Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
£ Latest updates: https://dl.acm.org/doi/10.1145/3732775.3733573

RESEARCH-ARTICLE
Performance Analysis of an Efficient Algorithm for Feature Extraction
from Large Scale Meteorological Data Stores

MATHILDE LEURIDAN, European Centre for Medium-Range Weather Forecasts, Reading,
U.K.

CHRISTOPHER BRADLEY, European Centre for Medium-Range Weather Forecasts, Reading,

U.K.

JAMES HAWKES, European Centre for Medium-Range Weather Forecasts, Reading, U.K.
TIAGO QUINTINO, European Centre for Medium-Range Weather Forecasts, Reading, U.K.
MARTIN SCHULTZ, Research Center Juelich GmbH, Jiilich, Germany

Open Access Support provided by:
European Centre for Medium-Range Weather Forecasts

Research Center Juelich GmbH

: PDF Download
j;b 3732775.3733573.pdf
< 26 January 2026
Total Citations: 1
Total Downloads: 225

Published: 16 June 2025
Citation in BibTeX format
PASC '25: Platform for Advanced
Scientific Computing Conference
June 16 - 18, 2025
Brugg-Windisch, Switzerland

Conference Sponsors:
SIGHPC

PASC '25: Proceedings of the Platform for Advanced Scientific Computing Conference (June 2025)

https://doi.org/10.1145/3732775.3733573
ISBN: 9798400718861

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3732775.3733573
https://dl.acm.org/doi/10.1145/3732775.3733573
https://dl.acm.org/doi/10.1145/contrib-99661384358
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/contrib-99661380873
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/contrib-99661202636
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/contrib-99660994463
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/contrib-99661637565
https://dl.acm.org/doi/10.1145/institution-60007774
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60026710
https://dl.acm.org/doi/10.1145/institution-60007774
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3732775.3733573&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/pasc
https://dl.acm.org/conference/pasc
https://dl.acm.org/sig/sighpc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3732775.3733573&domain=pdf&date_stamp=2025-06-20

Performance Analysis of an Efficient Algorithm for Feature
Extraction from Large Scale Meteorological Data Stores

Mathilde Leuridan
European Center for Medium-Range
Weather Forecasts (ECMWF)
and University of Cologne
mathilde.leuridan@ecmwf.int

Tiago Quintino

European Center for Medium-Range

Weather Forecasts (ECMWF)
tiago.quintino@ecmwf.int

ABSTRACT

In recent years, Numerical Weather Prediction (NWP) has under-
gone a major shift with the rapid move towards kilometer-scale
global weather forecasts and the emergence of Al-based forecast-
ing models. Together, these trends will contribute to a significant
increase in the daily data volume generated by NWP models. En-
suring efficient and timely access to this growing data requires
innovative data extraction techniques. As an alternative to tradi-
tional data extraction algorithms, the European Centre for Medium-
Range Weather Forecasts (ECMWF) has introduced the Polytope
feature extraction algorithm. This algorithm is designed to reduce
data transfer between systems to a bare minimum by allowing the
extraction of non-orthogonal shapes of data. In this paper, we eval-
uate Polytope’s suitability as a replacement for current extraction
mechanisms in operational weather forecasting. We first adapt the
Polytope algorithm to operate on ECMWEF’s FDB (Fields DataBase)
meteorological data stores, before evaluating this integrated sys-
tem’s performance and scalability on real-time operational data.
Our analysis shows that the low overhead of running the Polytope
algorithm, which is in the order of a few seconds at most, is far
outweighed by the benefits of significantly reducing the size of the
extracted data by up to several orders of magnitude compared to
traditional bounding box methods. Our ensuing discussion focuses
on quantifying the strengths and limitations of each individual part
of the system to identify potential bottlenecks and areas for future
improvement.

CCS CONCEPTS

» Mathematics of computing — Mathematical software per-
formance; « Information systems — Data access methods;
Extraction, transformation and loading,.

KEYWORDS

Data Extraction, Data Management, Numerical Weather Prediction

This work is licensed under a Creative Commons Attribution 4.0 International License.
PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1886-1/2025/06

https://doi.org/10.1145/3732775.3733573

Christopher Bradley
European Center for Medium-Range
Weather Forecasts (ECMWF)
chris.bradley@ecmwf.int

James Hawkes
European Center for Medium-Range
Weather Forecasts (ECMWF)
james.hawkes@ecmwf.int

Martin Schultz
Forschungszentrum Juelich (FZ])
and University of Cologne
m.schultz@fz-juelich.de

ACM Reference Format:

Mathilde Leuridan, Christopher Bradley, James Hawkes, Tiago Quintino,
and Martin Schultz. 2025. Performance Analysis of an Efficient Algorithm
for Feature Extraction from Large Scale Meteorological Data Stores. In
Platform for Advanced Scientific Computing Conference (PASC ’25), June 16—
18, 2025, Brugg-Windisch, Switzerland. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3732775.3733573

1 INTRODUCTION

Meteorological data ranks among one of the largest sources of
scientific data today. Modern weather forecasting models now gen-
erate high-resolution data for hundreds of parameters and ensem-
ble members, extending over medium-range periods of up to 10-
15 days. Each day, these models produce hundreds of terabytes,
forming massive high-dimensional datacubes. As we push towards
kilometer-scale global weather forecasting [19, 27] and increasingly
leverage AI [11, 12] to enable more frequent model runs, the vol-
ume of this data is set to continue growing exponentially over the
coming years.

Once available, this data is used in a wide range of applications,
from disaster prevention to climate research or resource manage-
ment. In many cases, users want to extract data over specific regions
of interest. For instance, one user might want to request precipi-
tation levels for a local area to evaluate the risk of flash floods [1],
while another needs wind speed data over wind farm locations in
the Baltic Sea to estimate energy production [20] over the next two
days.

In most current systems however, data access is limited to orthog-
onal queries [6, 8]. Users are required to specify ranges along the
datacube’s metadata axes, rather than being able to extract non-
orthogonal shapes, such as the ones described above, directly. As
a result, users often retrieve bounding boxes around their area of
interest, leading to the extraction of excess data.

To address this limitation, ECMWTF introduced a feature extraction
algorithm called Polytope [13]. Polytope computes the exact meta-
data indices along the datacube’s axes that fall within an arbitrary
user-defined shape. When combined with a data store that enables
individual byte access, this algorithm allows the system to read and
retrieve only the specific bytes of interest to the user. Polytope is an
integral component of both the ECMWF Software EnginE (ESEE),
which is the smart software layer enabling all data provision and

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3732775.3733573
https://doi.org/10.1145/3732775.3733573

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

workflow management services at ECMWEF, and the Destination
Earth Digital Twin Engine (DTE) [7].

In this paper, we integrate the Polytope feature extraction algo-
rithm! with the FDB meteorological data store [21, 22]. In particular,
we introduce a new component, GribJump?, which enables single
byte access to data stored in GRIB format [25] within the FDB. This
operation, which was not previously supported by the FDB, is an
essential step towards unlocking Polytope’s full functionality of
accessing only data within a given user-specified shape. We then
perform a detailed study of the performance and scalability of this
integrated system. There are many different aspects to consider
during this analysis, from algorithmic to more technical considera-
tions. We identify these factors and investigate how they affect the
overall system’s performance. Thereafter, we explore the impact
of this data extraction technique on broader operational NWP sys-
tems, particularly in terms of reducing the data transfer between
such systems and their users. We finally discuss the implications
of our results before highlighting possible future improvements to
Polytope and GribJump.

2 FEATURE EXTRACTION ON
METEOROLOGICAL DATA STORES

2.1 Meteorological Data Storage

NWP models account for the daily production of hundreds of ter-
abytes of data. ECMWEF’s Integrated Forecasting System (IFS) [16]
for example, generates around 400 terabytes (TB) of meteorological
data every day [5]. With expected improvements in model resolu-
tion, such as those planned under the European Union’s Destination
Earth initiative [10, 24], daily data output is expected to exceed a
petabyte in the coming years.

Once generated, this data is stored in a meteorological object store
for several days to remain easily accessible to users. A widely used
system for this purpose is the FDB [21, 22], which supports ECMWF
operations as well as large European projects such as Destination
Earth. As an indexed data store, the FDB is optimized for efficient
data retrieval using pre-defined metadata schemas. All data within
the FDB is stored in GRIB (General Regularly distributed Informa-
tion in Binary form) [25] messages, where each message represents
a distinct atmospheric field. The data within a message is fully
specified by its associated metadata, such as the date and time at
which the data was generated or the vertical level and time step
of the forecast to which this data corresponds. Additionally, every
message contains a latitude-longitude grid, onto whose indices data
values are mapped. This allows the data to be represented spatially
across the Earth.

Many operational models are computed on high-resolution grids,
containing millions of points. The 01280 octahedral grid used in
ECMWEF’s IFS model, for example, consists of approximately 6.5
million points [14]. As a result, the individual fields stored within
each message are about 12 megabytes (MB) in size, with a complete
forecast over all 145 time steps for a single parameter adding up to
over a gigabyte (GB).

Lhttps://github.com/ecmwf/polytope
Zhttps://github.com/ecmwf/gribjump

Mathilde Leuridan, Christopher Bradley, James Hawkes, Tiago Quintino, and Martin Schultz

d

Successive
slicing on one axis

Figure 1: Polytope slicing mechanism, as illustrated in [13].

2.2 Polytope

Existing data access methods on the FDB only allow the retrieval of
complete fields of data, requiring all of the data in those fields to be
read and then returned to the user. As field sizes continue to grow
due to increasing forecast resolution, it becomes more challenging
to perform this operation for many users at a time as part of a
time-sensitive workflow. To help mitigate such challenges, novel
data extraction tools are needed.

One such tool is the recently developed Polytope feature extrac-
tion algorithm [13], designed to efficiently intersect arbitrary multi-
dimensional polytopes with an iso-latitude datacube. The algorithm
performs a series of recursive "slicing" steps, gradually reducing
an n-dimensional polytope into a set of 1-dimensional points. At
each step, several successive n-dimensional slices of the polytope
are taken along one of the datacube’s axes, as pictured in Figure 1.
This process is then repeated for each axis until all points within
the queried polytope are identified. Throughout the slicing process,
a result tree is iteratively constructed to record all of the points
found by the algorithm. This tree also provides guidance on the re-
maining slicing operations to be performed, detailing which lower-
dimensional polytopes should intersect with which axes next.
The slicing algorithm itself does not directly extract data from the
datacube however. It merely calculates the coordinates of the data
points to be retrieved. For actual data extraction, the algorithm
must be integrated with a compatible datacube backend that can
both provide information on the available data within the datacube
as well as support byte-level access to retrieve only the relevant
data points.

2.3 GribJump

There is currently no well-established way to access individual
bytes within fields stored on an FDB. To address this limitation, we
introduce a new software tool, GribJump, designed to enable such
byte-level access within the FDB. GribJump allows us to extract
only the bytes found to be in the user-specified input shapes by the
Polytope slicing algorithm instead of whole GRIB fields.

The core functionality of GribJump comes fromits extract method.
While data is written to the FDB after a model run, GribJump first

Performance Analysis of an Efficient Algorithm for Feature Extraction from Large Scale Meteorological Data Stores

level= (5, 10, 50)

step=1

step=2

Figure 2: Tree compression example.

pre-computes an index on this data. This index is then used by the
extract function to efficiently decode and locate individual bytes
within fields stored in the FDB. Both simple packed data [4] and
CCSDS compressed data [26] are currently supported by this mech-
anism.

For faster data access, GribJump has been highly optimized, par-
ticularly through parallelisation, allowing data retrieval tasks to
run on multiple threads simultaneously based on the objects being
accessed.

2.4 Polytope Tree Compression

As users request larger geometric shapes, the tree constructed dur-
ing the Polytope slicing process can rapidly expand, resulting in
a very broad structure. To address this and simplify the resulting
tree, we propose a custom tree compression method, illustrated
in Figure 2. This compression not only allows for a more compact
representation of the results, but it is also used by the algorithm to
avoid performing duplicate n-dimensional slices.

Note that not all axes of the datacube can be compressed however.
In particular, compression can only be applied to axes that are de-
fined as part of an orthogonal request shape. Due to how the tree
is constructed within the Polytope algorithm, axes associated with
unions can currently also not be compressed.

For meteorological data stored in an FDB, further constraints on
the axis compression arise depending on the grid on which the
data is stored. For most iso-latitude grids supported by Polytope,
the latitude axis cannot be compressed as subsequent longitude
values vary with the latitude values. The longitude axis, however,
can always be compressed as it is the final axis stored on the FDB.

2.5 System Overview

In the remainder of this paper, we investigate the performance
and scalability of the Polytope algorithm on data stored in an FDB.
To support this analysis, we now first provide a brief overview of
how both components of the system, Polytope and the FDB (via
GribJump), operate together.

Initially, Polytope queries the FDB through GribJump’s axes call
to create an abstract representation of the datacube available in the
FDB. This precomputation step occurs once, prior to any feature
extraction, and is reusable for multiple requests as long as the data
in the FDB remains unchanged.

Following this precomputation, the algorithm enters a dynamic,
online phase. Here, Polytope takes a user-defined polytope, applies

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

the slicing algorithm to the abstract datacube, and generates a result
tree. This result tree, initially devoid of data, is then populated by
querying the FDB through GribJump’s extract call, after which
the fully populated tree is returned to the user.

Figure 3 illustrates these interactions between Polytope and Grib-
Jump. This system is offered as part of the Polytope service at
ECMWEF and will also be available to users of the Destination Earth
initiative through the earthkit software environment [18]. Note
that this system is specific to data stored in GRIB format due to
the fact that GribJump currently only supports byte access from
the FDB in this data format. For datasets stored in other formats,
such as climate datasets stored in netCDF [17], the Polytope algo-
rithm can still be used to find points contained in given shapes,
although specialised single byte access mechanisms will need to
be implemented in order to provide an equivalent service to the
system described above.

gj.axes()

N
T~

o
] <>

\7

L]
-‘E: \ FDB
‘——W
_ GRIBIJUMP /

Figure 3: Overview of the Polytope and GribJump system.

3 PERFORMANCE AND SCALABILITY OF THE
POLYTOPE SYSTEM

In this section, we analyse the entire Polytope system’s perfor-
mance and scalability. We start by examining the performance of
the precomputation step of the algorithm. Note that, unlike the pre-
computation step, the algorithm’s online phase can not be reused for
multiple requests and it thus significantly affects the overall perfor-
mance of the system. The main emphasis of this section is therefore
on the online phase. To evaluate the performance of this step, we
identify three key metrics: the slicing time, the tree construction
time, and the GribJump extraction time. We then investigate how
these quantities vary with the query shape to the algorithm.

3.1 Pre-computation phase

The performance of Polytope’s pre-computation phase is tied to the
performance of the FDB axes call, which itself depends heavily
on how data is organised within the FDB according to its schema
[3, 21, 22]. As more data on the FDB is exposed for Polytope to slice
on, the cost of the FDB axes call will gradually increase. To access
all of the current ECMWEF operational data available on the FDB for
example, this call takes about 4 seconds and needs to be repeated
every 6 hours when new data becomes available. For larger climate
datasets, calling axes might take longer, but the data is more

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

static so this cost can be paid less often as the pre-computation
phase does not need to be performed as frequently. The data in the
Destination Earth Climate digital twin for example is generated
once and, while calling axes on this data takes close to 30 seconds,
the output of this call can easily be cached in memory to be re-used
when needed as no new data is produced in this dataset.

3.2 Online phase

In the online phase of the algorithm, three main statistics need to
be considered: the slicing time, the tree construction time, and the
GribJump extraction time. These metrics are influenced by various
factors, ranging from technical aspects, such as the efficiency of
GribJump’s direct byte access to the FDB, to algorithmic factors like
the dimensionality of the requested shape, how the shape is defined
by the user, and the number of vertices specifying the shape.

To analyse these influences, we structure our discussion into two
parts, distinguishing between technical and algorithmic impacts on
the overall system performance. Finally, we conclude this section
by illustrating how these combined factors affect extraction times
for selected meteorological features.

3.2.1 Technical considerations. The primary technical considera-
tions in the Polytope system stem from the GribJump component
of the workflow, which directly interacts with the FDB to access
data. Two critical questions arise at this stage. The first one being,
how long does it take to request multiple data points from a single
field, and the second one being, how does the extraction time then
scale when accessing data across multiple fields.

Figure 4 addresses both of these questions. In Figure 4, in red, we
observe the initial cost associated with reading and accessing data
from a field. Once a field has been accessed however, we see that
extracting additional points from the same field has a limited impact

Number of fields accessed

0 1 2 3 4 5 6 7

—=— Varying number of extracted points
4.0 | = varying number of fields accessed

3.5
3.0 q
2.5
2.0 1

1.5 1

Gribjump extraction time (in s)

1.01

Number of extracted points

Figure 4: In red, GribJump extraction times for an increasing
number of extracted points, where all points are extracted
from the same field. In blue, GribJump extraction times for
an increasing number of fields accessed, where a single point
is extracted from each field and the dashed line shows the
linear scaling behaviour of this extraction time.

Mathilde Leuridan, Christopher Bradley, James Hawkes, Tiago Quintino, and Martin Schultz

a) b) c) d)

Figure 5: Schemas of the performance experiments.

on the extraction time. The blue lines in Figure 4 then show that the
GribJump extraction time scales linearly with the number of fields
accessed. We therefore conclude that the GribJump extraction time
is mostly influenced by the number of distinct fields accessed, with
minimal additional costs incurred when more points are accessed
from each field.

3.2.2 Algorithmic considerations. As a computational geometry
algorithm, the performance of Polytope is highly influenced by
the characteristics of its query shape. In the following, we explore
these dependencies in detail through various case studies, first for
orthogonal boxes and then for non-orthogonal queries. For clarity,
we provide a set of schemas showcasing some of the experiments
we perform in Figure 5.

Orthogonal extractions. We begin by focusing our attention on
orthogonal box extractions and how they scale in different dimen-
sions.

We first investigate the effect of the shape’s 2-dimensional area in
Figure 6. In this figure, we extract increasingly large 2-dimensional

=—#— Gribjump extraction time
10" =% Tree construction time
—&— Slicing time

100 i //

1071 4

Time (in s)

1072 4

1073 4

107*

3 4 5 6 7
le5

o
-
[N]

Number of extracted points

Figure 6: Polytope and GribJump extraction times for in-
creasing 2D boxes (Figure 5a). The dashed red line represents
the expected linear behaviour of the tree construction time,
whilst the dashed green line represents the expected square
root behaviour of the slicing time. The dashed lines are mul-
tiplied by a constant factor to enhance visibility.

Performance Analysis of an Efficient Algorithm for Feature Extraction from Large Scale Meteorological Data Stores

10t

—#— Gribjump extraction time
=#=— Tree construction time
—&— Slicing time

107 4

1071 4

Time (in s)

1072 4

1073 4

0 20 40 60 80 100 120 140

Number of fields accessed

Figure 7: Polytope and GribJump extraction times for increas-
ing 3D boxes (Figure 5b).

squares in latitude-longitude space. Each box is constructed by mov-
ing the top corner of the square further away from its lower corner.
In Figure 6, in red, we observe a linear relationship between the
increasing area and the tree construction time. This figure actually
shows that most of the extraction time is spent constructing the
result tree, with the slicing time only representing a small fraction
of the overall extraction time. Note here that the tree construction
time is relatively large as it not only includes the construction of the
nodes of the tree, but also all of the time spent within the algorithm
to set up subsequent slices. In particular, a large amount of time is
spent ordering longitude values as we successively add them to the
latitude tree nodes. This causes the observed linear behaviour of
the tree construction time. In contrast, as we see in green in the
figure, the slicing time scales with the square root of the number of
extracted points. This is due to the fact that, as many meteorological
grids are not iso-longitude, we do not compress the latitude axis
in the extraction algorithm. We thus only perform slices for each
latitude value found within the shape, which, because the sliced
shapes are squares, approximately corresponds to the square root
of the number of extracted points. As established before however,
the extraction time is driven by the tree construction time and thus
also scales linearly with the area here. Interestingly, the GribJump
extraction time stays constant throughout the plot and is not im-
pacted by the growing area of the square. This validates our earlier
findings, as all points accessed here stem from the same field and
thus most of the GribJump extraction cost comes from the initial
object look up.

Next, we investigate the impact of slicing across multiple fields.
In Figure 7, we extract 3-dimensional boxes in latitude, longitude
and step. We construct these boxes by keeping the base latitude-
longitude square constant, while varying the step extent of the
boxes. As expected, we see in this figure that the GribJump extrac-
tion time gradually increases as we extract data from more fields.
We however observe that neither the slicing nor the tree construc-
tion times vary significantly with the number of fields. This is due
to the fact that we compress the boxes extracted here along the step

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

axis, only slicing along this axis once. The resulting 2-dimensional
latitude-longitude squares are the same for every box and the slic-
ing and tree construction times are therefore not impacted by the
step extension of the boxes. Figure 7 is thus a critical reminder that,
as we move to higher-dimensional shapes, the performance of the
system not only depends on the extracted volume, but also, perhaps
more importantly, on how data is laid out in the FDB over various
fields. This can further be witnessed in Figure 8, and Figure 8(a) in
particular, where we scale the box extraction to higher dimensions,
still keeping the base latitude-longitude square constant.

To understand how higher-dimensional slices impact the slicing
time, we now extract boxes with increasing dimensions in Figure 8.
We construct these boxes by successively taking the tensor product
of the previous box with a range in a new dimension. In Figure 8(b),
we show the number of n-dimensional slices performed for each
dimension as well as the slicing time of each box. We then scale
this total slicing time by the number of slices to estimate the slicing
time of each individual n-dimensional slice. As we observe in the
figure, 1- and 2-dimensional slices are relatively inexpensive, with
slices in 4 and 5 dimensions becoming relatively slow to perform.
The jump in costs between slices is due to the use of convex hulls
in our slicing step, which gradually scales worse as the dimension
increases. Moreover, since the latitude axis is not compressed, we
need to perform all of the 2-dimensional slices along each latitude
value when we move to higher-dimensional shapes. This explains
the jump in both the number of slices and the total slicing time that
we observe in Figure 8(b) as we extract a 2-dimensional box.

Axis compression in the request tree, as shown in Figure 2, has
already been mentioned a few times throughout this section. To
gain a better understanding of it, we investigate how this compres-
sion affects the different extraction times. In Figure 9, we extract
boxes of increasing sizes while varying which of their axes are
compressed. This shows that compression can significantly affect
the performance of the slicing algorithm. In particular, we note that,
as less axes are compressed, more nodes need to be created and
the request tree becomes wider. This eventually results in a faster
linear increase of the slicing time with the number of extracted
points, which does not scale well to high-dimensional extractions.

Non-orthogonal extractions. We now shift focus to explore how
various shape properties affect the performance of non-orthogonal
extractions.

We first analyse the effect of extracting very detailed polygons with
many defining vertices. In Figure 10, we extract different polygons
with an increasing number of vertices. As these polygons are con-
structed by approximating the same circle, they all have a very
similar area so the extraction times should not change significantly.
In particular, we see that the GribJump extraction time stays con-
stant throughout, as expected. More interestingly, we observe that
the slicing time of the algorithm grows with the square of the num-
ber of vertices. This can be explained by how we perform slices
in the algorithm, taking the intersection of a plane with each line
defined between pairs of vertices on either side of this plane.

Finally, we study the impact of constructive geometry operations
on the slicing algorithm. In particular, we focus on the union oper-
ation here. In Figure 11, we extract the same 1024-sided polygon,
but specified as the union of a growing set of sub-polygons. We

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

500 A Number of fields accessed
—¥— Gribjump extraction time
|10

J w
o 400 [
@ s
g E
I+ =
o 3004 <
= F6e =5
[T [%}
& g
5 =
LK

5 2004
2 La 2
E 5
= e
=4 =
100 s B

Dimension of box

(a) GribJump extraction time and number of fields accessed for increasing n-
dimensional boxes.

Figure 8: nD

immediately notice that the slicing time increases linearly with the
number of unions defining the shape. This is directly tied to the
linear relationship between the number of unions and the num-
ber of slices to be performed, which we also observe in this figure.
The linear behaviour is expected as we treat each sub-polygon in
the union separately in the algorithm. We thus need to slice each
sub-polygon separately, leading to a proportional increase in the
number of slices.

4.0

—— All axes compressed
—%— 1 axis not compressed
3.5 1 —8— 2 axes not compressed

Slicing and tree construction time (in s)

T T T T T T T T
0 1 2 3 4 5 6 7

Number of extracted points 123

Figure 9: Extraction times of a 3D box with various levels of
axis compression. The slicing and tree construction time is
shown in blue for when all axes in the box are compressed, in
red when the longitude axis is not compressed and in green
when both the longitude and step axes are not compressed.

Mathilde Leuridan, Christopher Bradley, James Hawkes, Tiago Quintino, and Martin Schultz

le-3
MNumber of nD slices
80 { =% Individual nD slice time
—a— Total slicing time L2.5
70 4
4 r2.0
7 60
=
o 50 @
q W
% FLE:
s s
5 40 £
g 1.0 =
5 304 .
=
204 Los
10 q
r 0.0

Dimension of box

(b) Extraction times and number of nD slices performed for increasing n-dimensional
boxes.

box extractions.

1.0
14441 H —*— Slicing time
—a— Gribjump extraction time
Los —
/ £
—_ [
w E
£ Los
@ 8
E =
‘; 3768 4 E
= =
5 Ho4 8
t £
=1
1015 + ‘E
toz ©
2774
69
T 0.0

T T T T T
0.2 0.4 0.6 0.8 1o 1.2

. led
Mumber of vertices defining 2D shape -

Figure 10: Extraction times of polygons of same area but
with an increasing number of defining vertices (Figure 5c).
Note that the slicing time axis appears in square root scale
with the dashed red line representing the expected squared
behaviour of the slicing time.

3.2.3 Extracting meteorological features. In real-world scenarios,
the factors described above are combined to influence Polytope’s
total response time. To assess the algorithm’s efficiency for meteo-
rological applications, we examine several examples.

In Figure 12, we analyse data extraction times for different coun-
tries, identifying where time is spent. Countries are specified as
unions of convex polygons with each polygon being treated inde-
pendently by the algorithm and no compression of the involved
axes. As expected, this impacts the slicing and tree construction
times, which are more consequent for larger shapes, such as France

Performance Analysis of an Efficient Algorithm for Feature Extraction from Large Scale Meteorological Data Stores

le5

—¥— Number of 20 slices
—— Slicing time .2 La

2.0

Number of 2D slices
Slicing time (in s)

200 400 600 800

Number of unions

Figure 11: Slicing time and number of 2D slices for a polygon
specified as the union of an increasing set of sub-polygons
(Figure 5d). The dashed lines represent the corresponding
expected linear behaviour of these quantities.

when compared to Switzerland, but also for shapes that have more
irregularities, such as the UK when compared to the more rectan-
gular Germany. This is further emphasized in Figure 12(b), where
we show the stark contrast between the smaller and less-detailed
countries in Europe and the large, more complex shape of Canada,
which is exponentially more expensive to extract. Note that the
fact that countries are defined as unions currently also affects the
GribJump extraction time, which is quite considerable here for a
single field extraction. This is due to the fact that each sub-polygon
is treated separately as a different request to extract from GribJump
and could be optimised in the future.

These examples focus on 2D extractions in latitude-longitude space,
so the impact of accessing multiple data fields cannot be observed
from this figure. Instead, in Figure 13(a), we address this point,
showing a point timeseries extraction across multiple fields. Here,
the slicing time does not vary and remains negligible, while the
GribJump extraction time significantly increases as more fields are
accessed, as expected. Finally, in Figure 13(b), we present an exam-
ple timeseries extraction over the UK, where both more data points
and fields are accessed. In this case, both slicing and GribJump
extraction times increase, with the latter scaling linearly with the
number of fields accessed.

In all examples, Polytope’s extraction times were at most a few sec-
onds, even for more complex cases, with the Canada retrieval taking
under a minute. These results suggest that the slicing algorithm
is an efficient data extraction method for various meteorological
features.

4 1/0 AND DATA REDUCTIONS

The main aim of the Polytope feature extraction algorithm is to
improve access to large-scale meteorological data. A key aspect of
this objective is to minimise the I/O load in operational weather

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

systems by limiting data transfer to only what is essential for spe-
cific applications.

Figure 14 illustrates the data reduction achieved with Polytope
compared to extracting a bounding box around several example
countries. We observe a significant reduction of up to almost an
order of magnitude for non-rectangular countries such as Italy.
Even for more box-shaped countries like Germany, the reduction
remains clearly visible on the graph in logarithmic scale. Note that
the examples in the figure are of 2-dimensional extractions. As
more fields are accessed however, the potential for data reduction
can significantly increase. For high-dimensional shapes, such as
spatio-temporal trajectories in particular, data reduction can easily
exceed 99%.

This data reduction can then directly be translated into a faster
access to data, especially for data spanning over multiple fields. For
example, retrieving the point time series from above using Poly-
tope took less than a second, compared to several seconds when
retrieving the full fields from the FDB. For the point time series
over all ensemble numbers, Polytope completed the extraction in
about 4 seconds, while accessing the entire fields directly from the
FDB took nearly 2 minutes.

Such improvements in data reduction and performance enable more
efficient data access for users. By minimising data transfer between
operational systems and their users, Polytope helps reduce the I/O
load incurred per user on the storage system. This results in a more
efficient data access pattern which can support a large number of
users simultaneously.

5 DISCUSSION AND FUTURE WORK

In the current context of open data initiatives such as Destination
Earth, the Polytope feature extraction algorithm provides a reliable
solution to a rising demand in meteorological data access. By lim-
iting the amount of data read and transferred to users to the bare
minimum, it represents an efficient and scalable alternative to tradi-
tional data extraction techniques. Beyond data retrieval, Polytope
also introduces the possibility for interactive workflows as access
to data in near real-time starts to become feasible. This paves the
way for more responsive applications in the fields of meteorology
and climate change.

While Polytope provides substantial benefits to operational weather
forecasting systems however, the feature extraction algorithm still
has a few notable limitations.

The first challenge we identified in this paper was in the pre-
computation phase of the algorithm. In this part of the Polytope
system, we experience a trade-off between speed and the range
of shapes that can be extracted. To address this, one approach is
to integrate the pre-computation phase within the online phase.
In particular, we plan to optimise the FDB axes call to be called
recursively as we build the request tree in future implementations
of the slicing algorithm.

A second challenge that we identified during our performance anal-
ysis is that polygons with a large number of vertices are difficult
to slice, and their extraction can quickly become computationally
intractable. To overcome this, line-simplification methods [2], such
as the Douglas-Peucker algorithm [9], can be used to approximate
highly detailed polygons by polygons with fewer vertices. However,

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

m@m Slicing time
w#w Tree construction time
o Gribjump extraction time

3.0 1

Time (in s)

(a) European countries

Mathilde Leuridan, Christopher Bradley, James Hawkes, Tiago Quintino, and Martin Schultz

=@ Slicing time
w# Tree construction time
o GribJump extraction time

Time (in s)

)
o
L

__

(b) Comparison between European countries and Canada

Figure 12: Extraction times for different country shapes.

wa Slicing and tree construction time
4.0 1 wws GribJump extraction time

Time (in s)

X qes
?"‘“ e ge(‘es ée“e

(a) Point timeseries

16 4 @ Slicing and tree construction time
W% Gribjump extraction time

Time (in s)

‘__ount"f ma&‘“& e
e
pot

(b) Country timeseries

Figure 13: Extraction times for different timeseries.

for Polytope to ensure that all points within a requested shape are
returned to users, the line reduction algorithm that we use must
meet an additional requirement. It should consistently overestimate
the polygon boundaries to capture the entire shape, whilst still
preserving the overall shape of the polygon in order to avoid un-
necessary data extraction. As, to the best of our knowledge, there is
no existing algorithm which fully meets this criteria, a key area of
future work will involve developing and implementing a suitable
polygon approximation technique specifically for this purpose.

Additional improvements to the feature extraction algorithm in-
clude optimising the tree compression and refining the interface
between Polytope and GribJump. Our analysis indicated that tree

compression significantly affects overall system performance. Ex-
tending this compression to handle more axes and complex shapes
will thus be a crucial step toward increasing Polytope’s scalability.
Enabling GribJump to then work directly with this tree structure
will also help reduce the current overhead from translating between
different object types within the Polytope-GribJump interface. Fur-
thermore, most of the slicing and tree construction in Polytope
is currently implemented in Python and, due to the nature of the
algorithm, existing compiled backends such as numpy [23] do not
provide an advantage for performance. Significant speed-ups could
instead be achieved by writing portions of Polytope in a more per-
formant language, such as C++ or Rust [15].

In the longer term, Polytope’s adaptability to different data sources

Performance Analysis of an Efficient Algorithm for Feature Extraction from Large Scale Meteorological Data Stores

ik B N

N

10° A V\

: N

: A

é 104 4 '&: g §§
& N

; Y . .8 7

: - 7\ B 7\

el o AN N PN 2N 2N

AN 70 7

\4\‘5 Na Q.'§\ & é‘& @b"’

%afl‘ﬂ'é tF'@ £ G

Figure 14: Number of extracted points for different country
shapes and their bounding boxes. Note that the number of
extracted points is shown in log scale.

is another important area for development. This includes both an
assessment of necessary changes to GribJump for efficient data
retrieval over networks instead of local file systems, as well as the
development of alternative slicing algorithms for data stored on
unstructured grids. These changes are particularly relevant for the
Destination Earth initiative, where data on the data bridge is trans-
ferred over a network and certain datasets are stored on icosahedral
and Lambert grids.

ACKNOWLEDGMENTS

The work presented in this paper has been produced in the context
of the European Union’s Destination Earth Initiative and relates
to tasks entrusted by the European Union to the European Centre
for Medium-Range Weather Forecasts implementing part of this
Initiative with funding by the European Union. Views and opinions
expressed are those of the author(s) only and do not necessarily
reflect those of the European Union or the European Commission.
Neither the European Union nor the European Commission can be
held responsible for them.

REFERENCES

[1] Karamat Ali, Roshan M Bajracharyar, and Nani Raut. 2017. Advances and chal-
lenges in flash flood risk assessment: A review. Journal of Geography & Natural
Disasters 7, 2 (2017), 1-6.

[2] Robert G Cromley. 1991. Hierarchical methods of line simplification. Cartography
and Geographic Information Systems 18, 2 (1991), 125-131.

[3] ECMWE. 2017. FDB Documentation. https://fields-database.readthedocs.io/en/
latest/ Accessed on 2024-11-12.

[4] ECMWEF. 2024. GRIB2 Regulations. https://codes.ecmwf.int/grib/format/grib2/
regulations/ Accessed on 2024-11-12.

[5] ECMWE. 2024. Key facts and figures. https://www.ecmwf.int/en/about/media-
centre/key-facts-and-figures Accessed on 2024-11-12.

[6] Sandro Fiore, Alessandro D’Anca, Donatello Elia, Cosimo Palazzo, Dean Williams,
Tan Foster, and Giovanni Aloisio. 2014. Ophidia: a full software stack for scientific
data analytics. In 2014 international conference on high performance computing &
simulation (HPCS). IEEE, 343-350.

[7] Thomas Geenen, Nils Wedi, Sebastian Milinski, Ioan Hadade, Balthasar Reuter, Si-
mon Smart, James Hawkes, Emma Kuwertz, Tiago Quintino, Emanuele Danovaro,
et al. 2024. Digital twins, the journey of an operational weather system into the

(10]

[11

[12

[13

[14

[15

=
&

[17

(18

[19

[20

)
=

[22

[23

[24

~
S

[26

[27

PASC °25, June 16-18, 2025, Brugg-Windisch, Switzerland

heart of Destination Earth. Procedia Computer Science 240 (2024), 99-108.

Luke Gosink, John Shalf, Kurt Stockinger, Kesheng Wu, and Wes Bethel. 2006.
HDF5-FastQuery: Accelerating complex queries on HDF datasets using fast
bitmap indices. In 18th International Conference on Scientific and Statistical Data-
base Management (SSDBM’06). IEEE, 149-158.

John Edward Hershberger and Jack Snoeyink. 1992. Speeding up the Douglas-
Peucker line-simplification algorithm. (1992).

Jorn Hoffmann, Peter Bauer, Irina Sandu, Nils Wedi, Thomas Geenen, and Daniel
Thiemert. 2023. Destination Earth-A digital twin in support of climate services.
Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire
Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua
Hu, et al. 2023. Learning skillful medium-range global weather forecasting.
Science 382, 6677 (2023), 1416-1421.

Simon Lang, Mihai Alexe, Matthew Chantry, Jesper Dramsch, Florian Pinault,
Baudouin Raoult, Mariana CA Clare, Christian Lessig, Michael Maier-Gerber,
Linus Magnusson, et al. 2024. AIFS-ECMWF’s data-driven forecasting system.
arXiv preprint arXiv:2406.01465 (2024).

Mathilde Leuridan, James Hawkes, Simon Smart, Emanuele Danovaro, and Tiago
Quintino. 2023. Polytope: An Algorithm for Efficient Feature Extraction on
Hypercubes. arXiv preprint arXiv:2306.11553 (2023).

Sylvie Malardel, Nils Wedi, Willem Deconinck, Michail Diamantakis, Christian
Kiihnlein, George Mozdzynski, Mats Hamrud, and Piotr Smolarkiewicz. 2016. A
new grid for the IFS. ECMWF newsletter 146, 23-28 (2016), 321.

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda
Ada Letters 34, 3 (2014), 103-104.

Anders Persson and Federico Grazzini. 2007. User guide to ECMWF forecast
products. Meteorological Bulletin 3, 2 (2007).

Russ Rew and Glenn Davis. 1990. NetCDF: an interface for scientific data access.
IEEE computer graphics and applications 10, 4 (1990), 76-82.

Tain Russell, Tiago Quintino, Baudouin Raoult, Sandor Kertész, Pedro Maciel,
James Varndell, Corentin Carton de Wiart, Edward Comyn-Platt, Olivier Iffrig,
James Hawkes, et al. 2024. Introducing earthkit. https://www.ecmwf.int/en/
newsletter/179/computing/introducing-earthkit

Christoph Schir, Oliver Fuhrer, Andrea Arteaga, Nikolina Ban, Christophe
Charpilloz, Salvatore Di Girolamo, Laureline Hentgen, Torsten Hoefler, Xavier
Lapillonne, David Leutwyler, et al. 2020. Kilometer-scale climate models:
Prospects and challenges. Bulletin of the American Meteorological Society 101, 5
(2020), E567-E587.

Mark Schelbergen, Peter C Kalverla, Roland Schmehl, and Simon] Watson. 2020.
Clustering wind profile shapes to estimate airborne wind energy production.
Wind Energy Science Discussions 2020 (2020), 1-34.

Simon D Smart, Tiago Quintino, and Baudouin Raoult. 2017. A scalable object
store for meteorological and climate data. In Proceedings of the Platform for
Advanced Scientific Computing Conference. 1-8.

Simon D Smart, Tiago Quintino, and Baudouin Raoult. 2019. A high-performance
distributed object-store for exascale numerical weather prediction and climate. In
Proceedings of the Platform for Advanced Scientific Computing Conference. 1-11.
Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in science &
engineering 13, 2 (2011), 22-30.

Nils Wedi, Peter Bauer, Irina Sandu, Jorn Hoffmann, Sophia Sheridan, Rafael
Cereceda, Tiago Quintino, Daniel Thiemert, and Thomas Geenen. 2022. Destina-
tion earth: High-performance computing for weather and climate. Computing in
Science & Engineering 24, 6 (2022), 29-37.

World Meteorological Organization (WMO). 2023. Manual on Codes, Volume 1.2
- International Codes. https://library.wmo.int/idurl/4/35625

Pen-Shu Yeh, Philippe Armbruster, Aaron Kiely, Bart Masschelein, Gilles Moury,
Christoph Schaefer, and Carole Thiebaut. 2005. The new CCSDS image compres-
sion recommendation. In 2005 IEEE Aerospace Conference. IEEE, 4138-4145.

Xu Zhou, Kun Yang, Lin Ouyang, Yan Wang, Yaozhi Jiang, Xin Li, Deliang Chen,
and Andreas Prein. 2021. Added value of kilometer-scale modeling over the third
pole region: a CORDEX-CPTP pilot study. Climate Dynamics (2021), 1-15.

https://fields-database.readthedocs.io/en/latest/
https://fields-database.readthedocs.io/en/latest/
https://codes.ecmwf.int/grib/format/grib2/regulations/
https://codes.ecmwf.int/grib/format/grib2/regulations/
https://www.ecmwf.int/en/about/media-centre/key-facts-and-figures
https://www.ecmwf.int/en/about/media-centre/key-facts-and-figures
https://www.ecmwf.int/en/newsletter/179/computing/introducing-earthkit
https://www.ecmwf.int/en/newsletter/179/computing/introducing-earthkit
https://library.wmo.int/idurl/4/35625

	Abstract
	1 Introduction
	2 Feature Extraction on Meteorological Data Stores
	2.1 Meteorological Data Storage
	2.2 Polytope
	2.3 GribJump
	2.4 Polytope Tree Compression
	2.5 System Overview

	3 Performance and Scalability of the Polytope System
	3.1 Pre-computation phase
	3.2 Online phase

	4 I/O and Data Reductions
	5 Discussion and Future Work
	Acknowledgments
	References

