001052955 001__ 1052955
001052955 005__ 20260128204148.0
001052955 0247_ $$2doi$$a10.1002/anie.202319341
001052955 0247_ $$2ISSN$$a1433-7851
001052955 0247_ $$2ISSN$$a0570-0833
001052955 0247_ $$2ISSN$$a1521-3773
001052955 037__ $$aFZJ-2026-01305
001052955 082__ $$a540
001052955 1001_ $$00000-0002-8187-5903$$aGierse, Martin$$b0
001052955 245__ $$aHyperpolarizing Small Molecules using Parahydrogen and Solid‐State Spin Diffusion
001052955 260__ $$aWeinheim$$bWiley-VCH$$c2024
001052955 3367_ $$2DRIVER$$aarticle
001052955 3367_ $$2DataCite$$aOutput Types/Journal article
001052955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769598480_30769
001052955 3367_ $$2BibTeX$$aARTICLE
001052955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001052955 3367_ $$00$$2EndNote$$aJournal Article
001052955 520__ $$aParahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H2. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high 13C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto 13C spins of the target, which can then be dissolved for solution-state applications. We name this method PHIP-SSD (PHIP with solid-state spin diffusion) and demonstrate it using PHIP-polarized [1-13C]-fumarate as the source molecule, to polarize different 13C-labelled target molecules. 13C polarizations of between 0.01 and 3 % were measured on [1-13C]-benzoic acid, depending on the molar ratio of fumarate:benzoate in the solid state. We also show that PHIP-SSD does not require specific co-crystallization conditions by grinding dry powders of target molecules together with solid fumarate crystals, and obtain 13C signal enhancements of between 100 and 200 on [13C,15N2]-urea, [1-13C]-pyruvate, and [1-13C]-benzoic acid. This approach appears to be a promising new strategy for facile hyperpolarization based on PHIP.
001052955 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001052955 588__ $$aDataset connected to DataCite
001052955 7001_ $$00000-0003-4935-6115$$aDagys, Laurynas$$b1
001052955 7001_ $$0P:(DE-HGF)0$$aKeim, Michael$$b2
001052955 7001_ $$0P:(DE-HGF)0$$aLucas, Sebastian$$b3
001052955 7001_ $$0P:(DE-HGF)0$$aJosten, Felix$$b4
001052955 7001_ $$00000-0003-4238-8843$$aPlenio, Martin B.$$b5
001052955 7001_ $$0P:(DE-HGF)0$$aSchwartz, Ilai$$b6$$eCorresponding author
001052955 7001_ $$00000-0002-8487-4324$$aKnecht, Stephan$$b7$$eCorresponding author
001052955 7001_ $$0P:(DE-Juel1)204392$$aEills, James$$b8$$eCorresponding author$$ufzj
001052955 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202319341$$gVol. 63, no. 34, p. e202319341$$n34$$pe202319341$$tAngewandte Chemie / International edition$$v63$$x1433-7851$$y2024
001052955 909CO $$ooai:juser.fz-juelich.de:1052955$$pVDB
001052955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204392$$aForschungszentrum Jülich$$b8$$kFZJ
001052955 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001052955 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001052955 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
001052955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001052955 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2022$$d2024-12-16
001052955 920__ $$lyes
001052955 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001052955 980__ $$ajournal
001052955 980__ $$aVDB
001052955 980__ $$aI:(DE-Juel1)IBI-7-20200312
001052955 980__ $$aUNRESTRICTED