000010528 001__ 10528 000010528 005__ 20240619091850.0 000010528 0247_ $$2pmid$$apmid:20394351 000010528 0247_ $$2DOI$$a10.1021/jp911358z 000010528 0247_ $$2WOS$$aWOS:000277053900004 000010528 0247_ $$2MLZ$$aFriedrichTMPP2010 000010528 037__ $$aPreJuSER-10528 000010528 041__ $$aeng 000010528 082__ $$a530 000010528 084__ $$2WoS$$aChemistry, Physical 000010528 1001_ $$0P:(DE-HGF)0$$aFriedrich, T.$$b0 000010528 245__ $$aThermoresponsive copolymer hydrogels based on n-isopropylacrylamide and cationic surfactant monomers prepared from micellar solution and microemulsion in a one-step reaction 000010528 260__ $$aWashington, DC$$bSoc.$$c2010 000010528 300__ $$a5666 - 5677 000010528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010528 3367_ $$2DataCite$$aOutput Types/Journal article 000010528 3367_ $$00$$2EndNote$$aJournal Article 000010528 3367_ $$2BibTeX$$aARTICLE 000010528 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010528 3367_ $$2DRIVER$$aarticle 000010528 440_0 $$03694$$aJournal of Physical Chemistry B$$v114$$x1520-6106$$y17 000010528 500__ $$aThis research project has been supported by the European Commission under the seventh Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract No.: 226507 (NMI3). The DFG is thanked for financial support (project TI 219/10-1 and 10-2, priority program 1256 "Intelligent hydrogels"). Prof. Dr. K. Meerholz is thanked for providing the scanning electron microscope and Ruth Broker for taking the SEM images. 000010528 520__ $$aThermoresponsive hydrogels were prepared upon radiation-induced copolymerization of aqueous micellar solutions containing N-isopropylacrylamide (NiPAAm) and a cationic surfactant monomer (surfmer), and of microemulsions containing NiPAAm, surfmer, and styrene. Three surfmer compounds were used: (11-(acryloyloxy)undecyl)trimethylammonium bromide (AUTMAB), (11-(methacryloyloxy)undecyl)trimethylammonium bromide (MUTMAB), and (2-(methacryloyloxy)ethyl)dodecyldimethylammonium bromide (MEDDAB). Comonomer solutions were studied on their phase behavior and structure using small-angle neutron scattering (SANS). The presence of surfmers increased the solubility of NiPAAm in the aqueous phase. SANS studies indicate that the surfmers form spherical micelles, which in the presence of styrene are increased and in the presence of NiPAAm are decreased in size. Styrene is incorporated in the core, and NiPAAm is incorporated in the shell of the micelles. If styrene and NiPAAm are present, the effects of both compensate each other, the micelle size remains unchanged, and only small amounts of styrene are solubilized. Evaluation of scattering curves indicated remarkable changes in headgroup dissociation of surfmers in the presence of NiPAAm in the micellar solutions. If exposed to (60)Co-gamma irradiation (dose: 80 kGy), stable, transparent, and thermoresponsive hydrogels were directly obtained. The lower critical solution temperature (LCST) of gels containing surfmer in low concentration was higher than that for pure NiPAAm gels, whereas in gels with high surfmer concentration it was lower. The lowest LCST was observed if MEDDAB was present in the gel. 1 % (w/w) was already sufficient to lower the LCST from 33.2 to 28.5 degrees C. Gels with low surfmer concentration (< or = 1 wt %) exhibited a strong, rapid swelling in water at 20 degrees C and a rapid and reversible shrinking at 50 degrees C. For a gel containing 1% AUTMAB, the swelling ratio was 2.4 times higher (MUTMAB, 2.8; MEDDAB, 1.5) than that for a pure NiPAAm gel. Copolymer gels containing more than 1 wt % surfmer exhibited a strong and rapid swelling below and above the LCST, because the copolymerized ionic surfmer induced an osmotic pressure in the gel. The effects of a variation of NiPAAm and surfmer concentration were studied, and the origins of the thermoresponsive properties are discussed. 000010528 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0 000010528 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1 000010528 536__ $$0G:(EU-Grant)226507$$aNMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy (226507)$$c226507$$fFP7-INFRASTRUCTURES-2008-1$$x2 000010528 588__ $$aDataset connected to Web of Science, Pubmed 000010528 650_7 $$2WoSType$$aJ 000010528 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0 000010528 7001_ $$0P:(DE-HGF)0$$aTieke, B.$$b1 000010528 7001_ $$0P:(DE-Juel1)VDB2821$$aMeyer, M.$$b2$$uFZJ 000010528 7001_ $$0P:(DE-Juel1)VDB4207$$aPyckhout-Hintzen, W.$$b3$$uFZJ 000010528 7001_ $$0P:(DE-Juel1)VDB4339$$aPipich, V.$$b4$$uFZJ 000010528 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp911358z$$gVol. 114, p. 5666 - 5677$$p5666 - 5677$$q114<5666 - 5677$$tThe @journal of physical chemistry <Washington, DC> / B$$v114$$x1520-6106$$y2010 000010528 8567_ $$uhttp://dx.doi.org/10.1021/jp911358z 000010528 909CO $$ooai:juser.fz-juelich.de:10528$$pec_fundedresources$$pVDB$$popenaire 000010528 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010528 9141_ $$y2010 000010528 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0 000010528 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1 000010528 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0 000010528 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x0 000010528 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x1 000010528 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2 000010528 970__ $$aVDB:(DE-Juel1)120884 000010528 980__ $$aVDB 000010528 980__ $$aConvertedRecord 000010528 980__ $$ajournal 000010528 980__ $$aI:(DE-Juel1)ICS-1-20110106 000010528 980__ $$aI:(DE-Juel1)PGI-4-20110106 000010528 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000010528 980__ $$aUNRESTRICTED 000010528 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000010528 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000010528 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128 000010528 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000010528 981__ $$aI:(DE-Juel1)IBI-8-20200312 000010528 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000010528 981__ $$aI:(DE-Juel1)ICS-1-20110106 000010528 981__ $$aI:(DE-Juel1)PGI-4-20110106 000010528 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000010528 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000010528 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128