| Hauptseite > Publikationsdatenbank > Eigenvalue based taste breaking of staggered, Karsten-Wilczek, and Boriçi-Creutz fermions with stout smearing in the Schwinger model > print |
| 001 | 1052701 | ||
| 005 | 20260127203443.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevD.111.014511 |2 doi |
| 024 | 7 | _ | |a 2470-0010 |2 ISSN |
| 024 | 7 | _ | |a 2470-0037 |2 ISSN |
| 024 | 7 | _ | |a 2470-0029 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-01058 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-01058 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Ammer, Maximilian |0 0009-0009-5232-2849 |b 0 |
| 245 | _ | _ | |a Eigenvalue based taste breaking of staggered, Karsten-Wilczek, and Boriçi-Creutz fermions with stout smearing in the Schwinger model |
| 260 | _ | _ | |a Ridge, NY |c 2025 |b American Physical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769505985_32661 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In two spacetime dimensions staggered fermions are minimally doubled, like Karsten-Wilczek and Boriçi-Creutz fermions. A continuum eigenvalue is thus represented by a pair of near-degenerate eigenvalues, with the splitting $𝛿$quantifying the cutoff induced taste symmetry breaking. We use the quenched Schwinger model to determine the low-lying fermionic eigenvalues (with 0, 1 or 3 steps of stout smearing) and analyze them in view of the global topological charge $𝑞 ∈ℤ$of the gauge background. For taste splittings pertinent to would-be zero modes, we find asymptotic Symanzik scaling of the form $𝛿_{wzm} ∝𝑎^2$with link smearing, and $𝛿_{wzm} ∝𝑎$without, for each action. For taste splittings pertinent to nontopological modes, staggered splittings scale as $𝛿_{ntm} ∝𝑎^𝑝$(where $𝑝≃2$with smearing and $𝑝 =1$without), while Karsten-Wilczek and Boriçi-Creutz fermions scale as $𝛿_{ntm} ∝𝑎$(regardless of the smearing level). Large corrections are seen with smearing. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Dürr, Stephan |0 P:(DE-Juel1)132580 |b 1 |e Corresponding author |
| 773 | _ | _ | |a 10.1103/PhysRevD.111.014511 |g Vol. 111, no. 1, p. 014511 |0 PERI:(DE-600)2844732-3 |n 1 |p 014511 |t Physical review / D |v 111 |y 2025 |x 2470-0010 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1052701/files/PhysRevD.111.014511.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1052701 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132580 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-12-10 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
| 915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|