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In two spacetime dimensions staggered fermions are minimally doubled, like Karsten-Wilczek and
Bori¢i-Creutz fermions. A continuum eigenvalue is thus represented by a pair of near-degenerate
eigenvalues, with the splitting 6 quantifying the cutoff induced taste symmetry breaking. We use the
quenched Schwinger model to determine the low-lying fermionic eigenvalues (with 0, 1 or 3 steps of stout
smearing) and analyze them in view of the global topological charge g € Z of the gauge background. For
taste splittings pertinent to would-be zero modes, we find asymptotic Symanzik scaling of the form

Sy & a> with link smearing, and &,,,, « a without, for each action. For taste splittings pertinent to

nontopological modes, staggered splittings scale as &, < a” (where p ~?2 with smearing and p =1
without), while Karsten-Wilczek and Borigi-Creutz fermions scale as d,, « a (regardless of the smearing

level). Large corrections are seen with smearing.
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I. INTRODUCTION

In four spacetime dimensions (4D) staggered fermions
offer a discretized version of four Dirac fermions or
“tastes” [1]. But they are unequal—two of them have
positive and two have negative chirality [2]. Unlike flavor
symmetry (which acts on different fields with the same
fermion mass) the resulting taste symmetry is not exact,
but broken by cutoff effects [3—6]. There is a long stream
of efforts which try to mitigate the effect of taste
symmetry violation by adding evanescent terms' to the
staggered action [7-11] and/or by parametrizing the
symmetry violation by a dedicated effective field theory
description [12,13].

A fresh perspective on the problem was created by the
discovery of “minimally doubled” fermions in 4D. Both
Karsten-Wilczek (KW) [14,15] and Borici-Creutz (BC)
[16,17] fermions are in this category. Each one of these
formulations encodes two species or tastes (with opposite
chiralities), exactly the minimum required by the Nielsen-
Ninomiya theorem [2,18,19].

'In practice, this is most conveniently done via “smearing” or
“gradient flow,” see Refs. [7-11].
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Unfortunately, there is limited knowledge on the actual
size of the taste breaking” effects of minimally doubled
actions and how they fare relative to staggered taste
breakings. Staggered fermions are believed to show
O(a?) cutoff effect, due to the (reduced) chiral symmetry
[3-6,20]. Both KW and BC fermions have a (reduced)
chiral symmetry [14-17], and it has been argued that
certain quantities have O(a?) cutoff effects [21-23]. But
it is not clear (to us) whether these arguments cover all
quantities, in particular the taste splittings.

In two spacetime dimensions (2D) numerical inves-
tigations are much cheaper than in 4D. But there is
an important difference—in 2D the staggered action is
minimally doubled, too. We see this as an opportunity
to compare “like with like,” that is, three different
discretization schemes which encode two species each.
Details of minimally doubled fermions in 2D (for in-
stance, with respect to topology and the free-field
dispersion relation) have been investigated in
Refs. [24-28]. Details of staggered fermions are found
in Refs. [3-6,29-32].

We choose the simplest gauge group available,
compact U(1). The resulting theory, known as the
“Schwinger model” [33,34], resembles QCD in 4D, as
it obeys an “index theorem” [35]. This similarity implies
that (even close to the continuum) one must be able to
sample gauge field configurations with topological

2Throughout, we use “taste breaking” as a shorthand for taste
symmetry breaking.
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TABLE 1. Overview of the ensembles used in the ‘“cutoff effect” study; they implement constant physical volume through
(eL)? = (L/a)?/pB = 80. For each choice of (3, L/a) three ensembles of 10 000 configurations each are generated, to be used with 0, 1,
(0)

3 steps of p = 0.25 stout smearing, respectively. The analytic result s

wils

for unsmeared Wilson glue is taken from Ref. [40], and p;,q—nic

denotes the measured acceptance ratio in the instanton hit update routine.

B 32 5.0 72 12.8 20.0 28.8 51.2 80.0
L/a 16 20 24 40 48 64 80
Myout 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3
s 0.17625 0.10662 0.07230 0.03989 0.02533 0.01752 0.00981 0.00627
Pinsthit 0.750(2) 0.737(2) 0.729(2) 0.725(2) 0.726(2) 0.722(2) 0.721(2) 0.721(1)

charge (or “index”) g € Z ergodically, without “topology
freezing.” In the Schwinger model this problem has been
solved long ago [30,36-39].

The remainder of this article is organized as follows.
Section II specifies the update algorithm and how a gauge
configuration is assigned a topological charge g€ Z.
Section III details how the taste splitting is determined
from the low-lying eigenvalues. Section IV investigates
how the splittings in a fixed physical volume depend on the
lattice spacing a. Section V checks, for fixed a, the volume
dependence of these splittings. Section VI presents evi-
dence that the splittings 6 obey a Symanzik power law &
a? for a — 0. Section VII contains our conclusions, with
details of the topological charge determination shifted to
the Appendix.

II. SIMULATION SETUP AND TOPOLOGICAL
CHARGE DISTRIBUTIONS

We simulate the quenched Schwinger model with the
Wilson gauge action

n 1 n 1 n
gl = 5 3" Imlog UY (x) = - S ol

S[U) = ) {1 -Re[Ug(x)]} with
Un(x) = Ui(0)Us(x + DU (x + 2)Us(x) (1)

where fi denotes a times the unit vector in direction p,
and U* is the complex conjugate of the unit-modulus
variable U. Alternatively, one might parametrize it as
Uﬂ(x) = %) with @ €] —m, x], and substitute Re[.] —
cos[g(x) + @a(x + 1) = @1 (x +2) — @2 (x)] in (1).

We use multihit-Metropolis and overrelaxation sweeps in
a 1 +4 ratio and augment these packages with instanton
hits (proposing a ¢ — ¢ % 1 update, which is accepted with
a probability that tends to 1 in the infinite volume limit, see
Tables I and IT) and parity hits (proposing a ¢ — —q update
which is always accepted). With these ingredients it is easy
to generate well decorrelated configurations (see Ref. [38]
for details).

After the configurations are generated, we smear them
with n stout steps at p = 0.25 [41], and on the smeared
backgrounds we evaluate the two topological charges [6,30]

() + ¢ (x+ 1) =9l (x +2) = 9" ()] (2)

n 1 n 1 . n n 2 n n
G =, 2 M US () = 53 Csinlo" () + " (x4 1) =0} +2) = 03 ()] (3)

where U(D'1>(x) is the 4-link product in (1) after

ne{0,1,3} smearing steps. The “geometric charge”
(2) is integer valued, while (3) is not. But the

TABLE II.

distribution of the latter is strongly peaked at near-
integer values Z/Z with Z > 1. Hence, one defines the
“field-theoretic charge”

Overview of the ensembles used in the “finite volume” study; each one contains 10 000 configurations and is used after a

single step of p = 0.25 stout smearing. In addition, the acceptance rate of the instanton hit update (see text) at the respective (S, L/a) is
given.

B 72 72 7.2 72 72 72
L/a 16 20 24 32 40 48
Mot 1 1 1 1 1 1
Dinstohit 0.597(2) 0.677(2) 0.729(2) 0.799(2) 0.838(2) 0.866(2)
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Histograms (for our coarsest ensembles) of the integer-valued topological charge g, (left) and of the real-valued Zgy,,

(middle), along with the resulting MC time histories of g,, and gy, after rounding (right) with 0 (top), 1 (middle) and 3 (bottom) stout

smearings. The three rows refer to three different ensembles of 10000 configurations each at (f,L/a) =

%Etnh) = round(Z qg'&) (4)

which is again integer valued. We determine Z =Z(f,n)
nonperturbatively, with details given in the Appendix.
In a particular run only one smearing level is realized,
and the resulting configuration U is assigned a

topological charge ¢ if and only if qéﬁz) = qg’h) holds

true.’ Figure 1 presents the histograms of qgéz) and

qg'h) at our coarsest lattice spacing (f = 3.2) for the

stouting levels n € {0, 1,3}. The respective Monte Carlo

’In pr115101p1e also the integer-valued staggered topological
charge qSt might be evaluated, see e.g. Ref. [28] for details in 2D
and a gulde to the literature. Due to the increased CPU demand,
we refrain from doing so.

(3.2.16).

(MC) time histories look ergodic and the fraction of
configurations without charge assignment diminishes
quickly with increasing n and/or increasing f.

In a given run the smearing level n € {0, 1,3} is kept
fixed, and the matrices D, Dxw and Dy are evaluated on
the respective background U™ . These operators refer to the
Susskind “staggered” [1], Karsten-Wilczek [14,15] and
Borigi-Creutz [16,17] definitions of the massless Dirac
matrix, respectively. For each formulation the 16 smallest
eigenvalues i4 on the positive’ imaginary axis are deter-
mined and the A > 0 are archived. This way the eigenvalues
of different formulations are statistically correlated, but the
different smearing levels are not.

“The eigenvalues come in =il pairs, due to e-hermiticity
or ys-hermiticity, respectively.

014511-3
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FIG.2. Eigenvalues al; (1 < j <15)of Dy/iona|g| = 1 configuration at (5, L/a)

standard (left) and logarithmic (right) representation.

The Schwinger model (with any N ) is superrenormaliz-
able, and the gauge coupling e has mass-dimension one. We
exploit this feature to set the lattice spacing via ae = 1/+/p.
This way it is easy to define simulation parameters which
implement a continuum limit ““at constant physics” (i.e. fixed
box size and possibly pion mass in physical units), see Table I.
We produce an additional set of ensembles to investigate finite
volume effects, see Table Il and pertinent comments in
Sec. V. In total this gives 3 x 8 +5 = 29 ensembles for
which we checked that the unsmeared plaquette agrees,
within errors, with the analytic result of Ref. [40].

III. ANALYSIS DETAILS ON CENTRAL
ENSEMBLE

The gauge ensemble with (f, L/a, nyy) = (7.2,24,1)
appears both in Tables I and II. We call it the “central
ensemble” and use it to specify the details of our analysis.

In 2D the (rotated) eigenvalues 0 < 1; < ... < 4;4 of an
operator D, Dyw or Dgc come in near-degenerate pairs (in
4D the staggered ones come in quartets [42,43]). However,
the details of the grouping depend on the absolute value of
the topological charge of the background. For ¢ = O the
pairing is Ay ~ Ay, A3 >~ Ay, ..., A15 = 414, based on the fact
that the intrataste splitting is smaller than the physical
eigenvalue splitting. In this case Z?:l Ayj = Apj—1 would be
a suitable measure of the taste breaking effect on this
background. For |¢| = 1 things are different, since 4, is the
archived part of the would-be zero mode pair £4,. In this
case 24; + ZZZI Ayji1 — A; is an appropriate measure of
the taste breaking effect (where we made sure that again
eight splittings are taken into account). Similarly, for
lg| =2, one needs to keep in mind that —1;, 4, is one
pair and —4,, 4, another one. Hence, in this case we prefer
to use 24, + 24, + 216‘:1 Xaji2 = Apj+1, and so on.

0 0.5 1 1.5 2

chwmger Model [1—72 24x24 |q| 1

10-2 L

@ 103+

aA

0 0.5 1 1.5 2
7/a?

= (7.2, 24) versus the gradient flow time /a2, in

One may also consider each splitting separately, for
instance {2/11, 2/12,/14 —/13, ...,114 - /113} in the |q| =2
case, and this is what we shall do in the following.
Throughout, the operator Dy, Dxw or Dyc and the charge
q involve the same amount of link smearing, i.e.
n€{0,1,3} steps of stout smearing [41] in both cases.

Figure 2 displays, for a configuration with |g| = 1, how
the staggered eigenvalues ad; evolve as a function of the
gradient flow time 7/a” [44]. The would-be zero mode a,
(to be paired with its negative) goes to zero, all other
modes form pairs that become gradually visible as the
flow time increases. Both the would-be zero mode and
the remaining splittings (e.g. ad, = alz — al,) decrease
exponentially in the gradient flow time, see Fig. 3 and

Schwinger Model: 3=7.2, 24x24, |q|=1

102F. "ty
T ',
I
103 ¢ '-:".f'-
: ':';';.
4;; RSN
L REMHY
-4 | : '=x
10 o,
T !:l
a8,
: L : L L I
0 0.5 1 1.5 2
/a2
FIG. 3. Staggered taste splittings ad; = 2al;,ad, = alz —

Ay, ...,ad83 = alys — alyy (as appropriate for |g| = 1) in loga-
rithmic representation, derived from the data shown in Fig. 2.
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FIG. 4. Taste splittings ad; (1 < j < 8) of the operators Dy, Dgyw and Dy on the central ensemble. The would-be zero mode splittings
ady, ..., ad,| are separated from the nontopological splittings adjy|, 1, ... by a dashed vertical line. The four panels refer to lgl =0,1,2,

3, respectively. Both the operator and the charge measurement involve one step of stout smearing.

Ref. [45]. The flow times 7/a*> = 0.25, 0.75 used in the
main investigation (modulo discretization effects in 7
[44]) are marked with dotted vertical lines. Hence, with
one step of p =0.25 stout smearing at =72 the
eigenvalue pairs are faintly visible, and with three steps
they are easily identified.

Figure 4 displays the taste splittings ad; on our central
ensemble (f,L/a,ngoy) = (7.2,24,1) in which all 10
000 configurations are assigned™ a topological charge.
The first panel shows the results on the 2697 configu-
rations with g = 0; here staggered fermions feature the
smallest taste breakings. The second and third panels
show the situation on the 4320 and 2147 configurations

5Respective numbers are 9524 for # = 3.2, 9989 for f = 5.0
and 10000 for > 7.2 at nyy, = 1, cf. Table L.

with |g| = 1 and |g| = 2, respectively. The fourth panel
repeats this for the 661 configurations with |g| = 3.
Throughout, the would-be zero mode splittings are
separated by a vertical dashed line, and those of KW
fermions seem particularly small. The topological sectors
4 < |q| <6 hold too few (151 420 + 4) configurations
for a statistical analysis.

In short, on the central ensemble no dramatic
differences between the three fermion operators are
observed. For nontopological modes the staggered action
shows the smallest taste splittings, but for splittings linked
to would-be zero modes the KW action performs better.
Hence, the question is whether this remains true as we
vary the smearing level and/or the lattice spacing
(Sec. 1V). Also the impact of the box volume deserves
a closer look (Sec. V).
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IV. LATTICE SPACING DEPENDENCE

As mentioned in Sec. II, we have the data to investigate
how the unwanted taste splitting changes if the lattice
spacing is varied at fixed (physical) box volume.

Let us recap the second panel (|¢| =1) of Fig. 4,
which was for (f,L/a,nge) = (7.2,24,1). For the
nontopological splittings (j > 2) there is a hierarchy
Oy < Oxw < Ogc. For the would-be zero mode splitting
(j=1), there is an inversion, since we find gy <
5 < pc-

The counterparts to this panel at coarser and finer lattice
spacings are shown in Fig. 5, still with ngg, = 1. The
most prominent change is a change in the y-axis label. At
p €{3.2,5.0} the situation resembles the one of the central
ensemble, except that 67" wins for a few more j. At

weaker coupling, i.e. for f€{12.8,20.0}, the staggered

splittings get progressively smaller (starting with the
higher j) than the splittings of KW or BC fermions.
However, the would-be zero mode (to the left of the
dashed vertical line) seems to be exempt from this rule;
here the KW splitting remains smaller than any other
splitting. We have three finer lattice spacings (f = 28.8,
51.2, 80.0), but the situation remains similar to the one
shown in the fourth panel. Hence, close enough to the
continuum, there is a difference between would-be zero
modes and nontopological modes. For large enough f the
staggered action wins the contest for nontopological
modes. By contrast, for the first would-be zero mode
the KW fermion features the smallest splitting at all
accessible lattice spacings.

On may ask whether it makes a difference if we choose
fewer (ngy, = 0) or more (ng,, = 3) smearing steps.
Figure 6 presents these alternatives to the third panel

Schwinger Model: 5=3.2, L/a=16, noue=1 Schwinger Model: 3=5.0, L/a=20, Noue=1
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FIG. 5. Counterparts to the second (|g| = 1) panel of Fig. 4, with coarser (8 = 3.2, 5.0) and finer (f = 12.8, 20.0) lattice spacings,

respectively. The smearing level is ngy,, = 1 throughout.
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FIG. 6. Counterparts to the third (# = 12.8) panel of Fig. 5, with ngy,, = 0, 3, respectively.
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FIG. 7. Counterparts to the fourth (|g| = 3) panel of Fig. 4, with coarser (f = 3.2, 5.0) and finer (f = 12.8, 20.0) lattice spacings,
respectively. The smearing level is ngy,, = 1 throughout.
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FIG. 8. Counterparts to the third (# = 12.8) panel of Fig. 7, with ngy,, = 0, 3, respectively.

(f = 12.8) of Fig. 5. In fact, the ngy,, = 0 panel resembles
the first panel in the previous figure, and the ngy,, = 3
panel is similar to the fourth panel in the previous figure. It
seems that increasing/decreasing the smearing level acts a
bit like® increasing/decreasing /3.

In Fig. 7 the eigenvalue splittings of the |g| =3
configurations at f = 3.2, 5.0, 12.8, 20.0 with ng ., = 1
are shown. Together with the fourth panel of Fig. 4 they
constitute a “line of constant physics”. The qualitative
difference between nontopological modes (j =1, 2, 3)
and would-be zero modes (j > 4) is quite obvious. The
three lattice spacings not shown (f = 28.8, 51.2, 80.0)
feature a situation similar to one shown in the last panel.
Hence, for the nontopological modes the staggered action
wins the contest at large enough f, followed by KW and
BC fermions. For the would-be zero modes, on the other
hand, the KW splitting is always smaller than the
staggered one, and the latter fares better than the BC
splitting.

In Fig. 8 the third panel (f = 12.8) of Fig. 7 is
confronted with its siblings at ng,, = 0 and ngy, = 3.
Again the left panel resembles the first panel of the previous
figure, and the right panel resembles the fourth panel of the
previous figure. Overall it seems that an increased smearing

®Of course, this statement is to be taken with a grain of salt;
one should stay away from “oversmearing,” as this will cause a
lot of near degeneracies among the eigenvalues, similar to the
free-field case where excessive degeneracies emerge. We main-
tain that all our smearing levels, ngy,, = 0, 1, 3, represent mild
smearings, since the integrated flow times 7/a”> = 0.0, 0.25, 0.75
yield diffusion lengths in lattice units \/E/ a~0.0, 1.0, 1.73,
respectively [44]. We expect that the effects of oversmearing
would show up in the regime z/a” > 1.

level gives a “preview” of a larger f (with the caveat
mentioned above).

In short, varying the cutoff (at fixed ng, = 1) confirms
the different behavior of would-be zero modes and
nontopological modes. For the latter category the stag-
gered action yields asymptotically smaller splittings than
either minimally doubled action. On the other hand,
for the former category the KW action features the
smallest splittings at all (3, ny,,) combinations explored.
We shall speculate on possible reasons for this observation
in Sec. VL

V. FINITE VOLUME EFFECTS

As mentioned in Sec. II, we have the data needed to
investigate how the unwanted taste splitting changes if
the (physical) box volume is varied at fixed lattice
spacing.

The data in Fig. 9 extend the third panel (]¢| = 2) of
Fig. 4 toward smaller and larger box sizes, keeping
(B, ngour) = (7.2,1) fixed. Evidently, the box volume
impacts the overall scale, but it does not affect the
hierarchy among the eigenvalue splittings. In particular
the distinction between would-be zero modes and non-
topological modes holds in the sense that for these
parameters the hierarchies Jxw < 8y < dgc for would-
be zero modes and Jy < dxw < Ogc for nontopological
modes hold in all volumes.

We conclude that the data presented in Sec. IV have been
collected in a large enough physical volume to avoid
relevant finite volume effects on the splittings. Hence the
question whether we understand the observed lattice
spacing dependence is well warranted. As an aside we
find that the instanton hit acceptance ratio depends in the
first place on the physical volume; the data in Fig. 10 (right)
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suggest that pj,_pii — 1 holds in the limit L — oo for
any f.

VI. SYMANZIK SCALING OF
TASTE SPLITTINGS

So far we found that it makes a difference whether a
given eigenvalue belongs to a would-be zero mode or a
nontopological mode. For would-be zero modes KW
fermions win’ the contest; their splittings are smaller
than those of staggered or BC fermions at any (f, nyy)
explored. For nontopological modes staggered fermions
yield the smallest intrataste splittings if ng, > 1. These
findings are presented in Figs. 4-9.

The next step is to check whether a given splitting shows
asymptotic Symanzik scaling and, if so, to determine its
universality class (i.e. the power p in § « a”) [46—49]. For
this purpose one needs to collect all data pertinent to a
given Dirac operator, smearing level and splitting type (i.e.
treating would-be zero modes and nontopological modes
separately), and investigate their dependence on the lattice
spacing a « f#~'/2. For staggered fermions standard rea-
soning suggests that the taste splittings in physical units
(with mass-dimension one) scale as §; « a (tantamount to
ad; o a® in lattice units) for all j, unless the measurement
operator reduces the power. For KW and BC fermions
things are more involved, since their chiral symmetry
groups8 are smaller. Still, there are results in the literature
which suggest leading O(a?) cutoff effects for these
fermion formulations [21-23], but in some cases’ results
are inconclusive.

We shall first address the would-be zero mode splittings,
followed by those of the nontopological modes. Figure 11
displays the would-be zero mode splittings of each fermion
formulation at ng,,, =0 as a function of a in log-log
representation. For |g| = 1 there is one splitting (top left
panel), for |g| = 2 there are two splittings (top right and
middle left), and for |¢| = 3 there are three such splittings
(remaining three panels). Without smearing all formula-
tions seem to have asymptotic behavior aé; « a’>ord;, xa
for this observable. This is perhaps acceptable for KW and
BC fermions, but it is worse than expected for staggered
fermions.

In Fig. 12 the would-be zero mode splittings of each
formulation at ngy,, = 1 are plotted as a function of a in
log-log representation. This time the data suggest an

"This  solidifies
in Ref. [28].

¥See Ref. [50] for a thorough analysis of the symmetry groups
of KW and BC fermions.

°For instance Ref. [27] finds that the real part of the BC
dispersion relation has leading cutoff effects O([am]?), while the
imaginary part has O(am) cutoff effects.

and extends an observation reported

asymptotic scaling behavior §; « a® for all three formula-
tions. There are substantial corrections to the asymptotic
behavior, even though we simulate rather fine!” Schwinger
model lattices.

In Fig. 13 the taste violations pertinent to would-be zero
modes at ng,,, = 3 are plotted as a function of a in log-log
representation. Like in the previous figure, the would-be
zero mode splittings scale as §; « a® for all three fermion
operators, but with the additional smearing steps the
subleading corrections seem even more pronounced.

Note that the dotted lines in these figures are no fits.
They show the Symanzik behavior 6 « a” with the con-
jectured power p, starting from the leftmost data point. This
way one can gauge the size of corrections by visual
inspection.

We now turn to the nontopological modes. Figure 14
displays these splittings for each fermion formulation at
ngout = 0 as a function of a in log-log representation. For
q = 0itis ad; = al, — al, (top left panel), for |¢| = 1itis
ad, = aly —al, (top right panel), and analogously for
|g| = 2 (lower left panel) and |g| = 3 (lower right panel).
Without smearing all formulations seem to have asymptotic
behavior ad; o a’® or §; « a for this observable. Again, this
seems acceptable for KW and BC fermions, but it is worse
than expected for staggered fermions.

In Fig. 15 results for taste violations pertinent to non-
topological modes at ny,, = 1 are plotted as a function of
a in log-log representation. Here the asymptotic behavior
depends on the Dirac operator; we find §; « a? for Dy and
0; x a for Dyw, Dpc. The data suggest that there are
substantial corrections to the asymptotic behavior
for f < 20.

In Fig. 16 the same information is shown with ngg, = 3
smearings. Results are similar to those in the previous
figure, except that the sign of the corrections seems
reversed, and the staggered nontopological splittings
require truly large f-values, at this level of smearing, to
show asymptotic Symanzik scaling.

Clearly, the most puzzling observation is that the
Symanzik power of staggered taste breakings seems to
depend on the smearing level. Without smearing we see
&} o a, with smearing we find 6% a*. For any fixed
(p, Ngou) combination the smearing amounts to an ultra-
local modification of Dy; the asymptotic behavior should
be insensitive to such a modification. Of course, it is
conceivable that any of our Figs. 11-16 do not reflect the
true asymptotic behavior, but in view of the large f-values
this would be surprising. For further discussion we sum-
marize the conjectured powers p, as suggested by our data,
in Table III.

(0)

YAt two f-values the unsmeared plaquette 1 —s,; is above

0.99 and at three more above 0.96, see Table I.
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VII. CONCLUSIONS AND OUTLOOK

The goal of this paper has been to assess how a continuum
Dirac operator eigenvalue is split into a pair of near-
degenerate eigenvalues for staggered, Karsten-Wilczek
and Borici-Creutz fermions in 2D. On typical gauge back-
grounds staggered taste splittings were found to diminish
exponentially in the gradient flow time 7, provided the latter
is not too large (see Fig. 3 and Ref. [45]). At a given level of
smearing (or gradient flow time in lattice units; we chose
7/ a?> =0, 0.25, 0.75) the taste breaking effects were found
to disappear in the continuum limit, albeit not necessarily as
fast as standard arguments would suggest.

We find that it makes a difference whether the under-
lying continuum mode is a would-be zero mode (“wbz”)
or a nontopological (“ntm”) mode. For wbz modes the

splitting disappears as Oy, « a for all three actions
without link smearing, and &y,,  a? for all three actions
with smearing. This observation is disturbing, as it
challenges the standard view [7-11] that a fixed level
of smearing does not change the Symanzik universality
class of a given fermion operator.

For nontopological modes we end up with the unex-
pected observation that only the staggered action with link
smearing scales asymptotically as 8, « a2, while our data
for unsmeared staggered fermions and for KW and BC with
and without link smearing suggest &, o a. The conjec-
tured powers in the asymptotic Symanzik law 6 « a” are
summarized in Table III, and we recall that subleading
corrections were seen in all cases, in particular with
smearing.
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adjusted to the leftmost data point.

We emphasize that our results for KW and BC fermions
are for the bare actions, i.e. without marginal counterterms
(see e.g. Ref. [50] for details). Including such counterterms
might change some of the entries in the lower two lines of
Table III. Unfortunately, the coefficients of these counter-
terms are not known in 2D (neither perturbatively nor
nonperturbatively, neither with nor without stouting). For
staggered fermions there are no such counterterms, and the
conjectured change from p =1 to p = 2 with smearing
remains mysterious.

Evidently, our findings are unexpected and deserve due
diligence. It is conceivable that our data do not reflect
the true asymptotic behavior. This, however, would be
surprising, since our lattices are rather fine compared to
previous investigations (we bridge a factor f,.x/Pmin = 25,
tantamount to a factor 5 between the largest/smallest
lattice spacing). Assuming there is no technical issue with
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our code'' it seems that the interplay between smearing
and subleading corrections to asymptotic Symanzik scal-
ing deserves a closer look (based on precise data). For a
discussion of logarithmic corrections in QCD-like theo-
ries see Refs. [51-56].

Hof course, we started scrutinizing our code. We mentioned in
Sec. II that we checked our simulation data against analytic
results of Ref. [40]. We carefully checked the implementation of
the fermion operators against those used in Ref. [28]. Also the
smearing seems fine; when applied to a purely gluonic observable
it seems to imply beautiful Symanzik scaling at each smearing
level (including ny,, = 0), see the Appendix for details. Last but
not least, the eigenvalue determination could be flawed. But we
use canned routines, and we checked that the functions eig and
eigs in MATLAB (which use different algorithms) yield identical
results.

014511-15



MAXIMILIAN AMMER and STEPHAN DURR

PHYS. REV. D 111, 014511 (2025)

Schwinger Model Symanzik Analysis
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FIG. 16. Same as Fig. 14 but for ngy, = 3. For Dy the dotted line is a power law ad « a*, for Dgw and Dgc it is ad « a?, always

adjusted to the leftmost data point.

Several research strategies may shed some light on the
conundrum presented in this paper. First, it would be
interesting to know whether the |g| real-valued eigenval-
ues in the physical branch of an unimproved Wilson

TABLE IIl. Power p in the asymptotic Symanzik scaling law
0 x a?, as suggested by our data for staggered, KW and BC
fermions. The behavior without and with link smearing, and for
would-be zero modes versus nontopological modes is listed
separately.

fermion (which belong to “would-be zero modes™)
vanish in the continuum limit like 4, « a, and whether
tree-level or one-loop improvement would change this
behavior to Ay, x alog(a) or Ay, x alog?(a), as the
Symanzik surmise suggests. Again, one would not
expect to find any dependence on the amount of
smearing (keeping the flow time fixed in lattice units,
7/a® = const), but surprises may happen. Second, it
would be interesting to repeat the analysis of this paper
with a spectroscopy based measure of the taste splitting
(defined as the difference between the squared pion

Ngiou = 0 Ngou = 1, 3 . . .
masses with different taste structure), for all three fermion
wbz ntm wbz ntm- formulations, and to check whether the results depend on
Sytag x P 1 1 2 2 the amount of link smearing. With smearing one should
Sw o a” | | 2 1 be prepared to see large corrections, to the point that it
» becomes a challenge to determine the asymptotic
Opc x a 1 1 2 1

Symanzik power p.
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APPENDIX: SYMANZIK SCALING OF
TOPOLOGICAL CHARGE Z-FACTOR

A lattice regularized topological charge density g(x) or
(global) charge g renormalizes multiplicatively relative to
its continuum counterpart [57,58]. The respective Z-factor

Schwinger Model: 3=5.0, L/a=20, N out =0
3000 T T T T T T
2500

2000 -

1500 |

1000 -

500 -

6 -4 2 0 2 4 6

can be read off from the histogram of ¢,,, as defined in (3).
This is exemplified in Fig. 17 for (g, n) = (5.0,0). For
instance, if the peaks are near 0.9, £1.8,£2.7, ..., then
the choice Z = 1/0.9 ~ 1.11 would make Zg,,,, peak near
integer-valued numbers. To formalize this observation, one
defines

22 =3 (round(quZJV[UD - zqﬁg'@v[U]> ON)

where the sum is over all configurations in a given
ensemble. The local minimum of y? at Z > 1 defines
Z, and this renormalization condition was also used in
Refs. [59-62]. For (B, n) = (5.0,0) Fig. 18 indicates that

Schwinger Model: 3=5.0, L/a=20, nsmut=0
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FIG. 17. Histogram of the integer-valued topological charge g, (left) and of the real-valued charge g, (right) in the ensemble

p =150, L/a =20, ng,, =0 with 10000 configurations.
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FIG. 18.
before rounding, for the same ensemble as in Fig. 17.
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Dependence of 2 on Z for ng,,, = 0; the abscissa of its minimum defines Z (left). The resulting histogram of Zg,,,, (right),
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TABLE IV. Results for Z(") in the cutoff effect study as defined in Table I. Every column comprises three ensembles of 10 000

configurations each, subject to either 0, 1 or 3 stout steps.

B 32 5.0 7.2 12.8 20.0 28.8 51.2 80.0
L/a 16 20 24 32 40 48 64 80
Z(n=0) 1.2032(50) 1.1213(13) 1.0776(7) 1.0412(4) 1.0262(2) 1.0177(2) 1.0099(1) 1.0064(1)
zn=0 1.0587(15) 1.0273(04) 1.0170(1) 1.0094(0) 1.0061(0) 1.0042(0) 1.0024(0) 1.0016(0)
Z(n=3) 1.0183(11) 1.0089(02) 1.0060(1) 1.0035(0) 1.0023(0) 1.0016(0) 1.0009(0) 1.0006(0)

TABLE V. Results for Z(!) in the finite volume study as defined in Table II. Each measurement uses 10 000 configurations and a single

stout smearing step.

B 7.2 72 72 7.2 72
L/a 16 20 24 32 40
Z(n=1) 1.0171(2) 1.0170(1) 1.0170(1) 1.0171(1) 1.0172(1)

Z ~1.12 indeed aligns the peaks in the histogram to
integer values.

In Tables IV and V we summarize our results for the
topological charge renormalization factor Z for all of our
ensembles. The results depend on f and the smearing level
n; increasing either one drives the value closer to 1. After
Symanzik [46—49] one expects that

Z(p,n) =1+ const,a® + O(a*) (A2)
since both the gauge action (1) and the operator (3) admit
leading cutoff effects o a?. Our choice of setting the lattice
spacing a through the gauge coupling e implies that one
may replace a® by 1/f in the Schwinger model. The results
tabulated suggest that Z is indeed independent of the

Schwinger Model Symanzik Analysis
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FIG. 19. Z™" — 1 versus two varieties of a (left =1/, right ﬁe_f}/ 2 see text), for ngyy, = 0, 1, 3. The dotted lines are power laws « a

passing through the leftmost data point.

volume, whereupon the hypothesis (A2) contains all
relevant dependencies.

In Fig. 19 the quantity Z — 1 is plotted as a function of
p~1/% in log-log representation. The data support the
Symanzik scaling hypothesis (A2), with a prefactor which
depends on n. The dotted lines are no fits; they implement
the Symanzik power a?, with a prefactor adjusted to make
them (exactly) pass through the leftmost (most continuum-
like) data point. The left panel shows that it takes large
p-values to see good agreement with Symanzik scaling.
Reference [63] proposes to use f.; = (Un)p to set the
lattice spacing in the Schwinger model (this shifts all data
points a bit to the right). The right panel shows that this
improves things slightly for ny,, = 0, but the asymptotic
behavior (to the far left) is unchanged.
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Overall, both panels illustrate the applicability of the Symanzik scaling hypothesis (A2) for the quantity Z — 1 at each
smearing level ng,, € {0, 1,3}. The reluctance to assume Symanzik scaling and the dependence of the power p on ngy
that were reported in the main investigation are thus genuine to the fermion operators and unrelated to the smearing

procedure.
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