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11 Abstract: Field-scale estimation of evapotranspiration (ET) using high-resolution data supports water conservation

12 andyield optimization by enabling localized water use monitoring and early detection of crop stress. This study applies
13 the Priestley-Taylor Two-Source Energy Balance (TSEB-PT) model at 15 cm resolution using unmanned aerial
14 vehicle (UAV) data over a 10-hectare field across three seasons: sugar beet (2021), potato (2022), and winter wheat
15  (2023). Key inputs included thermal infrared (TIR) for land surface temperature (LST), multispectral (MS) and LiDAR
16  data for canopy characterization, and a fusion of MS derived green area index (GAI) and LiDAR derived plant area
17 index (PAI) to derive the fraction of green LAI (fy). Model outputs were validated against eddy covariance (EC) flux
18 data using footprint modeling. Results showed high sensitivity to LST, emphasizing the importance of accurate
19 thermal calibration. While both GAI and PAI provided comparable LAI inputs during peak growth, GAI better
20 captured functional canopy decline during stress and senescence, especially in winter wheat, where dense structure
21 led to cooling effects unrelated to transpiration. Dynamic fq improved ET accuracy across all crops, particularly under
22 declining canopy function. Overall, TSEB-PT showed strong agreement with EC measurements (RMSE = 0.14 mm/h,
23 R? = 0.49; R2 = 0.81 excluding senescence). UAV TIR based ET maps also revealed early stress signals prior to
24 changes in MS or LIiDAR based metrics. This study demonstrates the value of integrating very-high-resolution UAV
25 data with the TSEB-PT model for multi-crop and season-long ET monitoring and early stress detection.
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32 1. Introduction

33 Evapotranspiration (ET), the combined loss of water through soil evaporation and plant transpiration, is the second-
34 largest flux in the hydrological cycle after precipitation (Allen et al., 1998). ET plays a critical role in water resource
35 allocation and irrigation scheduling (Wang et al., 2014). Plant health and biomass production is closely linked to
36  transpiration, which depends on soil water availability and is regulated by stomatal and environmental conditions.
37 Accurate, timely estimation of ET at the field scale is essential for optimizing irrigation schedules, improving water
38 use efficiency (WUE) (Pereira & Pires, 2011), and supporting sustainable agriculture amid increasing water scarcity
39  and climate variability (Colaizzi, 2016).

40 Conventional ET measurement methods, such as lysimeters, sap flow sensors, and eddy covariance (EC) systems
41 (ang et al., 2019), offer high temporal resolution but are limited in spatial coverage, making them inadequate for
42 capturing within-field variability critical to precision irrigation Yao et al., 2017). Additionally, these systems are
43 costly, making large-scale monitoring impractical (Yao et al., 2017). Satellite and airborne remote sensing approaches
44 improve spatial coverage but often lack the resolution needed for dynamic crop monitoring. Manned aircraft, while
45 capable of very-high-resolution observations, are costly and operationally demanding (Bellvert et al., 2020; Hunt Jr.
46 & Daughtry, 2018).

47 Recent advances in unmanned aerial vehicles (UAV) and lightweight, very-high-resolution uncooled thermal infrared
48 (TIR) sensors now enable on-demand, field-scale ET monitoring. UAV platforms offer both high spatial and temporal
49  resolution, allowing for detailed detection of crop water stress and rapid changes in canopy function (Niu et al., 2020).
50 TIR remote sensing in the 8-14 um range is a key component of energy balance models, as land surface temperature
51 (LST) serves as a direct proxy for canopy transpiration and stomatal regulation if crop aerodynamics are known
52 (Tanner, 1963). Anderson et al. (2024) further reviewed the development of TIR based energy balance models, which

53 link vertical temperature gradients to sensible heat flux by modeling resistance, surface, and vegetation interactions.

54 Popular and widely used models such as SEBAL and METRIC estimate ET using TIR derived LST and LAI data
55 (Mohan et al., 2020), but their one-source energy balance formulations treat the land surface as a single layer. They
56 rely on hot/cold (not transpiring/ fully transpiring) anchor pixels to infer ET extremes, with no explicit representation
57 of soil-canopy interactions or functional canopy condition. This oversimplification can lead to inaccuracies (Niu et
58 al., 2020), especially in heterogeneous or partially senescent fields, where vegetation structure and function vary
59 spatially. However, even though these models are typically used with satellite based remote sensing, they have also
60 been applied with UAV studies (Chandel et al., 2020; Mokhtari et al., 2021; Niu et al., 2019). Some UAV based
61 studies have applied simplified alternatives such as the Deriving Atmosphere Turbulent Transport Useful To Dummies
62 Using Temperature (DATTUTDUT) (EllsaRer et al., 2020) or the Simple Algorithm for Evapotranspiration Retrieving
63 (SAFER) (de Lima et al., 2024) but have similar constraints for very-high-resolution data at field scale.

64  Alternatively, Two-Source Energy Balance (TSEB) models partition energy fluxes between soil and vegetation, each

65  with distinct resistances (Norman et al., 1995). It is considered one of the most robust and widely used (Nieto, 2022;



https://doi.org/10.5194/egusphere-2025-3919
Preprint. Discussion started: 21 August 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

66 Nassar et al., 2020) while often outperforming OSEB models like SEBAL or METRIC when compared (Guzinski et
67 al., 2020; Brenner et al., 2018; Jaafar et al., 2022; Tao et al., 2024; Xia et al., 2016) especially in variable and sparse
68  vegetation cover (Garcia-Santos et al., 2022; Derardja et al., 2024). There are several versions but the most commonly
69 used is the Priestley-Taylor version (TSEB-PT) (Colaizzi et al., 2014). Additionally, TSEB-PT incorporates fraction
70 of green LAI (fg) within the Priestley-Taylor formulation which allows the model to dynamically scale transpiration
71 based on the fraction of functioning canopy. This makes it especially suitable for modeling at high spatial resolution
72 with heterogeneous canopy covers from partial stress and senescence conditions. Furthermore, TSEB-PT version
73 avoids uncertainties tied to vapor pressure as opposed to the Penman—Monteith (TSEB-PM) version, which simplifies
74 deployment for UAV based applications (Colaizzi et al., 2014). The TSEB-PT model has been used with several UAV
75 crop studies including wheat (Gémez-Candoén et al., 2021), Barley (Hoffmann et al., 2016); Sorghum (Tunca et al.,
76 2023a), Pomegranate (Niu et al., 2019), but with most being vineyards (Gao et al., 2021, 2023; Nassar et al., 2020,
77 2021, 2022; Nieto et al., 2019; Ortiz et al., 2019; Xia et al., 2016).

78 Recently, machine learning (ML) methods have been applied to ET estimation using multispectral, thermal, and
79 auxiliary data (Amani et al., 2023; Liyew et al., 2025). ML models often depend on large, high-quality ground data
80 such as lysimeters (Kavya and Mahadevaiah et al., 2024) or eddy covariance systems (Liu et al., 2021), resources that
81 are expensive, sparse, and highly site-specific, limiting their scalability for field-scale operational use
82 (Hirschi et al., 2017) and are time consuming (Garcia-Santos et al., 2022). Moreover, ML models struggle to transfer
83 accurately to different locations or crop systems (Shi, 2024). In contrast, physically based models like TSEB-PT, when
84 paired with UAV-sensor inputs, offer robust, interpretable, and transferable ET estimations across different crops and

85  environments.

86  With these considerations in mind, we apply the TSEB-PT model for robust, multi-season UAV based ET estimation
87 using very-high-resolution thermal infrared (TIR), multispectral (MS), and LiDAR data. However, small-uncooled
88 TIR sensors are prone to radiometric drift and environmental noise, often requiring ground references to correct LST
89 biases (Kelly et al., 2019). Modeling canopy resistance also hinges on reliable LAI estimates. MS derived green area
90 index (GAI), which reflects pigment concentration, is widely used but susceptible to saturation in dense canopies
91 (Bukowiecki et al., 2020; Zheng & Moskal, 2009). In contrast, LiDAR is increasingly being used for crop LAI type
92 estimations (Bates et al., 2021; Hiitt et al., 2022; Dreier et al., 2025). LiDAR derived plant area index (PAI) captures
93 structural canopy density and reduces saturation-related errors (Bates et al., 2021; Ma et al., 2021). The fraction of
94 green LAI (fg), an indicator of photosynthetically active canopy, is rarely used in UAV based TSEB-PT studies. When
95 included, it is typically assumed spatially constant (Hoffmann et al., 2016) or derived from sparse ground samples (Li
96 et al., 2019) or NDVI based estimates, which lack structural depth (Nassar et al., 2022; Mendiguren et al., 2017). In
97 this study, we leverage the complementary strengths of MS (GAI) and LiDAR (PAI) to generate dynamic, spatially
98 explicit fy estimates at pixel level. This has the potential to improved transpiration modeling that accounts for both

99 canopy structure and physiological function.
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100 Our study expands UAV based TSEB-PT modeling across three crop types, sugar beet, potato, and winter wheat,
101 spanning full growing seasons, with validation against EC data. Beyond validation, we evaluate how the model
102 captures field-scale ET variability and early signals of water stress. Specifically, we assess the sensitivity of ET to
103  thermal calibration, compare GAI and PAI as LAl inputs, and test the impact of incorporating fy derived from MS-
104 LiDAR fusion. By testing these components under operational UAV conditions, this work advances the use of TSEB-

105 PT for spatially adaptive, near real-time irrigation management in precision agriculture.
106 2. Methods

107  2.1. Study area

108  The study was conducted at the ICOS Class 1 ecosystem site DE-RuS within the TERENO Eifel Rur observatory in
109  Selhausen, Germany (50°51'56"N, 6°27'03"E) (https://ddp.tereno.net/ddp/). The 10-hectare field is situated at 101
110 103 m above mean sea level with the soil consisting of Pleistocene loess, Holocene translocated loess, with sand and
111  gravel at deeper levels (Brogi et al., 2020). The western section has shallower sand and gravel deposits, creating spatial
112  variability in crop growth, especially during water-scarce periods. Weather conditions including precipitation and air

113  temperature, during the experiment periods can be found in the appendix (see Tab. C1 & Fig. C6).
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114
115 Figure 1: The field experiment site (left) with the EC and meteorological station located in the center of the field. The
116 different crop cover type for each year (right) with example images of plant structure and fraction of vegetation coverage
117  over the field throughout each growing season.

118  The field experiment site, shown in Fig. 1, was monitored over three growing seasons with different crops each year.
119 In 2021, sugar beet was planted from May to October, starting with 20% vegetation cover and reaching 98% by
120 harvest. In 2022, potatoes were grown from May to August, beginning with 5% cover and closing at 87%, with ridges
121 between rows. In 2023, winter wheat was planted from April to July, maintaining 94-98% cover, with senescence
122 marked by visible leaf browning. Only the potato crop was irrigated, receiving three 30 mm applications in July. These
123 crop and soil variations provide a basis to evaluate the robustness of very-high-resolution UAV data in ET models
124 like TSEB-PT.

125  2.2. UAV measurements and processing
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126  Two DJI Matrice 600 UAV were used, one carrying a LiDAR payload and the other a combined MS and TIR setup
127 (Fig. 2). The LIiDAR system included a YellowScan Surveyor with a Velodyne VLP-16 scanner and Applanix APX15
128 GNSS-IMU, capturing 300,000 pulses/sec at 903 nm with ~4 cm precision. Flights were conducted at 50 m altitude
129 and 8 m/s with 50% side overlap. A Septentrio Altus NR3 GNSS base station was used for georeferencing. LIDAR
130  data were processed using POSPac (v8.6) and YellowScan’s CloudStation.

Weather Station / EC Tower
LiDAR DGPS

= Thermal-R |
Multispectral ,

131 (2) (b)

132 Figure 2: View of the DJI Matrice 600 UAV platforms that were used while flying over the field experiment site. (a) The
133 M600 mounted with the YellowScan LiDAR Surveyor and DJI Zenmuse X1 RGB sensor. (b) The M600 with the FLIR Vue
134 Pro R thermal IR modified with a ThermalCapture external heated shutter and Micasense Red-edge M multispectral

135 sensors mounted on a 3-axis gyro system for nadir imagery.

136  TheTIR sensor, a FLIR Vue Pro R 640 (13 mm), covered the 7.5-13.5 pm range with £5°C accuracy and was modified
137  with a heated shutter (ThermalCapture, AirRobot® GmbH & Co.) for improved inflight calibration. The MS sensor,
138  a MicaSense RedEdge-M (AgEagle Aerial Systems Inc.), captured five spectral bands; red (663-673 nm) and NIR
139  (820-860 nm) bands were used to calculate NDVI. Both sensors were mounted on a 3-axis gimbal and flown at 100
140  m altitude and 6 m/s, with approximately 90% image overlap. TIR calibration used internal corrections and ground
141  temperature reference targets, while MS data were calibrated using a reflectance panel. Data from both platforms were
142 processed in Pix4D. Flight campaign details are in the appendix (Tab. C1).

143 2.4 UAV data products and model implementation

144  TSEB-PT inputs fall into two categories: (1) surface boundary conditions derived from UAV data, including land
145  surface temperature (LST), fractional vegetation cover (f.), leaf area index (LAI), canopy height (h), and the fraction
146  of green LAI (fy); and (2) meteorological forcing variables, including air temperature (Ta), wind speed (u), vapor
147 pressure (ea), and incoming solar radiation (Rn). UAV derived variables were processed and calibrated using ground
148 measurements, with detailed methods outlined in Sections 2.4.1-2.4.5. Data processing and raster manipulation were
149  conducted in RStudio using the raster and lidR packages. All datasets were resampled to a common 15 cm ground
150 sampling distance (GSD). The full UAV processing and model integration workflow is illustrated in Fig. 3.
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153 model incorporates two categories of inputs: (1) surface boundary conditions and (2) meteorological forcing variables. Key
154 UAV derived inputs, LST (original vs. corrected), LAl (LiDAR derived PAI vs. MS derived GAIl), and fq (default = 1 vs.
155 UAV derived), were varied across model runs to assess their impact. Section 3.2 compares ET outputs using different LST
156 inputs; Section 3.3 evaluates the influence of LAI source and the inclusion of fy during senescence. Final ET estimates
157 (mm/h) are validated against eddy covariance (EC) flux measurements within the modeled EC footprint area.

158  2.4.1. Land surface temperature (LST) maps

159  To convert incoming longwave radiance from the TIR microbolometers into LST, surface emissivity values were
160  required. Constant emissivity values were assigned to each crop type based on a literature review. Although vegetation
161  and bare soil exhibit different emissivity values, their differences were deemed negligible for the purposes of this
162 study. Additional radiometric calibration parameters including air temperature, relative humidity, and the distance
163  from the sensor to the target surface were input into the FLIR Vue Pro R sensor prior to each flight.

164  Uncooled thermal sensors on UAV platforms, such as the FLIR Vue Pro R, are prone to radiometric instability. This
165 is largely due to inconsistencies in the default internal non-uniformity correction (NUC) applied to the microbolometer
166  focal plane array. To improve calibration consistency, an external heated shutter was employed. Previous studies have
167 reported that the use of such shutters can increase temperature measurement accuracy by up to 70% (Virtue et al.,
168  2021). Another major source of radiometric noise arises from the sensor’s own temperature and its interaction with

169  the environment. Up to fourfold of the total signal noise can be attributed to sensor self-heating (Budzier & Gerlach,
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170 2015; Gogler et al., 2014; Sagan et al., 2019). In addition, Kelly et al. (2019) demonstrated that wind exposure can
171 destabilize sensor readings. To mitigate these effects, the thermal sensor was housed within a custom 3D-printed
172 enclosure designed for thermal insulation and wind shielding. Furthermore, flights were conducted at reduced speeds

173  to minimize wind-induced variability in sensor temperature.

174 Once radiometric calibration and sensor stability were addressed, LST accuracy was assessed using ground based
175  reference targets. In the 2021 field season, a hot blackbody target (metallic surface) and a cold water body were
176  deployed, and thermal images were captured before and after each flight at 100 meters AGL (Fig. C2). Notably, Virtue
177  etal. (2021) reported that with the use of an external heated shutter, reference targets are no longer essential throughout
178  the entire flight but just one reference image due to improved thermal stability. A consistent temperature offset was
179  observed. To correct for this in subsequent seasons, a multiple linear regression model was developed using the 2021
180  reference data. This model incorporated environmental variables (wind speed, air temperature, and humidity) to
181  generate corrected temperature offsets. Two types of LST inputs were ultimately used in the TSEB model: (1) the
182 original temperature (OG), based solely on the sensor’s internal radiometric calibration, and (2) the target-corrected

183  temperature (TC), which applied the offset corrections derived from reference targets and the regression model.

184  2.4.2. Leaf area index (LAI)

185 Two types of LAI inputs were used in the TSEB-PT model: multispectral (MS) based green area index (GAI) and
186 LiDAR based plant area index (PAI). GAl is derived from spectral reflectance and represents the photosynthetically
187 active portion of the canopy (Park et al., 2021; Wei et al., 2023), while PAI is derived from LiDAR returns and reflects
188 the total canopy structure, essentially independent of pigment content (Bates et al., 2021). Both metrics serve as
189 proxies for LA, before senescence onset, due to their established relationships with leaf biophysical traits (Tan et al.,
190  2020; Maet al., 2021).

191 GAI and PAI were calculated using a modified Beer—Lambert law, a widely used approach for modeling light
192  attenuation in plant canopies (Ali et al., 2015; Thorp et al., 2010). GAI was estimated from MS derived fractional
193  vegetation cover (FVC) (See Eq. B1 in appendix), while PAI was derived from LiDAR based gap fraction (GF) (See
194 Eq. B3 in appendix). A commonly used pixel based approach was used to estimate FVC (Jia et al., 2017; Yue et al.,
195 2021; Zhang et al., 2019). NDVI was applied to differentiate vegetation amounts and soil, with thresholds determined
196  using NDVI histograms spanning the entire growing season. GF is defined as the proportion of laser pulses reaching
197 the ground relative to total canopy returns within each raster cell. The extinction coefficient (k) was calibrated using
198  proven (Oguntunde et al., 2012) in-field SunScan ceptometer LAl measurements and applied inversely to solve for
199 GAl and PAI (see Eq. B2 & B4 in appendix B). Given limited ground samples per date (four CP zones), this semi-

200 empirical method offered a balance with the limited ground LAI samples available.

201 Due to known variability in k across growth stages, especially during early canopy development, 2-3 k values were

202 assigned per growing season, as recommended by Brogi et al. (2020) and Bates et al. (2021). Adjustments were
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203 typically made after the first 2-3 sampling dates when canopy architecture changed rapidly. Thereafter, k was held
204 constant through peak growth and harvest.

205  2.4.3.Fraction of green LAI (fy)

206 To capitalize on the functional and structural canopy signals captured by GAI and PAI, we computed the fraction of
207 green LAI (fy), defined as the proportion of the total canopy (PAI) that remains photosynthetically active and capable
208  of transpiring. fy was calculated as the ratio of GAI to PAI:

_ _ (~log(1-FvC) - cos(68) In(GF)
209 f, = Gal/pal = ( — )/( - ) Q)
210  where 6 is the LiDAR scan angle, and k., is the extinction coefficient derived from peak LAI prior to senescence.
211 This formulation enables fy to dynamically reflect changes in both pigment based canopy function and structural
212 density.

213 The fy input was set to 1 before senescence, assuming full canopy greenness and maximum transpiration capacity.
214 After senescence onset, fy values dropped based on relative differences between GAI and PAL, allowing the model to
215 scale transpiration potential accordingly. Senescence timing varied by crop and was identified from field observations
216 and GAI trends. For sugar beet (2021), senescence began after August 13 (three late-season dates); for potato (2022),
217 after August 3 (one senescence date); and for winter wheat (2023), senescence onset was spatially variable and

218  occurred as early as May 13, with six identified dates.
219  2.4.4. Fractional cover (fc)

220 In TSEB-PT, f; can be specified directly, however, when a LAI input is provided the model automatically computes
221 fc via the Beer—Lambert law (see Eg. A1l in appendix). This internal derivation maintains consistency in how net
222 radiation is partitioned between soil and canopy, directly linking canopy area (whether structural or pigment-derived)
223  to modeled fluxes. From the TSEB perspective, f. should represent physical cover (Norman et al., 1995) as it governs
224 canopy shading and soil radiation exposure which would best be based on structural LAI (PAI) as opposed to GAI.
225 Therefore, in our fy implementation we use PAI as the LAI input to ensure f; better reflects actual canopy geometry
226  and shading.

227  2.4.5.Crop height (hc)

228 A method of difference of digital elevation models (DoD) was used to produce the h; also commonly referred to as
229 canopy height model (CHM) (see Eqg. B5 in appendix B). A flight campaign was conducted before the emergence of
230  the crops for a bare soil measurement to determine the digital terrain model (DT M,). The remaining campaigns were
231  those with crop surface structures to derive the digital surface model (DSM,) for that particular campaign date. Having

232 bare soil terrain data rather than using the ground points of the LiDAR for each campaign is better in decreasing
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233 needed interpolations that would decrease the overall accuracy (Cao et al., 2019). The maximum values per pixel were
234 taken when subtracting the DT M, from the DSM,.

235  2.4.6 TSEB-PT model and contributions of UAV Derived Inputs

236  The TSEB-PT model partitions net radiation (Rn) into latent (LE), sensible (H), and ground (G) heat fluxes, with LE
237  converted to evapotranspiration (ET, mm/h). The model was implemented using the pyTSEB library (Nieto et al.,
238 2018). Figure 4 and Table 1 illustrate how each UAV derived variable informs distinct model components and their
239 representation of surface—atmosphere interactions. Model equations are detailed in Eq. A1-A13 in the appendix and
240  Norman et al., (1995).

241 Table 1: UAV derived model inputs, their influences within the model, and equation with which they are used.

UAYV Input Role in Model Equation(s)
Surface temperature (Te,Ts) Drives partitioning and energy balance A5, A6, A10
Fractional cover (f) Radiative separation of canopy/soil temps Al10
Leaf Area Index (LAI) Canopy resistance and transpiration estimation A8, All
Green LAl fraction (fg) Controls LE; in Priestley-Taylor term All
Crop height (hc) Aerodynamic roughness estimation A8, A9 (via do, z0)

242 LST is a primary driver of H, representing the radiometric temperature of the combined canopy and soil surface. In
243  vegetated areas, it influences aerodynamic surface temperature and temperature gradients critical for energy balance
244 closure. LST, in conjunction with vapor pressure deficit (VPD), helps detect plant water stress, elevated LST and low
245 transpiration under high VPD suggest stress. The f. partitions energy fluxes between soil and vegetation. Higher f;

246  increases the canopy’s contribution to Rn and LE, thus generally elevating ET while reducing G and Hs.

247 The LAI input, MS-GAI or LIiDAR-PAI in this use case, affects aerodynamic (R.) and canopy (Ry) resistances; higher
248 LAI (more stomata) reduces Ry enhancing transpiration and LE. The fq input captures the proportion of active
249  vegetation within the structural LAL. It adjusts the Priestley-Taylor coefficient (0. PT) to reduce LE estimates during
250  senescence or stress, preventing overestimation of transpiration. This is especially relevant in dense and tall crops,
251 where inner canopy cooling can be misattributed to transpiration without accurate fq representation (Elfarkh et al.,
252 2020; Kustas et al., 2016).

253  The hc input influences R, by determining surface roughness (z,) and displacement height (d), key variables for
254 modeling turbulent heat exchange with the atmosphere. Taller canopies enhance aerodynamic coupling and energy
255 dissipation, favoring higher ET. In contrast, shorter vegetation limits this exchange, increasing sensible heat flux (H)
256 and reducing evaporative cooling. Also, hc indirectly affects Ry, for defining boundary-layer development and vertical

257  wind attenuation.
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TSEB-PT Model Concept and UAV Data Contributions
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281 3. Results

282  3.1. UAV data derived model inputs
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Figure 4: Schematic and data illustration of UAV derived inputs used in the TSEB-PT model. The left panel shows the
model architecture, highlighting the partitioning of net radiation (Rn) into latent (LE), sensible (H), and ground (G) heat
fluxes, and how UAV derived variables (color coded) influence each component. Key inputs include land surface
temperature (LST), leaf area index (LAI), fraction of green LAI (fg), fractional vegetation cover (fc), and canopy height (hc).
The right panel displays spatial maps of LST, fc, GAI, PAI, and fg, along with a sample transect of the LiDAR 3D point
cloud used to derive hc and PAI. Data are shown for a sugar beet field, illustrating seasonal transitions in vegetation
structure and function. Together, these inputs improve spatially explicit energy balance partitioning and ET estimation,
particularly under variable vegetation conditions, such as during senescence. Abbreviations: Ra (s/m): aerodynamic
resistance; Rx (s/m): canopy (bulk stomatal) resistance; Rs(s/m): soil resistance; Tc (K): canopy temperature; Ts (K): soil
surface temperature; u (m/s): wind speed; ea (kPa): actual vapor pressure; zo (m): surface roughness length; d (m): zero-
plane displacement height; a_PT (-): Priestley—Taylor coefficient (modified here by fq); LEc, He (W/m?): Component fluxes

Ground measurements were obtained from various instruments to support UAV data validation and model calibration.
EC flux data, processed according to ICOS standards, were used to validate UAV derived ET estimates. EC
measurements, including wind speed, direction, and water vapor concentration, were used to compute vertical fluxes
related to ET (Ghiat et al., 2021). The footprint of the EC flux station was estimated using the footprint prediction
model (FPP) in RStudio (Kljun et al., 2015), which accounts for micro-meteorological conditions and surface
roughness. These footprints were calculated in correspondence within the duration of each UAV flight. UAV based
TSEB-PT evapotranspiration (ET) estimates were compared to eddy covariance (EC) measurements by extracting the

weighted average of raster pixel values within the 90% flux footprint extent. Each flux footprint can be seen in
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283  The thermal infrared (TIR) data collected by the UAV consistently underestimated ground surface temperature when
284 compared to in-field reference targets during the 2021 season. The uncorrected TIR data showed a mean RMSE of
285  4.19°Crelative to thermometer readings but maintained strong agreement in relative temperature patterns across dates
286 (R% = 0.97). After applying corrections using ground reference targets, the seasonal RMSE improved to 2.78 °C.
287 Sensor offset (RMSE) was most strongly correlated with increased air temperature (0.74), followed by higher wind
288 speed (0.55) and denser humidity (0.34). Based on these relationships, a multiple linear regression model was
289 developed to predict and correct TIR sensor bias. This model was applied to subsequent field seasons, resulting in an
290 average increase of 2.2 °C in the LST orthomosaics to improve temporal consistency across acquisition dates. These

291  shiftsin LST values before and after correction are illustrated in Fig. 5.
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292
293 Figure 5: (a) The comparison of UAV average temperatures of the ground targets as compared to the average of the
294 recorded temperatures of the thermometers. (b) Correlation of weather conditions with the difference (delta) between the
295 thermal sensor and actual temperature of ground thermal targets for each date.

296 For LAI estimation, both multispectral derived green area index (GAI) and LiDAR derived plant area index (PAI)
297  were evaluated against ground based ceptometer LAI measurements. Across all three crops, PAI estimates were
298  consistently more accurate, with lower RMSE values and higher correlation to field observations. Specifically, PAI
299 achieved R2 values of 0.99 for all three crops and an overall RMSE of 0.27 m?/m2, whereas GAI showed greater
300  variability, especially in winter wheat, resulting in an overall RMSE of 1.02 m?/m2 and R2 of 0.88. The discrepancy
301 between GAI and PAI was most evident during senescence, when chlorophyll degradation reduced the spectral signal
302 used in GAI estimation, while LiDAR still captured high canopy structural density. These results highlight the
303  functional-structural divergence between optical and structural measurements of LAI, especially under changing
304  vegetation conditions. A comparison of GAI and PAI estimates against ground LAI measurements at the field scale is
305  shown in Fig. 6.

306
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308 Figure 6: Field averaged UAV derived green area index (GAI) and plant area index (PAI) compared to ground based
309 ceptometer LAl measurements across each campaign for three growing seasons. Ground measurements conclude prior to
310 the onset of senescence, during which divergence between GAl and PAI becomes more pronounced due to declining

311  pigment content in the canopy.

312 UAV derived canopy height (hc) showed strong agreement with ground based measuring stick observations across all
313 crops. In the 2023 winter wheat season, where canopy structure was most uniform, h. estimation achieved excellent
314  accuracy (RMSE = 0.01 m, R = 0.99). Lower accuracy was observed in potato (RMSE = 0.12 m), likely due to the
315 effects of ridge planting and heterogeneous canopy closure within sampled areas. Despite this, the UAV LiDAR
316 system provided reliable height estimates across all crops, with an overall RMSE of 0.06 m and R? = 0.90. These
317 results support the suitability of UAV based h. for use in aerodynamic roughness parameterization within the TSEB-
318 PT model. A comparison of UAV derived and ground measured canopy heights is shown in Fig. 7.

— Ground Measuring Stick h,

Crop Height (m)

T T T

S &I W KRR & & & 3 & & L S S S S
2o R 5" &3 Q N R N & & WS N

SIPTES T #7979 o7 9T N TN O g
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320 Figure 7: Comparison of UAV LiDAR derived canopy height (hc) and ground based measuring stick data for each season.
321 UAV derived values represent field wide averages, while ground measurements reflect averages within designated control
322 point (CP) zones.

323 3.2. Accuracy and sensitivity of TSEB-PT ET estimates from UAV thermal corrections

324 To assess the impact of radiometric calibration on ET model performance, we compared TSEB-PT estimates derived
325  from original (LSToc) and target corrected (LST+c) UAV thermal imagery against EC derived ET values across all
326  three crop seasons as seen in Fig. 8.
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Figure 8: Comparison of UAV derived TSEB-PT ET estimates for each season using two different TIR inputs: uncorrected
original (OG) and target corrected (TC) LST data. ET outputs are compared against eddy covariance (EC) measurements

within the corresponding flux footprint for each campaign.
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Figure 9: RMSE and R2 between modeled TSEB-PT ET and EC derived ET, averaged over the EC flux footprint. Two
TSEB-PT model runs are compared based on land surface temperature (LST) input: original (OG) and target corrected
(TC). Statistical metrics are presented for the entire growing season and excluding senescence periods, highlighting the

influence of canopy condition on model performance.

Referring to Fig. 9, across all three crops, the use of target corrected LST (LST+c) inputs reduced overall RMSE,
indicating improved absolute agreement between TSEB-PT ET estimates and EC observations. For example, both
sugar beet and winter wheat showed seasonal RMSE reductions of approximately 0.5 mm/h. However, while thermal
correction enhanced the absolute accuracy of LST and the resulting ET values, it also introduced temporal smoothing,
which in some cases reduced the model’s sensitivity to short-term variability. This was most evident in the 2021 sugar
beet season, where R2 declined from 0.50 (LSTog) to 0.32 (LSTrc) despite improved RMSE. Although R2 decreased

slightly, the improved thermal realism from corrected LST values enhances the physical accuracy of ET estimates.

In all three crop seasons, omitting campaign dates during crop senescence, showed that the model estimations

performed significantly better before physiological decline of the crops. The most pronounced improvement was

EGUsphere\
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observed in sugar beet, where RMSE decreased from 0.16 to 0.11 mm/h and R2 increased from 0.32 to 0.79 when

using LST+c.
3.3. Accuracy and sensitivity of TSEB-PT ET estimations from different UAV based LAI inputs

Building on the thermal correction analysis, we next evaluated how the choice of LAI input, multispectral derived
GAI versus LIDAR derived PAI, influences TSEB-PT ET estimates as seen in Fig 10. In addition, we used GAI/PAI
to compute the fraction of green LAI (fg), allowing dynamic scaling of the Priestley—Taylor coefficient (a_PT) to
account for senescence or stressed vegetation. Model runs using f; were compared to a baseline with no scaling of

o_PT (i.e., assuming fy = 1), to assess their impact on ET estimates under varying canopy conditions.
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Figure 10: TSEB-PT evapotranspiration (ET) estimates were evaluated using different leaf area index (LAI) inputs: MS
derived green area index (GAI), LIiDAR derived plant area index (PAl), and their ratio, representing the fraction of green
LAI (fg), during periods of known senescence. UAV derived ET was compared against eddy covariance (EC) measurements
within the EC flux footprint to assess model sensitivity to LAI input type. Notably, fg scaling was introduced earlier for
winter wheat in the model than the officially declared onset of senescence to account for localized early decline observed in

the western portion of the field due to water deficits.
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362 Figure 11: RMSE and R? between TSEB-PT modeled ET and EC derived ET, averaged over the EC flux footprint. Two
363 different LAI inputs were evaluated: green area index (GAI) and plant area index (PAI). Statistical metrics are shown for
364 all campaign dates and separately for dates excluding senescence. During senescence periods, a third approach using the
365 fraction of green LAI (fy = GAI/PAI) was also evaluated to scale transpiration according to functional canopy condition.

366 During early to mid-season growth, when canopies were predominantly green and structurally uniform, the choice of
367 LAl input, GAI or PAI, had minimal effect on model performance. Excluding senescent dates, ET estimates from both
368  types of LAI inputs were in close agreement with EC measurements across all three crops. Coefficients of
369  determination (R2) were also similar, with the exception of winter wheat, where GAI yielded a noticeably higher R2
370  despite equivalent RMSE.

371 However, during senescence, discrepancies between GAI and PAI based LAI inputs became more pronounced,
372 particularly in winter wheat. While PAI values remained elevated due to the persistence of canopy structure, GAI
373 declined in response to chlorophyll degradation as seen in Fig. 6. These differences had a notable impact on model
374 accuracy over the whole growing season of winter winter wheat, where LAl = PAI estimates exhibited a higher
375  overestimation with a RMSE of 0.29 mm/h and lower R2 (0.32), while LAI = GAI inputs improved performance with
376  an RMSE of 0.26 mm/h and R of 0.56.

377 Incorporating fy significantly reduced ET overestimation during senescence and improved agreement with EC
378 measurements in every season. Because of the significant and early physiological decline in in winter wheat, these
379 improvements were even more significant. In winter wheat the RMSE decreased from 0.29 mm/h with LAI = PAI and
380  fy=1t00.17 mm/h LAI = PAI and fy = GAI/PAL.

381  3.4. Input impacts on resulting magnitude of ET map spatial variability

382  This study revealed that TSEB-PT derived ET with very-high-resolution data varied with both magnitude and spatial
383  distribution across campaign dates influenced by the choice of UAV derived inputs. Appendix Figures B10 and B11
384 present field averaged ET values along with their standard deviations, demonstrating how input configurations affect
385  field spatial variability in modeled ET. To explore the sensitivity of ET spatial variability to input differences, we
386 analyzed the changes in the coefficient of variation (CV) of ET in response to modifications in key model inputs.
387  Specifically, Figure 12 shows how ET CV responds to the differences in input CV for LST (TIRog CV — TIR1c CV),
388 LAl sources (GAI CV — PAI CV), and fq (fy = 1 CV - GAI/PAI derived fy CV). These comparisons help establish the
389 connection between input variability and the spatial behavior of ET estimates, providing insight into which inputs
390 most strongly influence the spatial characteristics of TSEB-PT outputs across varying crop and environmental
391  conditions.
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393 Figure 12: Comparison of average differences in the coefficient of variation (CV) between key TSEB-PT input variables
394 (LST, LAI, fg) and the resulting ET estimates across three crop types. This highlights how changes in the spatial variability
395 of each input affect the spatial variability of modeled ET. The CV difference for fq reflects the transition from a uniform
396  value (fg = 1) to a spatially variable product derived from the fusion of GAI and PAI.

397  Notably, with a uniform increase in average LST resulted in significant shifts in the spatial distribution of TSEB-PT
398 ET estimates. In contrast, despite greater coefficient of variation (CV) between MS derived GAl and LiDAR derived
399 PAI inputs, their influence on ET spatial variability was comparatively limited. The incorporation of a dynamic fg,
400  derived from the fusion of GAI and PAI, substantially altered the spatial representation of ET, underscoring the

401  importance of this parameter.

402 Given the substantial change in ET spatial variability resulting from an essentially uniform shift in LST inputs, we
403  further examined the corresponding ET maps for potato in early season (low vegetation cover) and late season maps
404  (variability in vegetation state). This was to characterize the different spatial magnitudes of ET change were spatially
405  distributed with uniforms shifts in LST. These comparisons are presented in Fig. 13 where the LSTog ET (lower LST
406  and higher resulting ET) results were subtracted from those when LST+c inputs were used.
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408 Figure 13: Difference in TSEB-PT ET estimates using original land surface temperature (LSToc) ET minus reference target
409 corrected (LST+c) ET. The maps illustrate how the magnitude and spatial pattern of ET differences vary depending on the
410 dominant evaporative source (soil vs. canopy) and the presence of crop water stress.



https://doi.org/10.5194/egusphere-2025-3919
Preprint. Discussion started: 21 August 2025

(© Author(s) 2025. CC BY 4.0 License.

411
412
413
414
415
416
417

418

419
420
421

422
423
424

17

EGUsphere®

Preprint repository

Two key characteristics on how increased LST offset changes spatial variability in TSEB-PT ET outputs were

observed. First, in early-season conditions with lower fc, the dominant flux, whether from soil evaporation or canopy

transpiration varied across dates and increased the contrast between soil and canopy with the increased temperature

from LSTrc. Second, later in the growing season, the magnitude of ET change differed significantly depending on

presence of stressed vegetation. In these cases, stressed vegetation showed a substantially larger ET reduction after

LST correction. This shows thermal correction reshaped the spatial structure of modeled water use, amplifying

contrasts between stressed and non-stressed zones.

3.5. Precise early identification of crop water stress with high-res ET maps

One of the most practical advantages of TIR based UAV derived ET modeling is its capacity to detect early signals of

crop water stress before structural or spectral changes manifest in traditional vegetation indices. In the 2022 potato

and 2023 winter wheat seasons, this capability was clearly demonstrated as seen in Fig. 14 & 15.
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Figure 14: Particular dates in the potato 2022 season of Evapotranspiration (ET), green area index (GAI), plant area index

(PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field related
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425 to irrigation patterns on the 3™ of August more so than with GAIl and PAI. On the 29™ of August, consequences in pigment
426 and canopy structure can be seen with GAIl and PAL.

427 Comparisons between the August 3 and August 29 UAV campaigns in 2022 revealed that, despite minimal changes
428 in both GAI and PAI, the ET maps captured pronounced declines in water use across specific sections of the field.
429  These reductions aligned with known zones of reduced irrigation coverage caused by limitations of the hose reel
430 sprinkler system. Notably, areas along the northwest corner and adjacent to irrigation lanes exhibited significant ET

431 suppression, even though they remained structurally intact in LiDAR and multispectral imagery.

432 A similar pattern was observed in 2023 with winter wheat, though in this case the stress was most likely attributed to
433  known underlying soil-root interactions that have caused water stress in the past. On June 13, the ET map revealed
434  broader and more pronounced spatial structures of suppressed transpiration that were not yet visible in the GAI or PAI
435 maps. By June 28, however, similar spatial patterns emerged in both GAI and PAI, confirming physiological and

436  structural canopy decline.
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438 Figure 15: Particular dates in the winter wheat 2023 season of Evapotranspiration (ET), green area index (GAl), plant area
439 index (PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field
440 related to soil layer properties and root depth on the 13t of June. On the 30t of June, stress reaction in pigment and canopy
441  structure can be seen with GAI and PAL.

442 4. Discussion
443  4.1. Thermal accuracy and impacts on spatial ET distribution

444  TSEB-PT’s strong sensitivity to land surface temperature (LST) is well established (e.g., Hoffmann et al., 2016), but
445  this study extends those findings using very-high-resolution UAV based thermal imagery under uniform crop cover.
446 Uncorrected LST exhibited a significant underestimation, consistent with prior UAV studies (e.g., Kelly et al., 2019;
447  Hanetal., 2020; Wan et al., 2024; Tunca et al., 2023b; Liu et al., 2024). This bias led to systematic ET overestimation.
448  While R2 declined slightly after correction, the improved thermal realism enhanced physical consistency in ET
449  estimates, particularly important for cumulative ET tracking and water balance assessments.

450 Thermal bias was most severe under high air temperature and wind speed, precisely when crops face peak transpiration
451 demand and are most vulnerable to stress. This trend aligns with Sagan et al. (2019), who reported increased UAV
452  TIR underestimation under warmer conditions. In our results, stressed areas showed amplified ET deviations with
453  LST correction, indicating greater sensitivity to thermal accuracy. Underestimated LST muted ET suppression signals,
454 reducing contrast between stressed and non-stressed zones and potentially misguiding irrigation responses. In addition,
455 corrected LST sharpened spatial gradients in ET by enhancing energy balance contrast, particularly under dominant
456  water or energy limitation conditions. This raised the standard deviation of ET values across the field and improved
457  spatial differentiation of stress signals.

458 Despite onboard radiometric correction and a heated shutter for non-uniformity calibration, ground based reference
459  targets remained essential for accurate LST and ET retrieval. When such targets are unavailable, alternate approaches
460 like the Dual-Temperature Difference (DTD) variant of TSEB-PT can help, though in our case, DTD yielded only
461 moderate improvements compared to ground-calibrated correction (results not shown).

462  4.2. Implications of LAI and fc source and sensitivity to plant physiological properties

463 Both GAI and PAI served as effective LAI inputs for TSEB-PT during peak growth, when structural (PAI) and
464  pigment based (GAI) indicators are closely aligned, yielding similar ET estimates. This is consistent with a prior one-
465 source energy balance study showing LiDAR derived LAI can perform comparably to MS based LAI for ET
466 estimations (Wei et al., 2023). However, few studies have examined how model performance shifts under stress or
467  senescence, when canopy structure and function diverge.

468  Under these conditions, PAI remained high due to persistent canopy structure, which appears to contribute to higher
469 ET overestimation. In contrast, GAI, which reflects pigment concentration and photosynthetic activity, captured
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470 physiological decline and produced more conservative estimations that better aligned with EC ET. This effect was
471 most pronounced in winter wheat, where structural density persisted even as transpiration decreased. While PAI and
472 ground based ceptometer LAI showed better agreement in absolute values, especially in dense canopies where GAI
473 saturates, neither completely captures declining physiological function. The results may indicate that GAI (functional
474 LAI) better reflected actual transpiration capacity, which could explain the improved model performance when it was
475  compared to PAI with fy held constant at 1.

476 The automatic derivation of f; from LAI in pyTSEB further complicates input selection. Because f. governs the
477 radiation partitioning between soil and vegetation, LAl input type influences both energy distribution and canopy
478 resistance. GAl may underestimate shading in dense or senescent canopies, leading to lower f; and thus lower modeled
479 ET, not only due to higher canopy resistance but also reduced radiation allocated to the vegetation component.
480 Conversely, PAI may overstate transpiration potential in structurally intact but functionally declining canopies. It is
481 possible that while both LAI inputs perform similarly under non-stressed conditions, GAI offers better physiological
482 realism during stress or senescence. Future implementations could benefit from testing the decoupling of f; and LAI
483 inputs, using structural data (PAI) for fc and pigment-sensitive indices (GAI) for functional canopy resistance.

484  4.3.Role of fy in differentiating functional transpiration from passive cooling

485 Distinguishing passive canopy cooling from actual transpiration is critical in dense canopies like winter wheat, where
486 structure remains even as physiological function declines. Unlike eddy covariance systems, which directly measure
487  vapor flux, TSEB-PT relies on LST as a proxy. Without accounting for canopy function, models may incorrectly
488 attribute radiative cooling to transpiration. In this study, combining LiDAR based structural LAl (PAI) and MS derived
489 pigment-sensitive LAl (GAI) enabled the use of fy to scale transpiration according to physiological status, improving
490 ET agreement with EC observations, particularly during early stress and senescence.

491 The fy input proved effective even before visible signs of senescence (e.g. winter wheat), detecting early transpiration
492 suppression due to stress. Despite its value, fyis not required in TSEB-PT and is typically omitted. Comparable scaling
493 is also lacking in models like SEBAL and METRIC, which treat vegetation as a single layer, an approach more suited
494 1o satellite-scale applications where such structural-functional distinctions are impractical. UAV platforms, however,
495 not only offer the spatial resolution needed, but also provide new sensing capabilities, such as 3D structural mapping
496  from LiDAR, that facilitate the integration of inputs like f;.

497 UAV based ET studies that exclude the use of fy in their TSEB-PT implementation further supports the importance of
498 its inclusion. GGmez-Canddn et al. (2021) reported overestimated ET (RMSE = 0.24 mm/h) in wheat without using
499 fy. This overestimation is more apparent in the later season with senescence. This overestimation is nearly identical to
500 ours for winter wheat when we also excluded fg. Similarly, Tunca et al. (2023a) observed overestimation in stressed
501  sorghum and proposed manually adjusting the Priestley—Taylor coefficient (o), while our results show that
502 incorporating fy offers a more targeted and spatially dynamic alternative. Bozorgi et al. (2024) also identified
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503 inaccurate assumptions about green canopy fraction as a source of TSEB bias, reinforcing the importance of function
504  based scaling.

505  As shown in Figure 12, fy influenced spatial ET variability more strongly than LAI type alone, highlighting its
506 importance for accurate measurement. In winter wheat, this influence was limited, likely due to LAI saturation (>6),
507 where additional canopy does not meaningfully alter radiation interception through fc. In contrast, sugar beet and
508 potato, with lower canopy density, showed greater fy sensitivity. Given the strong link between f. and fg, improving fc
509 parameterization beyond the fixed extinction coefficient of the Beer—Lambert law used within the model could be
510  valuable.

511 UAV LiDAR methods can now provide purely structural, high-resolution fy estimates, avoiding pigment-related biases
512 inherent in reflectance-only approaches (Chirouze et al., 2014). Unlike maximum NDVI methods, which fail to
513 account for structural leaf loss during senescence, LIDAR derived fy can explicitly track the green fraction relative to
514  total canopy volume, potentially reducing biases in ET partitioning. These capabilities should be more widely
515  integrated into UAV-based TSEB-PT workflows.

516 4.4 Future considerations with UAV TSEB model implementation

517 Satellite-based ET models have traditionally operated at coarse spatial scales, assuming simplified canopy structure
518 and uniform land cover. In nearly all TSEB-PT applications, the LAl input is based on green LAI or GAI (Chirouze
519 et al., 2014). Because f. is often derived from LAI via the Beer—Lambert law in TSEB-PT (e.g. current pyTSEB), this
520 can bias flux estimates in stressed or senescent crops by excluding nonfunctioning foliage that still shades the soil,
521 leading to overestimation of soil heat flux (G) and soil-related flux components (Chirouze et al., 2014). While some
522  studies have used plant area index (PAI) for f. (Guzinski et al., 2014; Guzinski et al., 2020), these are rarely derived
523  from purely structural metrics. As noted by Chirouze et al. (2014), f. should reflect total canopy structure, whereas
524 LAI should represent only the photosynthetically active portion. UAVs now enable direct, high-resolution
525 measurements of both canopy structure and function. Leveraging structural LIiDAR derived PAI for f; (radiation
526 partitioning) and functional multispectral derived GAI for LAI (canopy resistance) could enhance physiological
527 realism in partitioning latent (LEc) and sensible (Hc) heat fluxes, and warrants targeted testing.

528 Further sensor innovations could enhance the parameterization of ET models. For example, more detailed structural
529 information from the entire canopy could be used to derive multi-layer GF profiles (Bates et al., 2022), supporting
530 improved estimates of structural LAI. Additionally, LiDAR intensity, typically operating in the NIR range (Kim et
531 al., 2009), has shown physiological associations with crop LAI (Hutt et al., 2022) and biomass (Montzka et al., 2023),
532 offering potential as a dual-use input that integrates both structural and functional canopy traits into LAl and fq
533 estimates. UAV LiDAR can also contribute to guiding the parameterization of surface roughness as adjustments made
534 to soil resistance coefficients has shown to be important (Li et al., 2019). Moreover, UAV-mounted radar systems,
535 including synthetic aperture radar (SAR) and ground-penetrating radar (GPR), may provide novel pathways for

536 assessing canopy or surface moisture conditions (Wu & Lambot et al., 2022), which are critical for accurate energy
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537 flux partitioning. By leveraging the spatial precision and 3D reconstruction capabilities of UAV platforms, future
538 research can further refine ET model inputs and improve accuracy across structurally complex and heterogeneous

539  crop environments.
540  4.5. Practical impacts and considerations for farming practices

541 Physically based models like TSEB-PT offer major advantages over empirical or ML methods by simulating land—
542 atmosphere energy exchanges without requiring extensive training data. In this study, TSEB-PT achieved accurate ET
543 estimates using minimal ground measurements, just four control plots for LAl and hc calibration and two thermal
544 reference targets early in the season. Even fewer control points may suffice, shifting greater importance to UAV sensor
545  quality and data type (e.g., LIDAR vs. MS). This highlights the operational value of TSEB-PT when paired with UAV
546 platforms that can resolve fine-scale canopy and surface variability not captured by satellites.

547 The spatial and temporal resolution of UAVs allows ET to be mapped at actionable scales. In this study, UAV TIR-
548 based ET estimations with TSEB-PT detected early signs of crop stress before they were visible in conventional means
549 with MS or LIDAR based metrics. This capability enables the possibility of targeted, timely irrigation interventions.
550 For instance, in the potato field, ET maps revealed under-irrigated zones just days after a hose reel event. In winter
551 wheat, suppressed ET matched shallow gravel layers, flagging naturally water-limited zones that experienced early
552 senescence. Such spatial detail would be difficult to detect through scouting or coarse-resolution remote sensing but
553 s vital for optimizing yield and water use efficiency.

554 ET maps derived from UAV and TSEB can be interpolated to daily totals and integrated with rainfall and irrigation
555 data to calculate crop water deficits or surpluses, supporting more precise irrigation scheduling. Several interpolation
556 methods for converting instantaneous ET to daily values merit further investigation, particularly in relation to thermal
557 sensor bias propagation, optimal overpass timing, and capturing the diurnal ET cycle through high-temporal UAV
558 data. While this study focused on single-time observations aligned with EC fluxes, it highlights the potential of very-
559 high-resolution UAV data and emerging sensor technologies to enhance spatial ET accuracy and inform future

560  methodological advances.
561 5. Conclusion

562 This study demonstrates the effectiveness of integrating very-high-resolution UAV multi-sensor data with the TSEB-
563 PT model for accurate, field-scale ET estimation across sugar beet, potato, and winter wheat over full growing seasons.
564  with minimal ground calibration of UAV inputs, the model showed strong agreement with EC measurements,
565 confirming its potential for operational use in precision irrigation and water management.

566  Among UAV derived inputs, TIR data was both the most influential and the most error-prone. Uncooled TIR sensors
567 systematically underestimated LST under high-temperature and high-VVPD conditions, leading to ET overestimation.
568  Absolute LST correction using ground reference targets significantly improved both ET magnitude and spatial
569  contrast, emphasizing the need for accurate thermal data. Vegetation inputs were also critical. While LiDAR derived
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570  PAIl and MS derived GAI performed similarly as LAI inputs for TSEB-PT during peak growth, results showed GAI
571 more effectively reflected functional canopy decline under stress and senescence which may lead to a more accurate
572 ET estimation during such periods. To further improve physiological relevance, we provided a dynamic input for f,
573 derived from LiDAR-MS fusion with a GAI:PAI ratio. This enhanced ET accuracy and spatial variability, particularly
574 in dense or senescing canopies, and proved valuable even before official senescence periods or visible signs of stress.
575 Its inclusion could address overestimation issues seen in previous UAV based studies that omitted a functional canopy

576  scaling parameter.

577 UAV platforms offer advantages over satellite systems by enabling fine-scale reconstruction of canopy structure using
578 3D LiDAR, along with thermal and spectral sensing for precise boundary layer characterization. These tools open new
579 opportunities for near real-time ET mapping and water use assessment at actionable scales.

580  Key contributions of this study include:

581 e Demonstrating the robustness of TSEB-PT with UAV inputs and minimal ground calibration.

582 e Underscoring the importance of accurate TIR calibration, especially during heat stress.

583 o Clarifying divergence between structural (PAI) and functional (GAI) LAI inputs under stress.

584 e Proposing a LIDAR-MS fusion approach to estimate fy for dynamic transpiration scaling.

585 e  Establishing the value of fg in TSEB-PT to improve ET accuracy across varying physiological states.
586 e Identifying crop-specific modeling challenges, especially in dense canopies like winter wheat.

587 e Showing the potential of UAV TIR based ET mapping to detect early stress to guide targeted irrigation.

588 Ultimately, this study highlights the value of combining UAV sensing with physically based models such as TSEB-
589 PT for reliable, very-high-resolution ET monitoring. Future work should further explore the decoupling and type of
590 inputs for fc and LAI from advancing UAV sensors. In addition, further testing and improving dynamic LiDAR-MS

591 based fy integration across diverse cropping systems to enhance physiological realism and model scalability.
592  Appendix A: Description of the TSEB-PT model implementation

593 The Two-Source Energy Balance model with Priestley-Taylor formulation (TSEB-PT; Norman et al., 1995) was used
594 o estimate surface energy fluxes, particularly latent heat flux (LE), by partitioning soil and canopy contributions based
595 on radiometric surface temperature. The model was implemented in Python using the open-source pyTSEB package
596 (Nieto et al., 2018). For more detailed description of TSEB, please refer to Norman et al. (1995) and W. P. Kustas &
597  Norman (1999).

598 AL Energy balance equations
599 R,=LE+H+G (A1)

600  Fluxes are partitioned into canopy and soil components:
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601 R, =H. + LE, (A2)
602 R, = H, + LE;+ G (A3)
603  Soil heat flux GGG is parameterized as a fraction of Rps:
604 G =c,Rys (A4)

605  Where c;=0.35 is an empirical constant (Choudhury et al., 1987; Kustas & Daughtry, 1990).
606  A2. Sensible heat partitioning and air temperature

607  The total sensible heat flux H is calculated as:

Tac_Tc —_ TC_TLIC Ts_Tac
608 H=HC+HS=pCp[ < ]_pcp [T+R—] (A5)
609 Where T, = within-canopy air temperature (Kelvin); T, and T; = canopy and soil surface temperature components

610  derived from UAV thermal imagery; p = air density (kg m™3); C, = heat capacity of the air at constant pressure (J/kg/

611 K); R, R, and R, = aerodynamic resistances (s m?).

612  The in-canopy air temperature is:

Ta,Tc,Ts
613 T, =% % (AB)

Rq Ry Rs

614  A3. Resistance parameterizations

615  Soil boundary layer resistance (Kustas & Norman, 1999):

616 R,=—F+— (A7)

1
c(Ts—T 4)3+bug

617  Wwith the semi-empirical constants, b and c left at their default values. us, represents wind speed near the soil surface.

618  Canopy resistance (Norman et al., 1995):

1
c’ s 2
619 R.=5 (=) (A8)
620  Where C'(s*> m™) = 90 s¥2 m*; LAI = leaf area index estimated from either UAV multispectral GAIl or LIDAR PAI,
621 S (m) = characteristic leaf size; u,, + z,,, is the wind speed at the height reference height; d, + z,,, as d, is the zero-

622 plane displacement height and z,_ is the roughness length for moment estimated from UAV derived crop height.
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(L) ()

623 R, = (A9)

k'u,

624 zris the measurement heights for wind speed u (ms—1). do is the zero-plane displacement height, zOH is the roughness

625  length for momentum and heat transport with z,,, =z, (~kB-1). The y (¢) terms in Egs. 7a and are the adiabatic
626  correction factors for momentum. L being the Monin—Obukhov length (m).

627  A4. Radiometric temperature decomposition

628  The observed directional radiometric temperature Trap is decomposed as:

629 Trap(6) = [£(OITE + (1~ f(O)TST* (A10)

630  Where £.(8) = vegetation fractional from the viewing angle (8) calculated from UAV based multispectral.

631  AG5. Priestley-Taylor approach to canopy transpiration

632  The initial estimate of LE. uses the Priestley-Taylor formulation:

633  LE. = apr fgﬁRnc (A11)

634  Where apr = 1.26 (iteratively reduced if needed to achieve plausible solution LEs>0; see W. Kustas & Anderson
635  (2009)); f, = fraction of green LAI derived from UAV based hybrid combination of multispectral and LiDAR data;

636 A = slope of saturation vapor pressure curve (kPa K); y = psychrometric constant (kPa K'1).
637  £.(0) =1—exp [~k (9)LAI (A12)

638  with k,, being the extension coefficient of canopy with a leaf angle distribution defined by the Campbell (1990)
639  parameter.

640  k,, = —Crtan?o (A13)

X+1.774 (x+1.182)70733
641

642  Appendix B: Sensor derived metrics

643  B1. Green area index (multispectral)

644 FyC = NRVIZNDVI (B1)

~ NDVIL,—NDVI;
645  with NDVI, being the upper threshold for NDVI values representing soil pixels and NDVI, representing the upper
646  threshold of healthy vegetation.

_ =log(1-FvC)
647  Gal=—lLLIO (82)
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648 k() = extinction coefficient, parametrized using SunScan ceptometer LAI measurements. k was adjusted once
649 between early and mid-late season and then held constant through senescence.

650 B2.Plant area index (LIDAR)

651 GF = Zground (B3)

n

652 7graund = NUMber of LIDAR returns classified as ground. n = total number of returns (ground + vegetation) in the
653  pixel.

654  par = - (@D (B4)

655 6 =LiDAR scan angle ; GF = gap fraction from previous equation; k = extinction coefficient (same as above),

656  adjusted once mid-season and then held constant.
657  B2. Crop height (LiDAR)
658  h, = DSM,-DTM, (B5)

659  DSMq = digital surface model from the crop canopy (per flight date); DTM, = digital terrain model from the bare soil
660  pre-emergence flight.

661  Appendix C: Supplemental material
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665  Figure C1: The estimated EC footprints for each TIR campaign flight time interval to be used to compare the
666  TSEB-PT ET values within this spatial extent to the EC ET estimations.
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668 Figure C2 (a.) ground photo and aerial TIR view of the hot and cold temperature ground reference targets (b.)
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669 pre-correction and post-correction graphed RMSE of TIR images in the 2021 season (c.) correlation of weather
670  factors with RMSE.

320160

06/25/21
©07/09/21
©07/20/21
©08/13/21
©09/08/21
©09/22/21

10/18/21
[cp

671 320280 o

672 Figure C3: (Left) Location of continuous measurement plots (CP) around climate station in the middle of the

320160

673  experiment field site. (Right) Crop height measuring locations for the listed 2021 campaigns by color.

674  Table C1: The following TIR and MS collection dates with the relevant weather conditions during each flight
675  that may have contributing factors on the accuracy of the observations.

Date FLIR/MS LIiDAR Start End Wind Air_Temp. Humidity Wind_Direction

Flights Flights Time Time (m/s) (°C) (%) °)
5/28/2021 X X 1310 1425 14 16.1 8.1 73
6/11/2021 X X 1514 1619 2.3 25.9 11.9 295
6/25/2021 X X 1228 1324 1.8 20.2 9.4 260
7/9/2021 X X 1126 1233 12 17.8 131 304
7/20/2021 X 1328 1358 14 20.9 10 309
7/23/2021 X X
8/02/2021 X 1143 1212 0.9 154 10.6 299
8/11/2021 X 1400 1430 1.2 225 13.6 246
8/13/2021 X X 1251 1328 2 225 12.7 287
9/08/2021 X 1328 1402 25 25.5 11.8 123
9/09/2021 X
9/22/2021 X 1148 1227 0.9 16.7 8.6 133
9/28/2021 X
10/18/2021 X 1400 1430 19 155 9.1 102
5/31/2022 X 1209 1251 0.8 15.3 8.2 102
6/04/2022 X X 1447 1513 2.6 243 115 46
6/10/2022 X 1419 1448 13 22.1 11 226
6/29/2022 X X 1512 1550 14 27.1 9.46 113




https://doi.org/10.5194/egusphere-2025-3919
Preprint. Discussion started: 21 August 2025 EG U
- sphere

(© Author(s) 2025. CC BY 4.0 License.

29
8/03/2022 X X 1503 1533 19 31.7 10.7 292
8/29/2022 X X 1508 1542 1.6 23.0 8.8 46
3/28/2023 X X 1158 1235 0.9 6.6 3.8 250
4/19/2023 X X 1323 1356 14 14.1 5.5 22
5/03/2023 X X 1327 1341 1.2 14.3 6.5 55
5/17/2023 X X 1350 1403 13 14.3 6.5 350
5/31/2023 X X 1208 1240 15 22.2 9.4 38
6/13/2023 X X 1257 1324 1.6 24.8 9.1 90
6/28/2023 X X 1341 1410 1.4 20.5 115 225
7/04/2023 X 1243 1313 14 21.1 9.2 235
7/10/2023 X 1220 1251 1.6 24.7 11.3 283
676
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677

678  Figure C4: Field averages of the TSEB-PT ET estimations comparing the change between using LSToc and
679  LSTrc in comparisons to the EC ET estimations with (a) sugar beet in 2021 (b) potato in 2022 (c) winter
680  wheat 2023.
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681
682  Figure C5: Field averages of the TSEB-PT ET estimations comparing the change between using GAI and PAI
683 and the use of fq in senescence stages in comparison to the EC ET estimations with (a) sugar beet in 2021 (b)
684  potato in 2022 (c) winter wheat 2023.
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686 Figure C6: Daily air temperature, precipitation, and vapor pressure deficit (VPD) for the following years (a)
687 2021 (b) 2022 (c) 2023.
688

689  Code availability

690  Data will be available upon request.
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