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Abstract. Septoplasty and turbinectomy are among the most frequent
but also most debated interventions in the field of rhinology. A previously
developed tool enhances surgery planning by physical aspects of respi-
ration, i.e., for the first time a reinforcement learning (RL) algorithm is
combined with large-scale computational fluid dynamics (CFD) simula-
tions to plan anti-obstructive surgery. In the current study, an improve-
ment of the tool’s predictive capabilities is investigated for the afore-
mentioned types of surgeries by considering two approaches: (i) training
of parallel environments is executed on multiple ranks and the agents
of each environment share their experience in a pre-defined interval and
(ii) for some of the state-reward combinations the CFD solver is replaced
by a Gaussian process regression (GPR) model for an improved compu-
tational efficiency. It is found that employing a parallel RL algorithm
improves the reliability of the surgery planning tool in finding the global
optimum. However, parallel training leads to a larger number of state-
reward combinations that need to be computed by the CFD solver. This
overhead is compensated by replacing some of the computations with
the GPR algorithm, i.e., around 6% of the computations can be saved
without significantly degrading the predictions’ accuracy. Nevertheless,
increasing the number of state-reward combinations predicted by the
GPR algorithm only works to a certain extent, since this also leads to
larger errors.
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1 Introduction

The combination of computational fluid dynamics (CFD) simulations and rein-
forcement learning (RL) is experiencing an increasing popularity for control
applications based on flow physics. In [7], a scalable RL framework is devel-
oped to derive data-driven turbulence models for large eddy simulations (LES).
An LES uses sub-grid scale (SGS) models such as the Smagorinsky [21] or the
dynamic Smagorinsky [3] SGS approaches to model unresolved turbulent scales
in the regime above the inertial subrange. The potential of an RL-augmented
CFD solver is demonstrated by finding a control strategy for optimal eddy vis-
cosity selection. In [13], CFD-based RL is employed to control the rotation of a
flap implemented on a NACA0012 airfoil. The RL-agent is able to improve the
aerodynamic performance of the airfoil for different angles of attack in turbulent
flows computed with structured meshes containing around 800, 000 cells. For
modelling the turbulence, the Reynolds-averaged Navier-Stokes (RANS)-based
k-ω Shear Stress Transport (SST) model is selected. In [4], an RL algorithm is
coupled to a CFD solver to reduce drag in channel flows. Each agent observes the
velocity fluctuations in the streamwise and wall-normal direction, the reward is
the percentage variation of the wall-shear stress, and each agent acts by impos-
ing a positive (blowing) or negative (suction) wall-normal velocity at the channel
wall. The CFD solver is a pseudo-spectral code that uses the Chebyshev polyno-
mials in the wall-normal directions, and the time-advancement numerical scheme
is a second-order Crank-Nicholson algorithm for the linear terms and a third-
order Runge-Kutta method for the nonlinear terms. The Computational meshes
contain up to 266, 240 cells. In [16], a proximal policy optimization (PPO) algo-
rithm is employed to control flow through a heated and perturbed channel by
changing the size of a constriction. After 265 simulations, the trained algorithm
predicts a variation of the constriction whose results deviate by less than 1% from
the reference solution obtained from 3,400 numerical simulations using a param-
eter sweep. The CFD simulations are solved with a thermal lattice-Boltzmann
method (TLBM) on grids containing around 100, 000 cells.

The previously mentioned attempts for combining RL and CFD simulations
employ relatively small computational grids (< 1, 000, 000 cells), allowing to
explore a large action space efficiently. However, for large-scale simulations with
an increased number of cells, coupling RL algorithms with CFD solvers becomes
more and more challenging. In [18], for the first time large-scale CFD simu-
lations with grids on the order of hundreds of million cells are coupled to an
RL algorithm. That is, a TLBM is coupled to a deep Q learning (DQL) algo-
rithm to plan surgical interventions for obstructed noses. The DQL algorithm
modifies a level-set field to yield geometric variations of the upper airway, and
receives feedback in terms of the pressure loss and temperature increase between
the inlets (Nostrils) and outlet (Pharynx). The method is demonstrated for two
patients, the first one suffering from a deviated septum and the second one from
enlarged turbinates. The simulation domain of the first patient is resolved by
about 110× 106 cells, and the domain of the second patient by about 220× 106

cells, using mesh resolutions of Δx = 0.1 mm to accurately resolve narrow
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channels and thin boundary layers [8,9]. The flow simulations were conducted
for several days on 16 NVIDIA A100 graphics processing units (GPUs) for the
first patient, and on 32 NVIDIA A100 GPUs for the second patient.

Coupling RL algorithms with large-scale CFD simulations requires an effi-
cient exploration of the action space, to guarantee that agent’s do not get stuck
at local maxima of the reward function. A promising approach for an efficient
exploration is parallel RL (PRL), where multiple environments run simultane-
ously and their agents exchange the collected experience in pre-defined intervals.
In [22], the use of parallel environments during the learning process allows an
efficient control of flow applications in a reasonable time. In [7], the CFD-RL
framework can scale up to hundreds of parallel environments on thousands of
cores, allowing to leverage modern HPC resources to either enable larger prob-
lems or faster turnaround times.

PRL increases the liability of finding the global maximum of the reward func-
tion, but also the total number of states explored by all agents, and, therefore, the
computational efforts of the CFD simulations. Gaussian processes are suitable
to counteract these additional costs by replacing some of the CFD computa-
tions. Gaussian process regression (GPR) has shown great potential to predict
new states in an RL environment. GPR is a non-parametric Bayesian approach
towards regression problems, that has the ability to provide uncertainty mea-
surements on predictions [24]. In [15], GPR is used to successfully predict the
temporal behavior in the well-known mountain-car problem [20], after the agents
change the car’s velocity. In [12], GPR is used as function approximation to
model the state transition and the value functions of states for condition-based
maintenance strategies in complex engineering systems. An RL algorithm is then
developed to minimize the long-run average costs. In [5], GPR and RL are stud-
ied to control the system dynamics of an autonomous blimp. State transitions
are modelled as a Gaussian process that is trained on the residual between a non-
linear ordinary differential equation (ODE) based on Newtonian principles and
ground truth training data. The resulting GP-enhanced model is then coupled
to an RL algorithm, allowing an estimate of uncertainty in addition to giving
better state predictions than either ODE or the Gaussian process alone.

In the current study, GPR is for the first time combined with an PRL algo-
rithm that receives feedback from large-scale CFD simulations. That is, the
CFD and RL-based automated surgery planning, which has been introduced
above [18], is conducted with multiple environments, and in each environment
some of the state transitions are predicted by an GPR model to skip expen-
sive CFD computations and accelerate training. The training procedure for each
environment of the PRL algorithm is subdivided into two stages. In the first
stage, the GPR model does not interact and feedback for the RL algorithm is
solely provided by the CFD solver, as described in [18]. In the second stage, the
GPR model is trained at the beginning of each episode with data from all states
that have been computed based on CFD simulations so far. After each action,
with the help of the uncertainty quantification of the GPR model, it is decided
whether to use the GPR prediction or the CFD solver to determine a new state.
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The manuscript is structured as follows. The medical data of the two patients
are explained in Sect. 2, and the computational methods are presented in Sect. 3.
In Sect. 4, surgery planning results for the two patients are presented in two
parts. In the first part (Sect. 4.1), the reliability and computational costs based
on training in a single environment are compared to parallel training with multi-
ple simultaneous environments. In the second part (Sect. 4.2), results when solely
coupling the PRL algorithm to the CFD solver are compared to results when
some of the states are predicted by the GPR model. Finally, Sect. 5 provides a
summary, conclusion, and outlook.

2 Medical Data

Fig. 1. The nasal cavity of two patients, the first suffering from a deviated septum
(A) and a bony spur (B), and the second from enlarged inferior (C) and middle
(D) turbinates. The close-ups on cross-sectional areas illustrate the pre-surgical state
(black), and planned interventions at locations A and B, as well as maxium possible
interventions at locations C and D (red). They are juxtaposed to the corresponding
pre-surgical CT images. (Color figure online)

Anonymized CT data of two patients are used. The first patient suffers from a
deviated septum (location A) and a bony spur (location B), as shown in Fig. 1a,
and the second patient from enlarged turbinates (locations C and D), illustrated
in Fig. 1b. The patients gave informed consent for inclusion of the data in the
current study. The CT data of the first patient are composed of 119 axial slices
with 512× 512 pixels each. The pixel spacing is 0.5 mm, and the space between
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the axial slices is 0.7 mm. The CT recordings of the second patient have 103 axial
slices, again with 512× 512 pixels each. The pixel spacing is 0.326 mm, and the
space between the axial slices is 1.0 mm. The 3D model of the pre-surgical upper
airway is extracted from the Digital Imaging and Communications in Medicine
(DICOM) files of the CT data with the pipeline described in [17]. For the first
patient, surgery planning of a septoplasty is investigated, and for the second
patient, the surgical potential of a turbinectomy is analyzed. More details about
the medical data, types of surgeries, and motivation from a medical background
are given in [18,23].

3 Computational Methods

The general approach of combining CFD and RL for physics-based surgery plan-
ning is described in Sect. 3.1. This is followed by explaining the particularities of
the PRL algorithm in Sect. 3.2, and the details of the GPR model in Sect. 3.3.

3.1 Physics-Based Surgery Planning

Surgery planning is realized with a combination of an RL algorithm and a CFD
solver. Agents modify the geometry of the nasal cavity, and receive feedback
from simulations conducted with the TLBM of the CFD solver m-AIA1. The
number of agents depends on the number of surgical intervention locations (G).

To modify the shape of the geometry, a level-set (LS) method is coupled
to the TLBM. In the LS method, the geometry is represented using a signed
distance function ϕ, the LS field. The LS field that represents the geometry after
a modification by the agent (ϕ1) is calculated using the linear interpolation [23]

ϕ1 = (1 − αq)ϕ2 + αqϕ3, (1)

with the second and the third LS fields ϕ2 and ϕ3 containing information on the
pre-surgical shape and the shape generated based on the surgeon’s plan (first
patient) or the maximum possible intervention (second patient). The factors
αq ∈ [0, 1] define the interpolation between the pre-surgical state αq = 0 and the
state based on the surgeon’s plan or the maximum possible intervention αq = 1,
where q = [1, ...,G].

After an action, m-AIA receives αq of the current state, and provides infor-
mation about the new pressure loss and temperature increase to generate the
reward R

R = Δpnorm + ΔTnorm. (2)

1 multiphysics - Aerodynamisches Institut Aachen (m-AIA), an extended version of
the formerly known Zonal Flow Solver (ZFS) [10], https://git.rwth-aachen.de/aia/
MAIA/Solver.

https://git.rwth-aachen.de/aia/MAIA/Solver
https://git.rwth-aachen.de/aia/MAIA/Solver
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The normalized pressure loss Δpnorm and the normalized temperature increase
ΔTnorm between the nostrils and pharynx are given by

Δpnorm =
Δp(αq) − Δp(α = 0)

Δp(α = 1) − Δp(α = 0)
, (3)

ΔTnorm =
ΔT (αq) − ΔT (α = 1)

ΔT (α = 0) − ΔT (α = 1)
. (4)

inspired by the work in [16].
The pressure loss Δp and temperature increase ΔT are defined as

Δp =
1

Na

N∑

i=N−Na

⎛

⎝ 1
Hout

Hout∑

j=0

pi
tot,j − pamb

⎞

⎠ , (5)

ΔT =
1

Na

N∑

i=N−Na

⎛

⎝ 1
Hout

Hout∑

j=0

T i
j − Tamb

⎞

⎠ , (6)

where Hout is the number of boundary cells at the outflow region, and pamb is
the ambient pressure. A feedback loop takes N = 50,000 time steps and the
feedback is averaged over the last Na = 10,000 time steps. More details about
the single environment RL algorithm, the TLBM of m-AIA, and the flow and
boundary conditions are provided in [18].

3.2 Parallel Reinforcement Learning

The extension from single environment RL to PRL allows to train n environ-
ments simultaneously. In a synchronization interval of EPs = 7 episodes, the
agents of each environment adopt the weights and biases, as well as the opti-
mizer state of the environment with the so far highest reward.

The precision of the surgical tools used for conducting intranasal surgery
only allows for discrete actions [18]. The flow field and reward for a state is only
computed when the agents of an environment reach a state for the first time. The
reward is then stored in a list, and the list is shared among each environment. If
the state is reached again, the CFD simulation does not need to be conducted
again. Instead, the corresponding reward is taken from the list. This reduces the
total number of simulations to the total number of state-reward combinations
reached by the agents of all environments Nst.

3.3 Gaussian Process Regression

GPR is a data- and prior-driven regression technique often used in the con-
text of Bayesian optimization (BO) [19]. The objective function f(x) ∈
{Δpnorm,ΔTnorm} is modeled as a Gaussian process GP with prior mean
function m(x|θm) and covariance resp. kernel function k(x,x′|θk) assuming
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that the original objective f(x) is distributed as a Gaussian process, i.e.,
f(x) ∼ GP (m(x), k(x,x′)).

The simulation data Dn is arranged as a matrix X = [−xi−] ∈ R
n×dx for

the inputs xi and a vector y = [yi] ∈ R
n×1 for the noisy outputs yi, such

that Dn = {X,y}. Using the Gaussian process prior model on the data, y
is a joint multivariate normal distribution N with the data prior mean vec-
tor m(X) = [m(xi)] and data prior covariance matrix K(X,X ′) = [k(xi,xj)]
evaluated at each xi,xj of X, i.e., f = [fi] ∼ N (m(X),K(X,X ′)) for the
latent prior. By adding noise along the diagonal, the noisy covariance matrix
Kn(X,X ′) = K(X,X ′) + σ2

nI is obtained. From a frequentist perspective, the
noise hyperparameter σn serves as a regularization parameter to favor simplistic
explanations over more complex ones and leads to the predictive prior distri-
bution, i.e., y ∼ N (m(X),Kn(X,X ′)). The noise hyperparameter σn, i.e.,
θl = [σn], is part of the likelihood function p(y|X,θ), which is assumed to be
Gaussian for the objective functions to be modelled. The prior belief expressed
as the prior mean function m(x) and the prior kernel k(x,x′), is conditioned
on the data Dn using Bayes’ theorem to obtain the Gaussian process posterior
in closed-form with the posterior mean function m|Dn(x), the posterior kernel
k|Dn(x,x′) and the posterior standard deviation s|Dn given in Eqs. (7) to (9).
Based on the posterior, a single prediction at x given data Dn can be made as
y|x,X,y = y|x,Dn ∼ GP(m|Dn(x), k|Dn(x,x′)). [14]

m|Dn(x) = m(x) + k(X,x)T Kn(X,X ′)−1(y − m(X)) (7)

k|Dn(x,x′) = k(x,x′) − k(X,x)T Kn(X,X ′)−1k(X,x′) (8)

s|Dn(x) =
√

k|Dn(x,x′ = x) (9)

By choosing the prior mean for global and the prior kernel functions for local
characteristics, prior knowledge can be incorporated into the stochastic model of
the objective function. In the current study, the prior mean function m(x) is set
to a constant value C which is learned from the data during the hyperparameter
tuning process, cf. Eq. (10).

For the covariance function, the squared exponential function resp. radial
basis function (RBF) with automatic relevance determination (ARD), cf. Eq.
(11), assuming a smooth, i.e., infinitely differentiable, objective function is cho-
sen. In general, the prior mean m and the prior kernel k have hyperparameters,
i.e., θm and θk, respectively. In the case of using the data mean, there are no
prior mean hyperparameters to tune, i.e., θm = ∅, and for the constant prior
mean there is one mean hyperparameter, i.e. θm = [C]. However, the squared
exponential kernel resp. RBF kernel with the scale matrix M = diag(l)−2

possesses hyperparameters θk = {σf , l} including the signal variance σf and
lengthscales l = [lλ, lA, lT ]T for each dimension of x according to ARD. The
hyperparameters of the prior mean, the prior kernel and the likelihood func-
tion θ = {θm,θk,θl} are tuned by maximum likelihood estimation (MLE) to
best fit the data with respect to the Gaussian likelihood function p(y|X,θ), i.e.,
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θ∗ = argmaxθ∈Θ MLE(θ) with MLE(θ) = ln p(y|X,θ), using GPyTorch [2]. A
detailed explanation of the mathematical background of GPR can be found in
Rasmussen et al. [14].

m(x) = m(x|θm) = mean(y) = C (10)

k(x,x′) = k(x,x′|θk) = σ2
f exp

(
−1
2
(x − x′)T M(x − x′)

)
= rbf(x,x′) (11)

Figure 2 provides an overview over the agent-environment interaction of the
combined PRL-GPR approach. After an action, m-AIA is employed if the cur-
rent number of state-reward combinations Nst has not surpassed the number of
training data Nt. Otherwise, the GPR model is employed. However, the GPR
model’s results are only used if

CI = 1.96 × s|Dn(x) < CIl × GP (mn(x), kn(x,x′)) , (12)

where CI stands for the confidence interval and CIl represents the confidence
interval limit. If this condition is not fulfilled, the results are computed by m-
AIA.

Fig. 2. Agent-environment interaction in the combined PRL-GPR approach.

4 Results

In Sect. 4.1 the performance of the PRL algorithm is analyzed for a varying
number of simultaneously running training environments. In Sect. 4.2 the trade-
off between training time and accuracy when employing the GPR model is
investigated. The PRL and GPR algorithms were trained on the CPU parti-
tion of the Jülich Research on Exascale Cluster Architectures (JURECA-DC),
Forschungszentrum Jülich [6]. The flow simulations for the first patient were
conducted on 4 nodes of the GPU partition of JURECA-DC, i.e., on a total
number of 16 NVIDIA A100 GPUs, and for the second patient on 8 nodes, i.e.,
on a total number of 32 NVIDIA A100 GPUs.
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4.1 Parallel Reinforcement Learning

Simultaneous training in multiple environments is evaluated by comparing the
number of numerical simulations needed to find the global optimum. Figure 3
shows Δpnorm, ΔTnorm, and R for all possible state-reward combinations of both
patients. For the first patient, the topology of Δpnorm (Fig. 3a) and ΔTnorm

(Fig. 3b) is smooth and the global optimum of R is found at (αopt
A , αopt

B ) =
(0.8, 0.0) (Fig. 3c). For the second patient, the topology of Δpnorm (Fig. 3d) is
similarly smooth compared to the first patient. However, the topology of ΔTnorm

(Fig. 3e) is much rougher than the one of the first patient, which results in a
jagged topology of R (Fig. 3f), where the global maximum lies at (αopt

C , αopt
D ) =

(0.85, 0.25). The geometric changes that correspond to the global maximum of
each patient are illustrated in [18].

Fig. 3. Δpnorm, ΔTnorm, and R for all 441 possible state-reward combinations of both
patients based on simulations of m-AIA. The colors indicate increasing quantities from
blue to red. (Color figure online)

For each patient, ten training runs are conducted on n = 1, 2, 3 environments,
and each run is stopped once an environment reaches 150 episodes. Table 1 pro-
vides results in terms of Nst averaged over the ten runs, and the number of
runs in which the agents found the global maximum (Success rate). Note that
the maximum possible number of state-reward combinations Nmax is 441, since
each patient has two surgical interventions and a discretized action interval of
Δα = 0.05 is chosen.
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Table 1. State-reward combinations and the success rate achieved by the PRL algo-
rithm trained with n = 1, 2, 3 environments.

n First patient Second patient
Nst

Nst
Nmax

Success rate Nst
Nst

Nmax
Success rate

1 124 0.28 8/10 167 0.38 6/10
2 260 0.59 10/10 265 0.60 7/10
3 290 0.66 10/10 326 0.74 10/10

Generally, finding the global optimum seems to be an easier task for the
first patient, since training with two environments already has a success rate
of 10/10 and 59% of Nmax are required. In contrast, reaching such a success
rate for the second patient requires three environments and 74% of Nmax are
required. It becomes clear that the disadvantage of increasing the number of
parallel environments is an increased number of state-reward combinations Nst.
Each of those combinations stands for a new surface modification and the LB
solver needs 50, 000 time steps to compute Δpnorm and ΔTnorm. For all cases
(n = 1, 2, 3) Nst for the second patient is higher than for the first patient. This
comes from the fact that the smooth topology of Δpnorm and ΔTnorm of the first
patient yield a clear global optimum (See Fig. 3c), whereas the rough topology
of ΔTnorm of the second patient results in a topology of R with multiple local
optima that are close to the global optimum (See Fig. 3f).

4.2 Parallel Reinforcement Learning and Gaussian Process
Regression

In this section, the surgical interventions proposed by the PRL algorithm are
analyzed for cases where Δpnorm and ΔTnorm of some states are each pre-
dicted by an individual GPR model, i.e., Δpnorm ∼ GP (mp(x), kp(x,x′)) and
ΔTnorm ∼ GP (mT (x), kT (x,x′)). Each case is evaluated by the errors Ēp and
ĒT

Ēp =
∑Ngpr Ep

Ngpr
=

∑Ngpr Δpnorm(αsim
q )−Δpnorm(αpred

q )

Δpnorm(αsim
1 )

Ngpr
, (13)

ĒT =
∑Ngpr ET

Ngpr
=

∑Ngpr ΔTnorm(αsim
q )−ΔTnorm(αpred

q )

ΔTnorm(αsim
1 )

Ngpr
, (14)

where Ngpr stands for the number of states in which the m-AIA simulation is
replaced by the GPR model. In the following, results for cases with varying Nt

and CIl and training on n = 3 ranks are presented for both patients.
Results for ten runs with Nt = 250 and CIl = 0.05 are shown in Table 2 for

the first patient and in Table 3 for the second patient.
In case of the first patient, Nst < 250 is observed for two runs in which

the GPR model is not activated. In the remaining runs, the GPR model is
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Table 2. Results for ten runs of
the first patient with Nt = 250
and CIl = 0.05.

Nst Ngpr Ēp ĒT

185 – – –
326 27 (8.3%) 0.016 0.027
279 22 (7.9%) 0.057 0.060
333 43 (13.0%) 0.032 0.063
255 3 (1.2%) 0.027 0.062
266 10 (3.8%) 0.076 0.133
286 32 (11.2%) 0.032 0.082
225 – – –
270 3 (0.01%) 0.049 0.053
254 4 (1.6%) 0.024 0.051
284 18 (6.3%) 0.039 0.066

Table 3. Results for ten runs
of the second patient with Nt =
250 and CIl = 0.05.

Nst Ngpr Ēp ĒT

371 31 (8.4%) 0.025 0.077
321 9 (0.3%) 0.021 0.072
303 22 (7.3%) 0.027 0.059
288 16 (5.6%) 0.017 0.070
245 – – –
380 43 (11.3%) 0.019 0.078
348 19 (5.5%) 0.023 0.081
264 5 (1.9%) 0.025 0.057
389 25 (6.4%) 0.019 0.089
311 4 (1.3%) 0.018 0.081
330 19 (5.8%) 0.025 0.083

used on average for the computation of 18 states, which is 6.3% of the used
state-reward combinations. The mean error for the temperature increase is with
ĒT = 6.6% larger than the error for the pressure loss with Ēp = 3.9%. In all
runs (αopt

A , αopt
B ) = (0.8, 0.0) has been found with Δpnorm = 0.414 and ΔTnorm =

1.005 yielding R = 1.419.
In case of the second patient, Nst < 250 is observed for a single run. In the

remaining runs, the GPR model is used for computing 19 states on average,
which is with 5.8% of the used state-reward combinations in a similar range
compared to the first patient. Again, ĒT = 8.3% is larger than Ēp = 2.5%.
The relatively large ĒT in case of the second patient comes from the rough and
jagged topology of ΔTnorm (Fig. 3e), which makes predictions challenging. In
all runs (αopt

C , αopt
D ) = (0.85, 0.25) has been found with Δpnorm = 0.853 and

ΔTnorm = 0.722 yielding R = 1.575.
Tables 4 and 5 present the results for the first and second patient for ten runs

with Nt = 200 and CIl = 0.05. In case of the first patient, the GPR model is
activated for all runs. Reducing Nt from 250 to 200 increases the mean Ngpr

from 6.3% to 18.9%, with a trade-off in terms of Ēp = 0.042 and ĒT = 0.077,
compared to Ēp = 0.039 and ĒT = 0.066 in Table 2. These increased errors lead
to two runs in which (αopt

A , αopt
B ) = (0.8, 0.0) is not found, i.e., the first run yields

(αopt
A , αopt

B ) = (0.95, 0.0), and the fifth run (αopt
A , αopt

B ) = (0.75, 0.1). For the first
run, this would mean CFD results of Δpnorm = 0.440 and ΔTnorm = 0.897
yielding R = 1.337, and for the fifth run Δpnorm = 0.431 and ΔTnorm = 0.865
with R = 1.296, resulting in larger weights on ΔT than on Δp compared to the
results for (αopt

A , αopt
B ) = (0.8, 0.0) presented above. Especially, the fifth run is

characterized by large errors (Ēp = 0.081 and ĒT = 0.150), which implies that
for this run the training data is insufficient.

In case of the second patient, Nst > 200 is observed for all runs meaning
the GPR algorithm is always activated again. In contrast to the first patient,
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Table 4. Results for the first
patient with Nt = 200 and
CIl = 0.05.

Nst Ngpr Ēp ĒT

277 45 (16.3%) 0.027 0.082
265 39 (14.7%) 0.032 0.064
326 98 (30.1%) 0.030 0.045
248 25 (10.1%) 0.038 0.078
274 63 (23.0%) 0.081 0.150
284 50 (17.6%) 0.04 0.066
268 37 (13.8%) 0.022 0.038
288 33 (11.5%) 0.063 0.099
310 75 (24.2%) 0.049 0.070
313 71 (22.7%) 0.038 0.074
285 54 (18.9%) 0.042 0.077

Table 5. Results for the sec-
ond patient with Nt = 200 and
CIl = 0.05.

Nst Ngpr Ēp ĒT

414 41 (9.9%) 0.022 0.067
343 29 (8.5%) 0.024 0.086
260 14 (5.4%) 0.035 0.077
292 15 (5.1%) 0.026 0.085
264 5 (1.9%) 0.036 0.063
289 14 (4.8%) 0.023 0.090
275 20 (7.2%) 0.028 0.080
284 21 (7.4%) 0.028 0.070
271 15 (5.5%) 0.022 0.052
264 10 (3.8%) 0.023 0.051
296 18 (6.1%) 0.027 0.072

reducing Nt from 250 to 200 does not change the mean Ngpr for the second
patient with 6.1% significantly compared to 5.8% in Table 3. This means that
the reduced training data for the GPR algorithm, which starts to be trained
at NST > 200, cause generally large confidence intervals of the algorithm’s pre-
dictions. This highlights again the challenge of predicting the second patient’s
temperature increase.

In Tables 6 and 7, the results for the first and second patient for ten runs
with Nt = 250 and CIl = 0.1 are provided. By increasing the threshold of
the confidence interval from CIl = 0.05 to CIl = 0.1, for the first patient the
mean Ngpr is increased from 6.3% to 12.5%, and for the second patient from

Table 6. Results for the first
patient with Nt = 250 and
CIl = 0.1.

Nst Ngpr Ēp ĒT

367 86 (23.4%) 0.033 0.051
226 – – –
293 36 (12.3%) 0.024 0.085
268 15 (5.6%) 0.035 0.104
248 – – –
221 10 (3.8%) 0.076 0.133
189 – – –
231 – – –
259 8 (3.1%) 0.024 0.036
374 65 (17.4%) 0.028 0.052
297 37 (12.5%) 0.037 0.077

Table 7. Results for the sec-
ond patient with Nt = 250 and
CIl = 0.1.

Nst Ngpr Ēp ĒT

222 – – –
293 18 (6.1%) 0.022 0.112
258 5 (1.9%) 0.022 0.077
368 44 (12.0%) 0.023 0.101
329 28 (8.5%) 0.029 0.082
359 48 (13.4%) 0.027 0.087
261 5 (1.9%) 0.016 0.044
307 36 (11.3%) 0.026 0.085
321 21 (6.5%) 0.021 0.054
349 20 (5.7%) 0.017 0.066
316 25 (7.9%) 0.023 0.079
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5.8% to 7.9%. However, predicting more states by the GPR model due to the
larger confidence interval limit comes at the cost of more inaccurate predictions.
That is, for the first patient instead of (αopt

A , αopt
B ) = (0.8, 0.0), in the first and

tenth runs (αopt
A , αopt

B ) = (0.9, 0.0) are yielded, which would mean CFD results
of Δpnorm = 0.437 and ΔTnorm = 0.956 with R = 1.393. For the second patient
instead of (αopt

C , αopt
D ) = (0.85, 0.25), in the third run (αopt

C , αopt
D ) = (0.8, 0.3) and

in run eight (αopt
C , αopt

D ) = (0.6, 0.15) are found. For the third run, this would
mean CFD results of Δpnorm = 0.933 and ΔTnorm = 0.552 yielding R = 1.485,
and for run number eight Δpnorm = 0.789 and ΔTnorm = 0.731 with R = 1.52.

Fig. 4. The pre-surgical state [black], the state based on the maximum pos-
sible intervention [red], the state for (αC , αD)=(0.85, 0.25) [blue, left], and for
(αC , αD)=(0.6, 0.15)[green, right] at the four cross-sectional areas S1-S4. S5 is illus-
trated for a better orientation of the cross-sectional area shown in Fig. 5. Note that
these are only representative cross-sectional areas. By changing αq, the 3D region
defined by ϕ1 is modified. (Color figure online)

Run number eight of Table 7 has the overall largest deviations in terms
of αq, i.e., a deviation of 0.25 for αopt

C , and 0.1 for αopt
D . These deviations

are illustrated for the four cross-sectional areas S1 − S4 in Fig. 4. The figure
shows the pre-surgical state [black], the state based on the maximum possi-
ble intervention [red], the state for (αC , αD)=(0.85, 0.25) [blue, left], and for
(αC , αD)=(0.6, 0.15)[green, right]. Whereas the deviation of αC has only a minor
impact on the nasal cavity shape, the deviation of αD causes a narrower passage
at the inferior turbinate. The influence of this narrowing on the pressure loss and
temperature increase between the inlets and locations inside of the nasal cavity
is further shown in Fig. 5 for the cross-sectional area S5. The red circles high-
light the region of large deviations between the two cases (αC , αD)=(0.85, 0.25)
[left] and (αC , αD)=(0.6, 0.15) [right]. The narrowed nasal passage near the infe-
rior turbinate causes the higher pressure loss but also the increased heating of
incoming air before entering the lung.
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Fig. 5. Total pressure loss [top] and temperature increase [bottom] between the
inlets and locations inside of the nasal cavity for (αC , αD)=(0.85, 0.25) [left] and
(αC , αD)=(0.6, 0.15) [right] at the cross-sectional area S5, which is illustrated by the
dashed line in this figure and in Fig. 4. The red circles highlight the region of large
deviations between the two cases. (Color figure online)

Replacing the CFD simulation by the GPR algorithm for one surface modi-
fication saves 50, 000 time steps that are needed to reach a converged flow field
and get physically meaningful results. For the first patient with 110 × 106 cells
on 16 NVIDIA A100 GPUs and for the second patient with 220×106 cells on 32
NVIDIA A100 GPUs this takes around 20 minutes. Given the example in Table 4,
Ngpr = 54 would mean savings of 1, 080 minutes (18 hours) of compute time.
The consumption for training the DQL algorithm is negligible, since a multilayer
perceptron network with only three fully connected layers and 64 neurons per
layer is employed. The same accounts for training and eploying the GPR algo-
rithm, whose training data cannot exceed the pressure and temperature data of
441 surface modifications. Therefore, the number of training iterations for the
GPR algorithm has been set with 150 already quite high and is not considered
a critical parameter in the current study.
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The current manuscript describes only the last step of the entire workflow
from patient data acquisition to final surgical planning. Once CT data of patients
are generated, the workflow consists of three steps:

1. Super-resolution from coarse to fine CT data to allow reliable CFD simula-
tions

2. Automated segmentation and extraction of the 3D nasal cavity geometry from
the CT data

3. CFD-RL-based surgery planning

In [11,17,18], detailed results, practical benefits, and potential imitations for
each of these steps are reported. The reader is referred to these publications to
get insights into the entire workflow.

5 Summary, Conclusion and Outlook

The challenges of septoplasties and turbinectomies necessitate new approaches
for physics-based surgery planning. In a previous work, a DQL algorithm has
been for the first time combined with large-scale CFD simulations to propose sur-
gical interventions exploiting fluid mechanics knowledge about the pressure loss
and temperature increase between the inflow (nostrils) and the outflow (phar-
ynx) regions [18]. Two patients have been investigated, the first patient suffering
from a deviated septum accompanied by a bony spur, and the second patient
from enlarged turbinates in the left nasal passage. The previous work was a first
try for automated physics-based surgery planning of obstructed noses, but left
room for improvements in terms of finding the optimum surgical interventions
efficiently. The current study addresses this challenge by two approaches. In the
first approach, training of parallel environments is executed on multiple ranks
and the agents of each environment share their experience in a pre-defined inter-
val. In the second approach, for some of the state-reward combinations the CFD
solver (m-AIA) is replaced by an GPR model for an improved efficiency.

Employing an PRL algorithm improves the reliability of the surgery planning
tool, i.e., training multiple environments on 3 ranks yields a success rate of 10/10
in finding the global optimum. However, parallel training is accompanied by a
larger exploration of the action space, yielding more state-reward combinations
that need to be computed by m-AIA. This overhead in computations can partly
be compensated by replacing some of the computations with the GPR model.
A baseline case with Nt = 250 and CIl = 0.05 reveals that for the first patient
6.3% of the m-AIA computations can be saved, and for the second patient 5.8%.
Nevertheless, increasing the number of state-reward combinations predicted by
the GPR model by enlarging the hyperparameters Nt and CIl only works to
a certain extent, since this leads to larger errors and difficulties in finding the
global maximum.

Overall, even with the option of replacing some of the computations done
by m-AIA with an GPR algorithm, there is a need for elaborating ways to
reduce computational costs. One such a way is currently being investigated by
the authors in a follow-up study that contains three steps:
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1. In the first step, a pre-defined number of flow configurations for varying inter-
polation factors is computed by m-AIA.

2. In the second step, the flow fields of these configurations function as train-
ing data for a graph convolutional neural network (GCNN) which is trained
to predict flow fields of varying geometries for the same patient. GCNNs
are capable of predicting flow fields around irregularly shaped bodies whose
meshes can easily be converted into graphs [1].

3. In the third step, the trained GCNN is coupled to an PRL algorithm to
determine the optimized shape. This approach allows a much larger number
of state-reward computations, and, therefore, an increased action space.

The goal is to train agents in modifying the CT data directly to explore geometry
variations that go beyond the action space that is pre-defined by a surgeon.
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