001052702 001__ 1052702
001052702 005__ 20260127203444.0
001052702 0247_ $$2doi$$a10.22323/1.466.0460
001052702 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01059
001052702 037__ $$aFZJ-2026-01059
001052702 1001_ $$0P:(DE-Juel1)132580$$aDurr, Stephan$$b0$$eCorresponding author$$ufzj
001052702 1112_ $$aThe 41st International Symposium on Lattice Field Theory$$cLiverpool$$d2024-07-28 - 2024-08-03$$gLATTICE2024$$wUK
001052702 245__ $$aTaste-splittings of staggered, Karsten-Wilczek and Borici-Creutz fermions under gradient flow in 2D
001052702 260__ $$c2025
001052702 3367_ $$033$$2EndNote$$aConference Paper
001052702 3367_ $$2BibTeX$$aINPROCEEDINGS
001052702 3367_ $$2DRIVER$$aconferenceObject
001052702 3367_ $$2ORCID$$aCONFERENCE_POSTER
001052702 3367_ $$2DataCite$$aOutput Types/Conference Poster
001052702 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1769503765_7752$$xAfter Call
001052702 520__ $$aKarsten-Wilczek and Borici-Creutz fermions show a near-degeneracy of the $2$ species involved, similar to the $2^{d/2}$ species of staggered fermions. Hence in $d=2$ dimensions all three formulations happen to be minimally doubled (two species). This near-degeneracy shows up both in the eigenvalue spectrum of the respective Dirac operator and in spectroscopic quantities (e.g. the pion mass), but in the former case it is easier to quantify. We use the quenched Schwinger model to determine the low-lying eigenvalues of these fermion operators at a fixed gradient flow time $τ$ (either in lattice units or in physical units, hence keeping either $τ/a^2$ or $e^2τ$ fixed at all $β$).
001052702 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001052702 588__ $$aDataset connected to CrossRef Conference
001052702 7001_ $$0P:(DE-HGF)0$$aCapitani, Stefano$$b1
001052702 773__ $$a10.22323/1.466.0460
001052702 8564_ $$uhttps://juser.fz-juelich.de/record/1052702/files/LATTICE2024_460.pdf$$yOpenAccess
001052702 909CO $$ooai:juser.fz-juelich.de:1052702$$popenaire$$popen_access$$pVDB$$pdriver
001052702 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich$$b0$$kFZJ
001052702 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001052702 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001052702 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001052702 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001052702 9801_ $$aFullTexts
001052702 980__ $$aposter
001052702 980__ $$aVDB
001052702 980__ $$aUNRESTRICTED
001052702 980__ $$aI:(DE-Juel1)JSC-20090406