently, only heap allocated
objects in CPU code compiled by nvc++ -stdpar can be automatically managed. Stack and global
storage not accessible. Even heap allocations from portions of CPU code not compiled by
nvc++ -stdpar are not visible.
Pointers dereferenced in the parallel algorithms must point to heap locations. References used must be of
heap objects.
Lambda captures by references can often entail pointer dereferencing for stack entities, which should not
occur in parallel algorithm regions
No function pointers: functions are compiled for CPU and GPU. Pointer can only point to one. Inside GPU
code, there will then be the danger of accessing a pointer to a function with CPU code. Pass function
objects or lambdas as arguments to the algorithms instead.
Only random access iterators
catch clauses in GPU code ignored. Fine inside CPU code.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 314

Exercise 4.4:
The programs stdpardemo0.cc and stdpardemo1.cc are simple short programs using parallel algorithms. The
second one is a slighly modified version of the exvol.cc program we used in connection with SIMD
programming. Compile them with nvc++ and run them on a GPU node on JUSUF.

Exercise 4.5:
The program jacobi.cc is in your examples folder. Identify the part which can be parallelized using STL
parallel algorithms, and do the necessary code changs. It can be compiled for the GPU using nvc++, without any
code changes. Try this new way of CPU/GPU programming where the exact same code runs on both!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 315

SYCL
General model for heterogeneous computing: CPU,
GPU, FPGA...
Can create queues for different devices
Single source, portable, but not necessarily
performance portable
Open standard from Khronos
Ref: Data Parallel C++

1 template <class T>
2 using usm_alloc_t = sycl::usm_allocator<T,
3 sycl::usm::alloc::shared>;
4 template <class T>
5 using my_vector = std::vector<T, usm_alloc_t<T>>;
6 auto main() -> int
7 {
8 using std::numbers::pi;
9 constexpr auto N = 1UL << 20UL;

10 sycl::queue q;
11
12 usm_alloc_t<double> usmq;
13 myvector<double> v{N, usmq};
14
15 auto* vraw = v.get();
16
17 q.submit([&](sycl::handler& h) {
18 h.parallel_for(N, [=](auto i) {
19 v[i] = 2 * pi * i / N;
20 });
21 }).wait();
22 }

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 316

https://link.springer.com/book/10.1007/978-1-4842-5574-2

SYCL
Use sycl::usm_allocator along with
std::vector to create USM vectors to be used in
kernels
Alternatively USM sycl::malloc and
sycl::free calls in an RAII helper class, similar
to a unique pointer
Need at least one queue, e.g., sycl::queue q;.
For more control,
sycl::queue q_gpu{gpu_selector{}};

Submit tasks to the queues, containing parallel
algorithm calls.
The task functional submitted should accept a
sycl::handler&, a command group handler, as
the argument

1 template <class T>
2 using usm_alloc_t = sycl::usm_allocator<T,
3 sycl::usm::alloc::shared>;
4 template <class T>
5 using my_vector = std::vector<T, usm_alloc_t<T>>;

ml AdaptiveCPP/git-20.1.0b
acpp -std=c++20 -O3 prog.cc -o prog.ex

Run it on a CPU or a GPU!

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 317

Exercise 4.6:
Example programs examples/conv_sycl_usm.cc and examples/gblur_sycl.cc demonstrate iteration over a 1D
and 2D space using SYCL. They both perform a calculation similar to a convolution as a demo. The later one
also demonstrates how to receive information about the hardware. Build it using the AdaptiveCPP compiler as
shown and try to run the generated executable with the batch_run command for a CPU run and the
batch_run_gpu command for a GPU run.

Member of the Helmholtz Association 27 October – 30 October 2025 Slide 318

	Chapter 1: Introduction
	HPC, C++ and scientific computing
	A brief introduction to C++20 and C++23
	Designated initialisers
	Text formatting
	std::span

	Concepts
	Defining concepts
	Using concepts
	Overloading with concepts

	Ranges
	The range concept
	Views
	View adaptors
	Recap of elementary features with an example

	Modules
	A new project organization
	Compilation process
	Writing a module
	Interface and implementation units
	Module partitions
	Build process with CMake
	Converting an older header based project

	Linkage
	Argument Dependent Lookup
	Numeric types
	Floating point numbers

	Chapter 2: Cost of ...
	Revisiting programming basics for performance
	Functions, stack and heap
	Resource handles and heap allocated data
	Alignment
	Cache effects

	Pipeline
	Dependencies
	Branching

	Inheritance with virtual functions
	Virtual functions

	Expressing assumptions
	Deducing this
	Polymorphism without virtual functions
	Tag dispatching
	SFINAE
	API shimming
	Curiously Recurring Template Pattern

	Expression Templates
	Vectorization
	Intrinsics
	Open source SIMD libraries

	Chapter 3: Lessons from matrix multiplication
	Fast matrix multiplication from scratch

	Chapter 4: Parallelisation using PSTL and TBB
	Parallel computing
	Parallel STL
	Threading Building Blocks
	Parallel Invoke
	Task groups
	TBB task arena
	Parallel for loops
	Range
	Parallel reductions
	Atomics
	Enumerable thread specific
	TBB allocators
	Concurrent containers

	Chapter 5: Linear algebra with Eigen
	Linear Algebra
	Eigen

	Chapter 6: GPU programming
	GPU programming with CUDA
	Thrust
	Host and device side vectors
	Thrust algorithms
	Universal vectors

	Standard C++ parallelism for GPUs
	SYCL: heterogeneous computing

