

1 **Very-High-Resolution, Multi-Season Monitoring of Crop
2 Evapotranspiration and Water Stress with UAV Data and
3 TSEB Integration**

4 Jordan Steven Bates^{1,2}, Carsten Montzka², Harry Vereecken², François Jonard¹

5 ¹Earth Observation and Ecosystem Modeling (EOSystM) Laboratory, SPHERES Research Unit,
6 University of Liege, Liege, Belgium

7 ²Institute of Bio- and Geosciences: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich,
8 Germany

9 Correspondence to: Jordan Steven Bates (j.bates@uliege.be)

10

11 **Abstract:** Field-scale estimation of evapotranspiration (ET) using high-resolution data supports water conservation
12 and yield optimization by enabling localized water use monitoring and early detection of crop stress. This study applies
13 the Priestley–Taylor Two-Source Energy Balance (TSEB-PT) model at 15 cm resolution using unmanned aerial
14 vehicle (UAV) data over a 10-hectare field across three seasons: sugar beet (2021), potato (2022), and winter wheat
15 (2023). Key inputs included thermal infrared (TIR) for land surface temperature (LST), multispectral (MS) and LiDAR
16 data for canopy characterization, and a fusion of MS derived green area index (GAI) and LiDAR derived plant area
17 index (PAI) to derive the fraction of green LAI (f_g). Model outputs were validated against eddy covariance (EC) flux
18 data using footprint modeling. Results showed high sensitivity to LST, emphasizing the importance of accurate
19 thermal calibration. While both GAI and PAI provided comparable LAI inputs during peak growth, GAI better
20 captured functional canopy decline during stress and senescence, especially in winter wheat, where dense structure
21 led to cooling effects unrelated to transpiration. Dynamic f_g improved ET accuracy across all crops, particularly under
22 declining canopy function. Overall, TSEB-PT showed strong agreement with EC measurements (RMSE = 0.14 mm/h,
23 $R^2 = 0.49$; $R^2 = 0.81$ excluding senescence). UAV TIR based ET maps also revealed early stress signals prior to
24 changes in MS or LiDAR based metrics. This study demonstrates the value of integrating very-high-resolution UAV
25 data with the TSEB-PT model for multi-crop and season-long ET monitoring and early stress detection.

26 **Keywords:** UAS; Drone; Thermal-IR; LiDAR; Multi-sensor; Water use

27

28

29

30

31

32 **1. Introduction**

33 Evapotranspiration (ET), the combined loss of water through soil evaporation and plant transpiration, is the second-
34 largest flux in the hydrological cycle after precipitation (Allen et al., 1998). ET plays a critical role in water resource
35 allocation and irrigation scheduling (Wang et al., 2014). Plant health and biomass production is closely linked to
36 transpiration, which depends on soil water availability and is regulated by stomatal and environmental conditions.
37 Accurate, timely estimation of ET at the field scale is essential for optimizing irrigation schedules, improving water
38 use efficiency (WUE) (Pereira & Pires, 2011), and supporting sustainable agriculture amid increasing water scarcity
39 and climate variability (Colaizzi, 2016).

40 Conventional ET measurement methods, such as lysimeters, sap flow sensors, and eddy covariance (EC) systems
41 (Yang et al., 2019), offer high temporal resolution but are limited in spatial coverage, making them inadequate for
42 capturing within-field variability critical to precision irrigation Yao et al., 2017). Additionally, these systems are
43 costly, making large-scale monitoring impractical (Yao et al., 2017). Satellite and airborne remote sensing approaches
44 improve spatial coverage but often lack the resolution needed for dynamic crop monitoring. Manned aircraft, while
45 capable of very-high-resolution observations, are costly and operationally demanding (Bellvert et al., 2020; Hunt Jr.
46 & Daughtry, 2018).

47 Recent advances in unmanned aerial vehicles (UAV) and lightweight, very-high-resolution uncooled thermal infrared
48 (TIR) sensors now enable on-demand, field-scale ET monitoring. UAV platforms offer both high spatial and temporal
49 resolution, allowing for detailed detection of crop water stress and rapid changes in canopy function (Niu et al., 2020).
50 TIR remote sensing in the 8–14 μm range is a key component of energy balance models, as land surface temperature
51 (LST) serves as a direct proxy for canopy transpiration and stomatal regulation if crop aerodynamics are known
52 (Tanner, 1963). Anderson et al. (2024) further reviewed the development of TIR based energy balance models, which
53 link vertical temperature gradients to sensible heat flux by modeling resistance, surface, and vegetation interactions.

54 Popular and widely used models such as SEBAL and METRIC estimate ET using TIR derived LST and LAI data
55 (Mohan et al., 2020), but their one-source energy balance formulations treat the land surface as a single layer. They
56 rely on hot/cold (not transpiring/ fully transpiring) anchor pixels to infer ET extremes, with no explicit representation
57 of soil–canopy interactions or functional canopy condition. This oversimplification can lead to inaccuracies (Niu et
58 al., 2020), especially in heterogeneous or partially senescent fields, where vegetation structure and function vary
59 spatially. However, even though these models are typically used with satellite based remote sensing, they have also
60 been applied with UAV studies (Chandel et al., 2020; Mokhtari et al., 2021; Niu et al., 2019). Some UAV based
61 studies have applied simplified alternatives such as the Deriving Atmosphere Turbulent Transport Useful To Dummies
62 Using Temperature (DATTUTDUT) (Ellsäßer et al., 2020) or the Simple Algorithm for Evapotranspiration Retrieving
63 (SAFER) (de Lima et al., 2024) but have similar constraints for very-high-resolution data at field scale.

64 Alternatively, Two-Source Energy Balance (TSEB) models partition energy fluxes between soil and vegetation, each
65 with distinct resistances (Norman et al., 1995). It is considered one of the most robust and widely used (Nieto, 2022;

66 Nassar et al., 2020) while often outperforming OSEB models like SEBAL or METRIC when compared (Guzinski et
67 al., 2020; Brenner et al., 2018; Jaafar et al., 2022; Tao et al., 2024; Xia et al., 2016) especially in variable and sparse
68 vegetation cover (García-Santos et al., 2022; Derardja et al., 2024). There are several versions but the most commonly
69 used is the Priestley-Taylor version (TSEB-PT) (Colaizzi et al., 2014). Additionally, TSEB-PT incorporates fraction
70 of green LAI (f_g) within the Priestley-Taylor formulation which allows the model to dynamically scale transpiration
71 based on the fraction of functioning canopy. This makes it especially suitable for modeling at high spatial resolution
72 with heterogeneous canopy covers from partial stress and senescence conditions. Furthermore, TSEB-PT version
73 avoids uncertainties tied to vapor pressure as opposed to the Penman-Monteith (TSEB-PM) version, which simplifies
74 deployment for UAV based applications (Colaizzi et al., 2014). The TSEB-PT model has been used with several UAV
75 crop studies including wheat (Gómez-Candón et al., 2021), Barley (Hoffmann et al., 2016); Sorghum (Tunca et al.,
76 2023a), Pomegranate (Niu et al., 2019), but with most being vineyards (Gao et al., 2021, 2023; Nassar et al., 2020,
77 2021, 2022; Nieto et al., 2019; Ortiz et al., 2019; Xia et al., 2016).

78 Recently, machine learning (ML) methods have been applied to ET estimation using multispectral, thermal, and
79 auxiliary data (Amani et al., 2023; Liyew et al., 2025). ML models often depend on large, high-quality ground data
80 such as lysimeters (Kavya and Mahadevaiah et al., 2024) or eddy covariance systems (Liu et al., 2021), resources that
81 are expensive, sparse, and highly site-specific, limiting their scalability for field-scale operational use
82 (Hirschi et al., 2017) and are time consuming (García-Santos et al., 2022). Moreover, ML models struggle to transfer
83 accurately to different locations or crop systems (Shi, 2024). In contrast, physically based models like TSEB-PT, when
84 paired with UAV-sensor inputs, offer robust, interpretable, and transferable ET estimations across different crops and
85 environments.

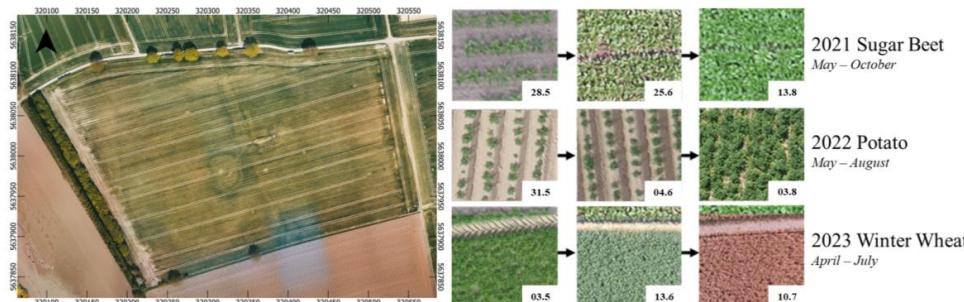
86 With these considerations in mind, we apply the TSEB-PT model for robust, multi-season UAV based ET estimation
87 using very-high-resolution thermal infrared (TIR), multispectral (MS), and LiDAR data. However, small-uncooled
88 TIR sensors are prone to radiometric drift and environmental noise, often requiring ground references to correct LST
89 biases (Kelly et al., 2019). Modeling canopy resistance also hinges on reliable LAI estimates. MS derived green area
90 index (GAI), which reflects pigment concentration, is widely used but susceptible to saturation in dense canopies
91 (Bukowiecki et al., 2020; Zheng & Moskal, 2009). In contrast, LiDAR is increasingly being used for crop LAI type
92 estimations (Bates et al., 2021; Hütt et al., 2022; Dreier et al., 2025). LiDAR derived plant area index (PAI) captures
93 structural canopy density and reduces saturation-related errors (Bates et al., 2021; Ma et al., 2021). The fraction of
94 green LAI (f_g), an indicator of photosynthetically active canopy, is rarely used in UAV based TSEB-PT studies. When
95 included, it is typically assumed spatially constant (Hoffmann et al., 2016) or derived from sparse ground samples (Li
96 et al., 2019) or NDVI based estimates, which lack structural depth (Nassar et al., 2022; Mendiguren et al., 2017). In
97 this study, we leverage the complementary strengths of MS (GAI) and LiDAR (PAI) to generate dynamic, spatially
98 explicit f_g estimates at pixel level. This has the potential to improved transpiration modeling that accounts for both
99 canopy structure and physiological function.

100 Our study expands UAV based TSEB-PT modeling across three crop types, sugar beet, potato, and winter wheat,
101 spanning full growing seasons, with validation against EC data. Beyond validation, we evaluate how the model
102 captures field-scale ET variability and early signals of water stress. Specifically, we assess the sensitivity of ET to
103 thermal calibration, compare GAI and PAI as LAI inputs, and test the impact of incorporating f_g derived from MS-
104 LiDAR fusion. By testing these components under operational UAV conditions, this work advances the use of TSEB-
105 PT for spatially adaptive, near real-time irrigation management in precision agriculture.

106 **2. Methods**

107 **2.1. Study area**

108 The study was conducted at the ICOS Class 1 ecosystem site DE-RuS within the TERENO Eifel Rur observatory in
109 Selhausen, Germany ($50^{\circ}51'56''N$, $6^{\circ}27'03''E$) (<https://ddp.tereno.net/ddp/>). The 10-hectare field is situated at 101–
110 103 m above mean sea level with the soil consisting of Pleistocene loess, Holocene translocated loess, with sand and
111 gravel at deeper levels (Brogi et al., 2020). The western section has shallower sand and gravel deposits, creating spatial
112 variability in crop growth, especially during water-scarce periods. Weather conditions including precipitation and air
113 temperature, during the experiment periods can be found in the appendix (see Tab. C1 & Fig. C6).

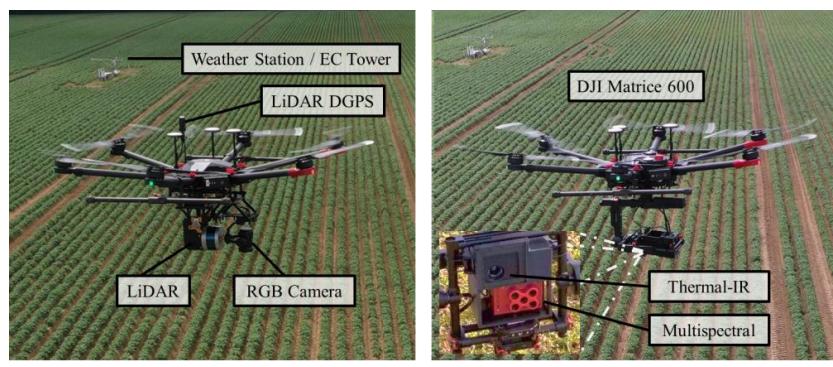


114
115 **Figure 1: The field experiment site (left) with the EC and meteorological station located in the center of the field. The**
116 **different crop cover type for each year (right) with example images of plant structure and fraction of vegetation coverage**
117 **over the field throughout each growing season.**

118 The field experiment site, shown in Fig. 1, was monitored over three growing seasons with different crops each year.
119 In 2021, sugar beet was planted from May to October, starting with 20% vegetation cover and reaching 98% by
120 harvest. In 2022, potatoes were grown from May to August, beginning with 5% cover and closing at 87%, with ridges
121 between rows. In 2023, winter wheat was planted from April to July, maintaining 94–98% cover, with senescence
122 marked by visible leaf browning. Only the potato crop was irrigated, receiving three 30 mm applications in July. These
123 crop and soil variations provide a basis to evaluate the robustness of very-high-resolution UAV data in ET models
124 like TSEB-PT.

125 **2.2. UAV measurements and processing**

126 Two DJI Matrice 600 UAV were used, one carrying a LiDAR payload and the other a combined MS and TIR setup
127 (Fig. 2). The LiDAR system included a YellowScan Surveyor with a Velodyne VLP-16 scanner and Applanix APX15
128 GNSS-IMU, capturing 300,000 pulses/sec at 903 nm with ~4 cm precision. Flights were conducted at 50 m altitude
129 and 8 m/s with 50% side overlap. A Septentrio Altus NR3 GNSS base station was used for georeferencing. LiDAR
130 data were processed using POSPac (v8.6) and YellowScan's CloudStation.

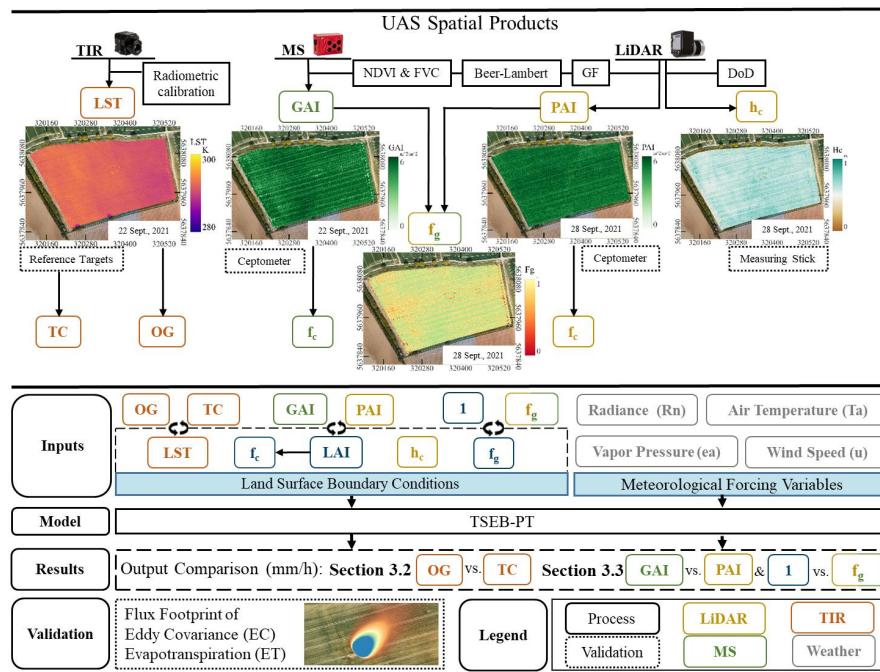


131
132 **Figure 2: View of the DJI Matrice 600 UAV platforms that were used while flying over the field experiment site. (a) The**
133 **M600 mounted with the YellowScan LiDAR Surveyor and DJI Zenmuse X1 RGB sensor. (b) The M600 with the FLIR Vue**
134 **Pro R thermal IR modified with a ThermalCapture external heated shutter and Micasense Red-edge M multispectral**
135 **sensors mounted on a 3-axis gyro system for nadir imagery.**

136 The TIR sensor, a FLIR Vue Pro R 640 (13 mm), covered the 7.5–13.5 μm range with $\pm 5^\circ\text{C}$ accuracy and was modified
137 with a heated shutter (ThermalCapture, AirRobot® GmbH & Co.) for improved inflight calibration. The MS sensor,
138 a MicaSense RedEdge-M (AgEagle Aerial Systems Inc.), captured five spectral bands; red (663–673 nm) and NIR
139 (820–860 nm) bands were used to calculate NDVI. Both sensors were mounted on a 3-axis gimbal and flown at 100
140 m altitude and 6 m/s, with approximately 90% image overlap. TIR calibration used internal corrections and ground
141 temperature reference targets, while MS data were calibrated using a reflectance panel. Data from both platforms were
142 processed in Pix4D. Flight campaign details are in the appendix (Tab. C1).

143 **2.4. UAV data products and model implementation**

144 TSEB-PT inputs fall into two categories: (1) surface boundary conditions derived from UAV data, including land
145 surface temperature (LST), fractional vegetation cover (f_v), leaf area index (LAI), canopy height (h_c), and the fraction
146 of green LAI (f_g); and (2) meteorological forcing variables, including air temperature (Ta), wind speed (u), vapor
147 pressure (ea), and incoming solar radiation (Rn). UAV derived variables were processed and calibrated using ground
148 measurements, with detailed methods outlined in Sections 2.4.1–2.4.5. Data processing and raster manipulation were
149 conducted in RStudio using the raster and lidR packages. All datasets were resampled to a common 15 cm ground
150 sampling distance (GSD). The full UAV processing and model integration workflow is illustrated in Fig. 3.



151

152 **Figure 3: Workflow of the study, showing sensor data integration and input variations used in the TSEB-PT model. The**
153 **model incorporates two categories of inputs: (1) surface boundary conditions and (2) meteorological forcing variables. Key**
154 **UAV derived inputs, LST (original vs. corrected), LAI (LiDAR derived PAI vs. MS derived GAI), and f_g (default = 1 vs.**
155 **UAV derived), were varied across model runs to assess their impact. Section 3.2 compares ET outputs using different LST**
156 **inputs; Section 3.3 evaluates the influence of LAI source and the inclusion of f_g during senescence. Final ET estimates**
157 **(mm/h) are validated against eddy covariance (EC) flux measurements within the modeled EC footprint area.**

158 **2.4.1. Land surface temperature (LST) maps**

159 To convert incoming longwave radiance from the TIR microbolometers into LST, surface emissivity values were
160 required. Constant emissivity values were assigned to each crop type based on a literature review. Although vegetation
161 and bare soil exhibit different emissivity values, their differences were deemed negligible for the purposes of this
162 study. Additional radiometric calibration parameters including air temperature, relative humidity, and the distance
163 from the sensor to the target surface were input into the FLIR Vue Pro R sensor prior to each flight.

164 Uncooled thermal sensors on UAV platforms, such as the FLIR Vue Pro R, are prone to radiometric instability. This
165 is largely due to inconsistencies in the default internal non-uniformity correction (NUC) applied to the microbolometer
166 focal plane array. To improve calibration consistency, an external heated shutter was employed. Previous studies have
167 reported that the use of such shutters can increase temperature measurement accuracy by up to 70% (Virtue et al.,
168 2021). Another major source of radiometric noise arises from the sensor's own temperature and its interaction with
169 the environment. Up to fourfold of the total signal noise can be attributed to sensor self-heating (Budzier & Gerlach,

170 2015; Gogler et al., 2014; Sagan et al., 2019). In addition, Kelly et al. (2019) demonstrated that wind exposure can
171 destabilize sensor readings. To mitigate these effects, the thermal sensor was housed within a custom 3D-printed
172 enclosure designed for thermal insulation and wind shielding. Furthermore, flights were conducted at reduced speeds
173 to minimize wind-induced variability in sensor temperature.

174 Once radiometric calibration and sensor stability were addressed, LST accuracy was assessed using ground based
175 reference targets. In the 2021 field season, a hot blackbody target (metallic surface) and a cold water body were
176 deployed, and thermal images were captured before and after each flight at 100 meters AGL (Fig. C2). Notably, Virtue
177 et al. (2021) reported that with the use of an external heated shutter, reference targets are no longer essential throughout
178 the entire flight but just one reference image due to improved thermal stability. A consistent temperature offset was
179 observed. To correct for this in subsequent seasons, a multiple linear regression model was developed using the 2021
180 reference data. This model incorporated environmental variables (wind speed, air temperature, and humidity) to
181 generate corrected temperature offsets. Two types of LST inputs were ultimately used in the TSEB model: (1) the
182 original temperature (OG), based solely on the sensor's internal radiometric calibration, and (2) the target-corrected
183 temperature (TC), which applied the offset corrections derived from reference targets and the regression model.

184 **2.4.2. Leaf area index (LAI)**

185 Two types of LAI inputs were used in the TSEB-PT model: multispectral (MS) based green area index (GAI) and
186 LiDAR based plant area index (PAI). GAI is derived from spectral reflectance and represents the photosynthetically
187 active portion of the canopy (Park et al., 2021; Wei et al., 2023), while PAI is derived from LiDAR returns and reflects
188 the total canopy structure, essentially independent of pigment content (Bates et al., 2021). Both metrics serve as
189 proxies for LAI, before senescence onset, due to their established relationships with leaf biophysical traits (Tan et al.,
190 2020; Ma et al., 2021).

191 GAI and PAI were calculated using a modified Beer–Lambert law, a widely used approach for modeling light
192 attenuation in plant canopies (Ali et al., 2015; Thorp et al., 2010). GAI was estimated from MS derived fractional
193 vegetation cover (FVC) (See Eq. B1 in appendix), while PAI was derived from LiDAR based gap fraction (GF) (See
194 Eq. B3 in appendix). A commonly used pixel based approach was used to estimate FVC (Jia et al., 2017; Yue et al.,
195 2021; Zhang et al., 2019). NDVI was applied to differentiate vegetation amounts and soil, with thresholds determined
196 using NDVI histograms spanning the entire growing season. GF is defined as the proportion of laser pulses reaching
197 the ground relative to total canopy returns within each raster cell. The extinction coefficient (k) was calibrated using
198 proven (Oguntunde et al., 2012) in-field SunScan ceptometer LAI measurements and applied inversely to solve for
199 GAI and PAI (see Eq. B2 & B4 in appendix B). Given limited ground samples per date (four CP zones), this semi-
200 empirical method offered a balance with the limited ground LAI samples available.

201 Due to known variability in k across growth stages, especially during early canopy development, 2–3 k values were
202 assigned per growing season, as recommended by Brogi et al. (2020) and Bates et al. (2021). Adjustments were

203 typically made after the first 2–3 sampling dates when canopy architecture changed rapidly. Thereafter, k was held
204 constant through peak growth and harvest.

205 **2.4.3. Fraction of green LAI (f_g)**

206 To capitalize on the functional and structural canopy signals captured by GAI and PAI, we computed the fraction of
207 green LAI (f_g), defined as the proportion of the total canopy (PAI) that remains photosynthetically active and capable
208 of transpiring. f_g was calculated as the ratio of GAI to PAI:

$$209 \quad f_g = GAI/PAI = \left(\frac{-\log(1-FVC)}{k_{max}} \right) / \left(\frac{-\cos(\underline{\theta}) \ln(GF)}{k_{max}} \right) \quad (1)$$

210 where $\underline{\theta}$ is the LiDAR scan angle, and k_{max} is the extinction coefficient derived from peak LAI prior to senescence.
211 This formulation enables f_g to dynamically reflect changes in both pigment based canopy function and structural
212 density.

213 The f_g input was set to 1 before senescence, assuming full canopy greenness and maximum transpiration capacity.
214 After senescence onset, f_g values dropped based on relative differences between GAI and PAI, allowing the model to
215 scale transpiration potential accordingly. Senescence timing varied by crop and was identified from field observations
216 and GAI trends. For sugar beet (2021), senescence began after August 13 (three late-season dates); for potato (2022),
217 after August 3 (one senescence date); and for winter wheat (2023), senescence onset was spatially variable and
218 occurred as early as May 13, with six identified dates.

219 **2.4.4. Fractional cover (f_c)**

220 In TSEB-PT, f_c can be specified directly, however, when a LAI input is provided the model automatically computes
221 f_c via the Beer–Lambert law (see Eq. A11 in appendix). This internal derivation maintains consistency in how net
222 radiation is partitioned between soil and canopy, directly linking canopy area (whether structural or pigment-derived)
223 to modeled fluxes. From the TSEB perspective, f_c should represent physical cover (Norman et al., 1995) as it governs
224 canopy shading and soil radiation exposure which would best be based on structural LAI (PAI) as opposed to GAI.
225 Therefore, in our f_g implementation we use PAI as the LAI input to ensure f_c better reflects actual canopy geometry
226 and shading.

227 **2.4.5. Crop height (h_c)**

228 A method of difference of digital elevation models (DoD) was used to produce the h_c also commonly referred to as
229 canopy height model (CHM) (see Eq. B5 in appendix B). A flight campaign was conducted before the emergence of
230 the crops for a bare soil measurement to determine the digital terrain model (DTM_0). The remaining campaigns were
231 those with crop surface structures to derive the digital surface model (DSM_d) for that particular campaign date. Having
232 bare soil terrain data rather than using the ground points of the LiDAR for each campaign is better in decreasing

233 needed interpolations that would decrease the overall accuracy (Cao et al., 2019). The maximum values per pixel were
234 taken when subtracting the DTM_0 from the DSM_d .

235 **2.4.6 TSEB-PT model and contributions of UAV Derived Inputs**

236 The TSEB-PT model partitions net radiation (Rn) into latent (LE), sensible (H), and ground (G) heat fluxes, with LE
237 converted to evapotranspiration (ET, mm/h). The model was implemented using the pyTSEB library (Nieto et al.,
238 2018). Figure 4 and Table 1 illustrate how each UAV derived variable informs distinct model components and their
239 representation of surface–atmosphere interactions. Model equations are detailed in Eq. A1–A13 in the appendix and
240 Norman et al., (1995).

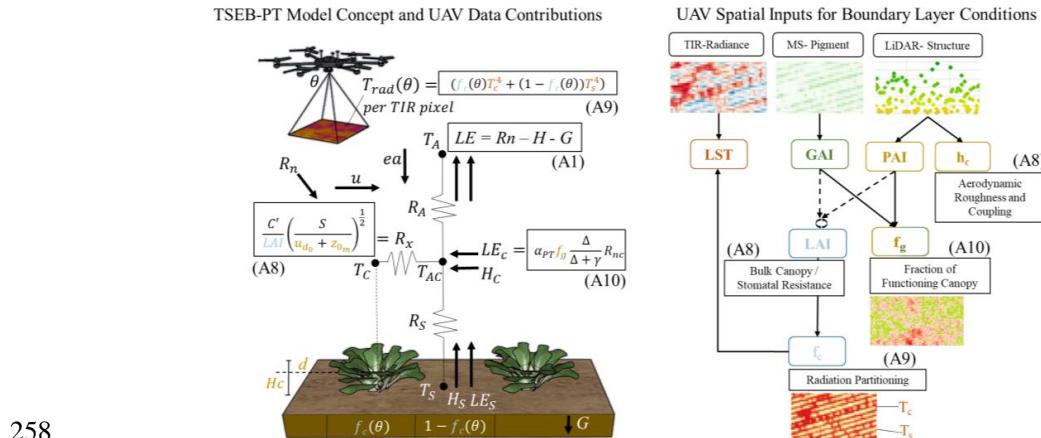
241 **Table 1: UAV derived model inputs, their influences within the model, and equation with which they are used.**

UAV Input	Role in Model	Equation(s)
Surface temperature (T_c, T_s)	Drives partitioning and energy balance	A5, A6, A10
Fractional cover (f_c)	Radiative separation of canopy/soil temps	A10
Leaf Area Index (LAI)	Canopy resistance and transpiration estimation	A8, A11
Green LAI fraction (f_g)	Controls LE_c in Priestley–Taylor term	A11
Crop height (h_c)	Aerodynamic roughness estimation	A8, A9 (via d_0, z_0)

242 LST is a primary driver of H, representing the radiometric temperature of the combined canopy and soil surface. In
243 vegetated areas, it influences aerodynamic surface temperature and temperature gradients critical for energy balance
244 closure. LST, in conjunction with vapor pressure deficit (VPD), helps detect plant water stress, elevated LST and low
245 transpiration under high VPD suggest stress. The f_c partitions energy fluxes between soil and vegetation. Higher f_c
246 increases the canopy's contribution to Rn and LE, thus generally elevating ET while reducing G and H_s .

247 The LAI input, MS-GAI or LiDAR-PAI in this use case, affects aerodynamic (R_a) and canopy (R_x) resistances; higher
248 LAI (more stomata) reduces R_x enhancing transpiration and LE. The f_g input captures the proportion of active
249 vegetation within the structural LAI. It adjusts the Priestley–Taylor coefficient (α_{PT}) to reduce LE estimates during
250 senescence or stress, preventing overestimation of transpiration. This is especially relevant in dense and tall crops,
251 where inner canopy cooling can be misattributed to transpiration without accurate f_g representation (Elfarkh et al.,
252 2020; Kustas et al., 2016).

253 The h_c input influences R_a by determining surface roughness (z_0) and displacement height (d), key variables for
254 modeling turbulent heat exchange with the atmosphere. Taller canopies enhance aerodynamic coupling and energy
255 dissipation, favoring higher ET. In contrast, shorter vegetation limits this exchange, increasing sensible heat flux (H)
256 and reducing evaporative cooling. Also, h_c indirectly affects R_x , for defining boundary-layer development and vertical
257 wind attenuation.



258

259 **Figure 4:** Schematic and data illustration of UAV derived inputs used in the TSEB-PT model. The left panel shows the
 260 model architecture, highlighting the partitioning of net radiation (R_n) into latent (LE), sensible (H), and ground (G)
 261 heat fluxes, and how UAV derived variables (color coded) influence each component. Key inputs include land surface
 262 temperature (LST), leaf area index (LAI), fraction of green LAI (f_g), fractional vegetation cover (f_c), and canopy height (h_c).
 263 The right panel displays spatial maps of LST, f_c , GAI, PAI, and f_g , along with a sample transect of the LiDAR 3D point
 264 cloud used to derive h_c and PAI. Data are shown for a sugar beet field, illustrating seasonal transitions in vegetation
 265 structure and function. Together, these inputs improve spatially explicit energy balance partitioning and ET estimation,
 266 particularly under variable vegetation conditions, such as during senescence. Abbreviations: R_a (s/m): aerodynamic
 267 resistance; R_x (s/m): canopy (bulk stomatal) resistance; R_s (s/m): soil resistance; T_c (K): canopy temperature; T_s (K): soil
 268 surface temperature; u (m/s): wind speed; ea (kPa): actual vapor pressure; z_0 (m): surface roughness length; d (m): zero-
 269 plane displacement height; a_{PT} (–): Priestley–Taylor coefficient (modified here by f_g); LE_c , H_c (W/m²): Component fluxes
 270 from canopy; LE_s , H_s (W/m²): Component fluxes from soil.

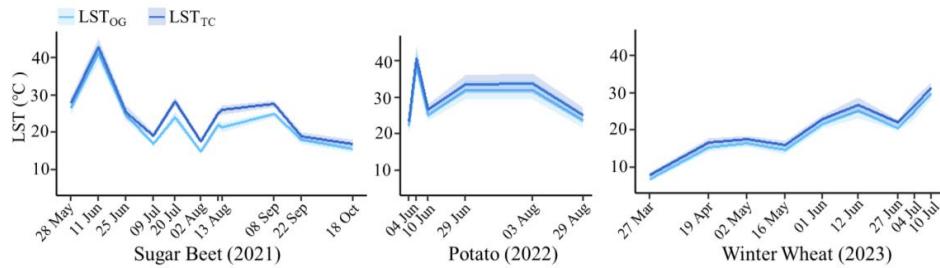
271 **2.4.7 Weather station, EC ET, and flux footprints validations**

272 Ground measurements were obtained from various instruments to support UAV data validation and model calibration.
 273 EC flux data, processed according to ICOS standards, were used to validate UAV derived ET estimates. EC
 274 measurements, including wind speed, direction, and water vapor concentration, were used to compute vertical fluxes
 275 related to ET (Ghiat et al., 2021). The footprint of the EC flux station was estimated using the footprint prediction
 276 model (FPP) in RStudio (Kljun et al., 2015), which accounts for micro-meteorological conditions and surface
 277 roughness. These footprints were calculated in correspondence within the duration of each UAV flight. UAV based
 278 TSEB-PT evapotranspiration (ET) estimates were compared to eddy covariance (EC) measurements by extracting the
 279 weighted average of raster pixel values within the 90% flux footprint extent. Each flux footprint can be seen in
 280 Appendix C with Fig. C1.

281 **3. Results**

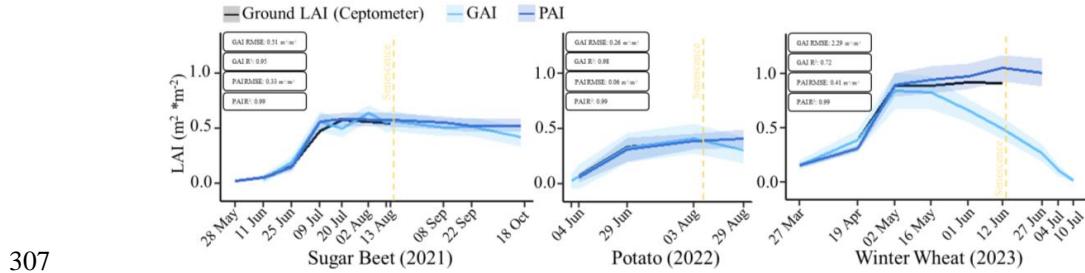
282 **3.1. UAV data derived model inputs**

283 The thermal infrared (TIR) data collected by the UAV consistently underestimated ground surface temperature when
284 compared to in-field reference targets during the 2021 season. The uncorrected TIR data showed a mean RMSE of
285 4.19 °C relative to thermometer readings but maintained strong agreement in relative temperature patterns across dates
286 ($R^2 = 0.97$). After applying corrections using ground reference targets, the seasonal RMSE improved to 2.78 °C.
287 Sensor offset (RMSE) was most strongly correlated with increased air temperature (0.74), followed by higher wind
288 speed (0.55) and denser humidity (0.34). Based on these relationships, a multiple linear regression model was
289 developed to predict and correct TIR sensor bias. This model was applied to subsequent field seasons, resulting in an
290 average increase of 2.2 °C in the LST orthomosaics to improve temporal consistency across acquisition dates. These
291 shifts in LST values before and after correction are illustrated in Fig. 5.



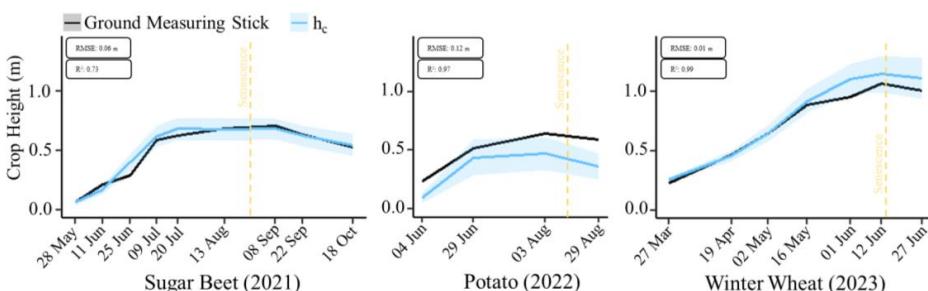
292
293 **Figure 5: (a) The comparison of UAV average temperatures of the ground targets as compared to the average of the**
294 **recorded temperatures of the thermometers. (b) Correlation of weather conditions with the difference (delta) between the**
295 **thermal sensor and actual temperature of ground thermal targets for each date.**

296 For LAI estimation, both multispectral derived green area index (GAI) and LiDAR derived plant area index (PAI)
297 were evaluated against ground based ceptometer LAI measurements. Across all three crops, PAI estimates were
298 consistently more accurate, with lower RMSE values and higher correlation to field observations. Specifically, PAI
299 achieved R^2 values of 0.99 for all three crops and an overall RMSE of 0.27 m^2/m^2 , whereas GAI showed greater
300 variability, especially in winter wheat, resulting in an overall RMSE of 1.02 m^2/m^2 and R^2 of 0.88. The discrepancy
301 between GAI and PAI was most evident during senescence, when chlorophyll degradation reduced the spectral signal
302 used in GAI estimation, while LiDAR still captured high canopy structural density. These results highlight the
303 functional-structural divergence between optical and structural measurements of LAI, especially under changing
304 vegetation conditions. A comparison of GAI and PAI estimates against ground LAI measurements at the field scale is
305 shown in Fig. 6.



312 UAV derived canopy height (h_c) showed strong agreement with ground based measuring stick observations across all
313 crops. In the 2023 winter wheat season, where canopy structure was most uniform, h_c estimation achieved excellent
314 accuracy (RMSE = 0.01 m, $R^2 = 0.99$). Lower accuracy was observed in potato (RMSE = 0.12 m), likely due to the
315 effects of ridge planting and heterogeneous canopy closure within sampled areas. Despite this, the UAV LiDAR
316 system provided reliable height estimates across all crops, with an overall RMSE of 0.06 m and $R^2 = 0.90$. These
317 results support the suitability of UAV based h_c for use in aerodynamic roughness parameterization within the TSEB-
318 PT model. A comparison of UAV derived and ground measured canopy heights is shown in Fig. 7.

319

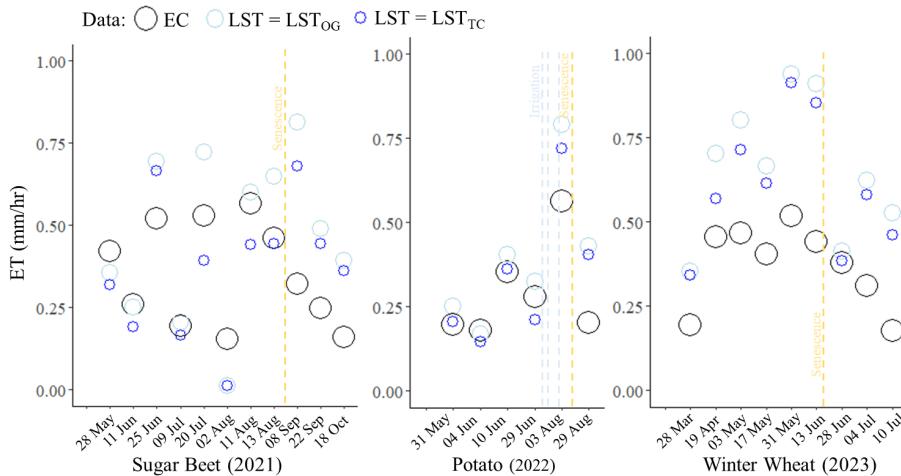


323

3.2. Accuracy and sensitivity of TSEB-PT ET estimates from UAV thermal corrections

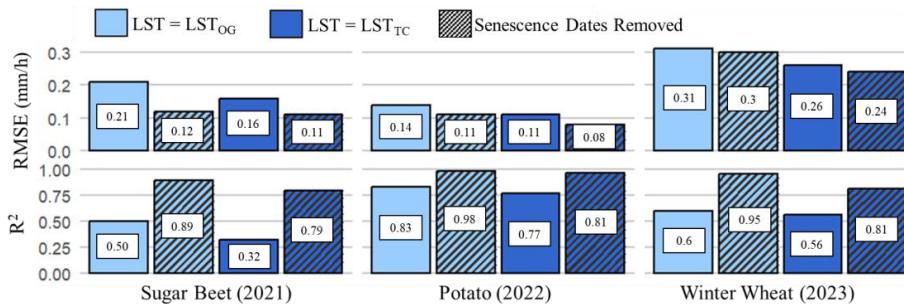
324
325
326

To assess the impact of radiometric calibration on ET model performance, we compared TSEB-PT estimates derived from original (LST_{OG}) and target corrected (LST_{TC}) UAV thermal imagery against EC derived ET values across all three crop seasons as seen in Fig. 8.



327

328 **Figure 8: Comparison of UAV derived TSEB-PT ET estimates for each season using two different TIR inputs: uncorrected**
 329 **original (OG) and target corrected (TC) LST data. ET outputs are compared against eddy covariance (EC) measurements**
 330 **within the corresponding flux footprint for each campaign.**



331

332 **Figure 9: RMSE and R² between modeled TSEB-PT ET and EC derived ET, averaged over the EC flux footprint. Two**
 333 **TSEB-PT model runs are compared based on land surface temperature (LST) input: original (OG) and target corrected**
 334 **(TC). Statistical metrics are presented for the entire growing season and excluding senescence periods, highlighting the**
 335 **influence of canopy condition on model performance.**

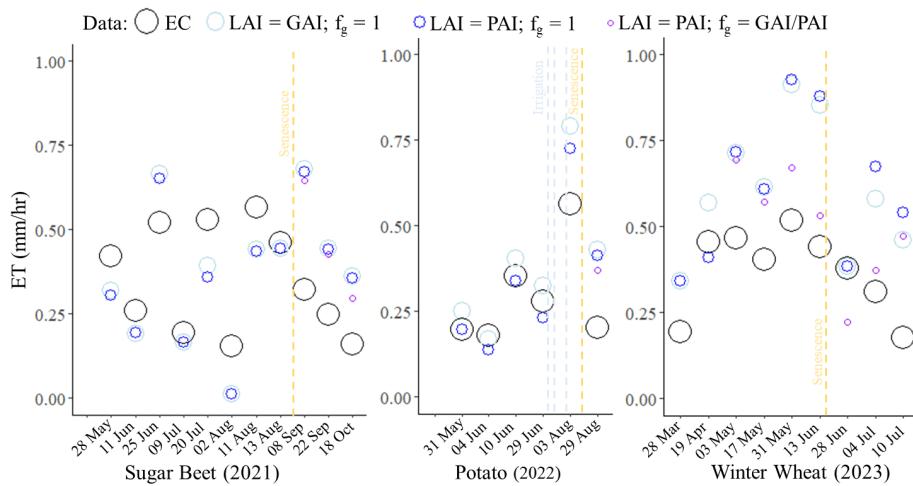
336 Referring to Fig. 9, across all three crops, the use of target corrected LST (LST_{TC}) inputs reduced overall RMSE,
 337 indicating improved absolute agreement between TSEB-PT ET estimates and EC observations. For example, both
 338 sugar beet and winter wheat showed seasonal RMSE reductions of approximately 0.5 mm/h. However, while thermal
 339 correction enhanced the absolute accuracy of LST and the resulting ET values, it also introduced temporal smoothing,
 340 which in some cases reduced the model's sensitivity to short-term variability. This was most evident in the 2021 sugar
 341 beet season, where R² declined from 0.50 (LST_{OG}) to 0.32 (LST_{TC}) despite improved RMSE. Although R² decreased
 342 slightly, the improved thermal realism from corrected LST values enhances the physical accuracy of ET estimates.

343 In all three crop seasons, omitting campaign dates during crop senescence, showed that the model estimations
 344 performed significantly better before physiological decline of the crops. The most pronounced improvement was

345 observed in sugar beet, where RMSE decreased from 0.16 to 0.11 mm/h and R^2 increased from 0.32 to 0.79 when
 346 using LST_{TC} .

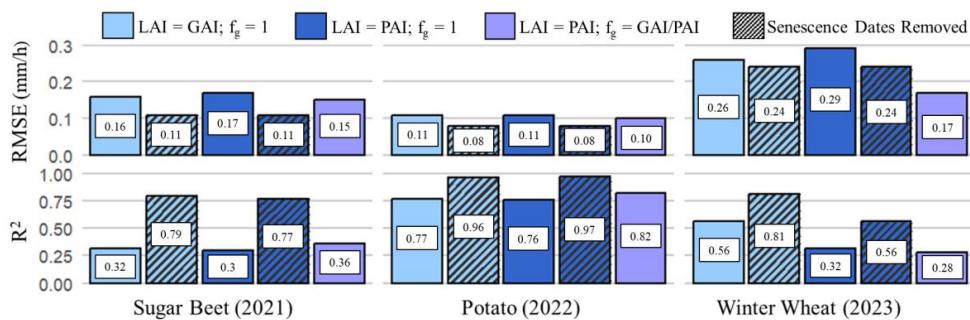
347 **3.3. Accuracy and sensitivity of TSEB-PT ET estimations from different UAV based LAI inputs**

348 Building on the thermal correction analysis, we next evaluated how the choice of LAI input, multispectral derived
 349 GAI versus LiDAR derived PAI, influences TSEB-PT ET estimates as seen in Fig 10. In addition, we used GAI/PAI
 350 to compute the fraction of green LAI (f_g), allowing dynamic scaling of the Priestley–Taylor coefficient (α_{PT}) to
 351 account for senescence or stressed vegetation. Model runs using f_g were compared to a baseline with no scaling of
 352 α_{PT} (i.e., assuming $f_g = 1$), to assess their impact on ET estimates under varying canopy conditions.



353
 354 **Figure 10:** TSEB-PT evapotranspiration (ET) estimates were evaluated using different leaf area index (LAI) inputs: MS
 355 derived green area index (GAI), LiDAR derived plant area index (PAI), and their ratio, representing the fraction of green
 356 LAI (f_g), during periods of known senescence. UAV derived ET was compared against eddy covariance (EC) measurements
 357 within the EC flux footprint to assess model sensitivity to LAI input type. Notably, f_g scaling was introduced earlier for
 358 winter wheat in the model than the officially declared onset of senescence to account for localized early decline observed in
 359 the western portion of the field due to water deficits.

360



361

362 **Figure 11: RMSE and R² between TSEB-PT modeled ET and EC derived ET, averaged over the EC flux footprint. Two**
363 **different LAI inputs were evaluated: green area index (GAI) and plant area index (PAI). Statistical metrics are shown for**
364 **all campaign dates and separately for dates excluding senescence. During senescence periods, a third approach using the**
365 **fraction of green LAI (f_g = GAI/PAI) was also evaluated to scale transpiration according to functional canopy condition.**

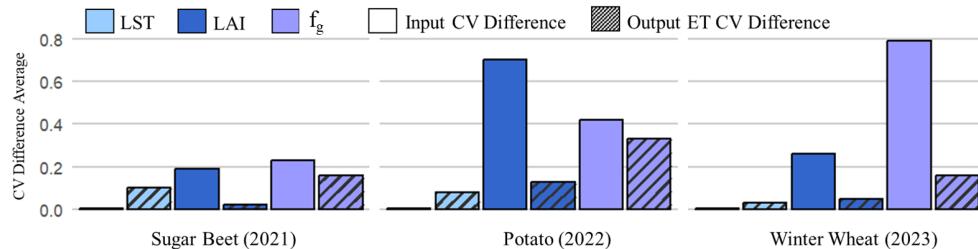
366 During early to mid-season growth, when canopies were predominantly green and structurally uniform, the choice of
367 LAI input, GAI or PAI, had minimal effect on model performance. Excluding senescent dates, ET estimates from both
368 types of LAI inputs were in close agreement with EC measurements across all three crops. Coefficients of
369 determination (R²) were also similar, with the exception of winter wheat, where GAI yielded a noticeably higher R²
370 despite equivalent RMSE.

371 However, during senescence, discrepancies between GAI and PAI based LAI inputs became more pronounced,
372 particularly in winter wheat. While PAI values remained elevated due to the persistence of canopy structure, GAI
373 declined in response to chlorophyll degradation as seen in Fig. 6. These differences had a notable impact on model
374 accuracy over the whole growing season of winter winter wheat, where LAI = PAI estimates exhibited a higher
375 overestimation with a RMSE of 0.29 mm/h and lower R² (0.32), while LAI = GAI inputs improved performance with
376 an RMSE of 0.26 mm/h and R² of 0.56.

377 Incorporating f_g significantly reduced ET overestimation during senescence and improved agreement with EC
378 measurements in every season. Because of the significant and early physiological decline in winter wheat, these
379 improvements were even more significant. In winter wheat the RMSE decreased from 0.29 mm/h with LAI = PAI and
380 f_g = 1 to 0.17 mm/h LAI = PAI and f_g = GAI/PAI.

381 **3.4. Input impacts on resulting magnitude of ET map spatial variability**

382 This study revealed that TSEB-PT derived ET with very-high-resolution data varied with both magnitude and spatial
383 distribution across campaign dates influenced by the choice of UAV derived inputs. Appendix Figures B10 and B11
384 present field averaged ET values along with their standard deviations, demonstrating how input configurations affect
385 field spatial variability in modeled ET. To explore the sensitivity of ET spatial variability to input differences, we
386 analyzed the changes in the coefficient of variation (CV) of ET in response to modifications in key model inputs.
387 Specifically, Figure 12 shows how ET CV responds to the differences in input CV for LST (TIR_{OG} CV – TIR_{TC} CV),
388 LAI sources (GAI CV – PAI CV), and f_g (f_g = 1 CV - GAI/PAI derived f_g CV). These comparisons help establish the
389 connection between input variability and the spatial behavior of ET estimates, providing insight into which inputs
390 most strongly influence the spatial characteristics of TSEB-PT outputs across varying crop and environmental
391 conditions.

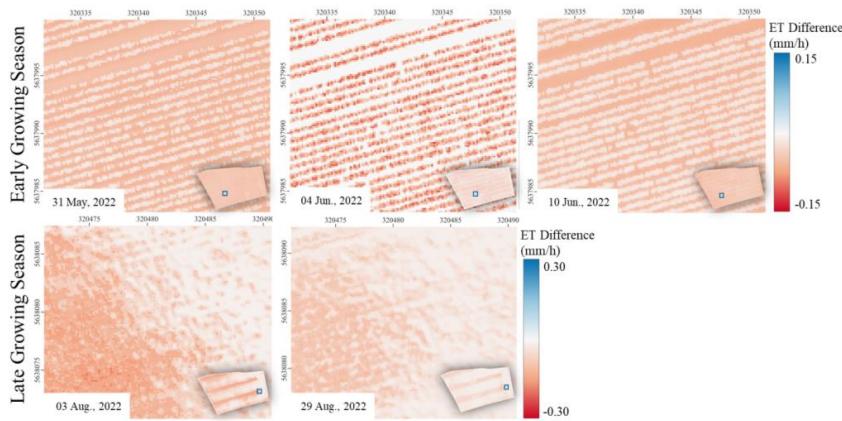


392

393 **Figure 12: Comparison of average differences in the coefficient of variation (CV) between key TSEB-PT input variables**
394 (**LST, LAI, f_g**) and the resulting ET estimates across three crop types. This highlights how changes in the spatial variability
395 of each input affect the spatial variability of modeled ET. The CV difference for f_g reflects the transition from a uniform
396 value ($f_g = 1$) to a spatially variable product derived from the fusion of GAI and PAI.

397 Notably, with a uniform increase in average LST resulted in significant shifts in the spatial distribution of TSEB-PT
398 ET estimates. In contrast, despite greater coefficient of variation (CV) between MS derived GAI and LiDAR derived
399 PAI inputs, their influence on ET spatial variability was comparatively limited. The incorporation of a dynamic f_g ,
400 derived from the fusion of GAI and PAI, substantially altered the spatial representation of ET, underscoring the
401 importance of this parameter.

402 Given the substantial change in ET spatial variability resulting from an essentially uniform shift in LST inputs, we
403 further examined the corresponding ET maps for potato in early season (low vegetation cover) and late season maps
404 (variability in vegetation state). This was to characterize the different spatial magnitudes of ET change were spatially
405 distributed with uniform shifts in LST. These comparisons are presented in Fig. 13 where the LST_{OG} ET (lower LST
406 and higher resulting ET) results were subtracted from those when LST_{TC} inputs were used.



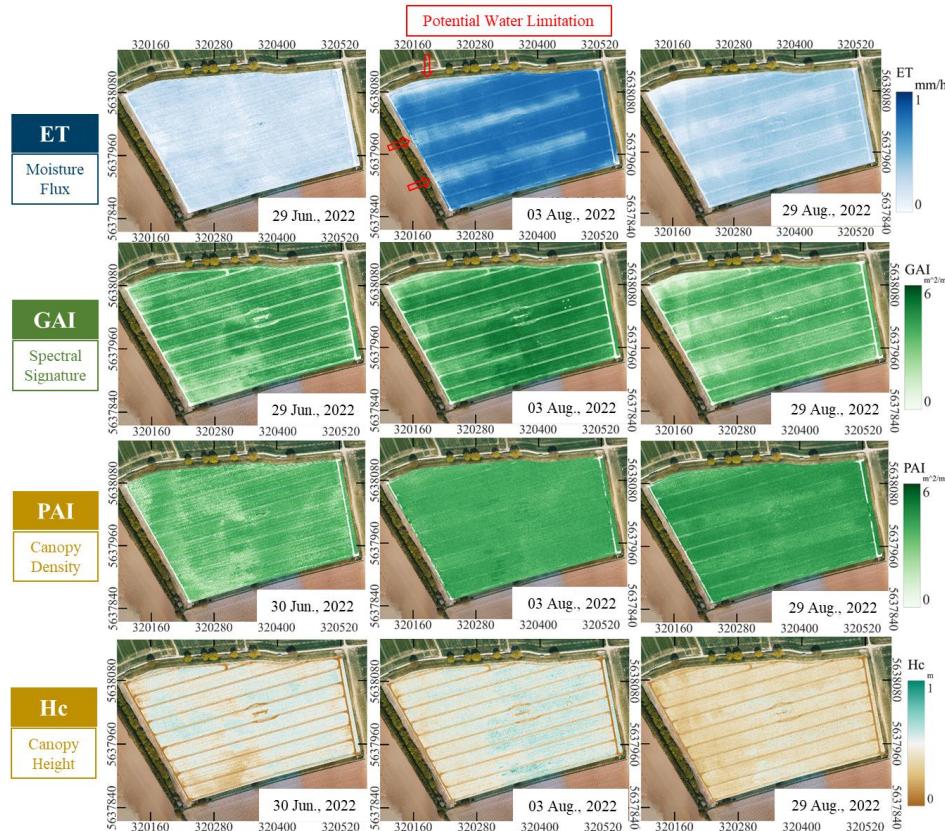
407

408 **Figure 13: Difference in TSEB-PT ET estimates using original land surface temperature (LST_{OG}) ET minus reference target**
409 **corrected (LST_{TC}) ET. The maps illustrate how the magnitude and spatial pattern of ET differences vary depending on the**
410 **dominant evaporative source (soil vs. canopy) and the presence of crop water stress.**

411 Two key characteristics on how increased LST offset changes spatial variability in TSEB-PT ET outputs were
412 observed. First, in early-season conditions with lower f_c , the dominant flux, whether from soil evaporation or canopy
413 transpiration varied across dates and increased the contrast between soil and canopy with the increased temperature
414 from LST_{TC} . Second, later in the growing season, the magnitude of ET change differed significantly depending on
415 presence of stressed vegetation. In these cases, stressed vegetation showed a substantially larger ET reduction after
416 LST correction. This shows thermal correction reshaped the spatial structure of modeled water use, amplifying
417 contrasts between stressed and non-stressed zones.

418 **3.5. Precise early identification of crop water stress with high-res ET maps**

419 One of the most practical advantages of TIR based UAV derived ET modeling is its capacity to detect early signals of
420 crop water stress before structural or spectral changes manifest in traditional vegetation indices. In the 2022 potato
421 and 2023 winter wheat seasons, this capability was clearly demonstrated as seen in Fig. 14 & 15.

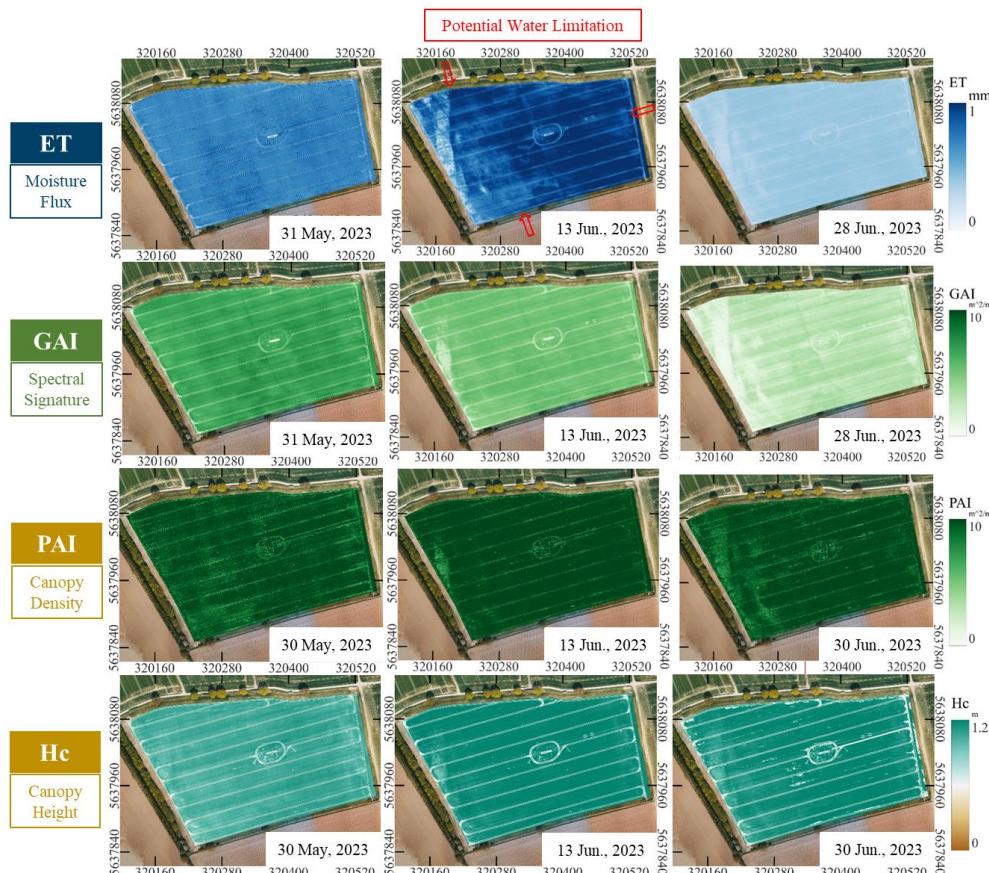


422
423 **Figure 14: Particular dates in the potato 2022 season of Evapotranspiration (ET), green area index (GAI), plant area index**
424 **(PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field related**

425 to irrigation patterns on the 3rd of August more so than with GAI and PAI. On the 29th of August, consequences in pigment
426 and canopy structure can be seen with GAI and PAI.

427 Comparisons between the August 3 and August 29 UAV campaigns in 2022 revealed that, despite minimal changes
428 in both GAI and PAI, the ET maps captured pronounced declines in water use across specific sections of the field.
429 These reductions aligned with known zones of reduced irrigation coverage caused by limitations of the hose reel
430 sprinkler system. Notably, areas along the northwest corner and adjacent to irrigation lanes exhibited significant ET
431 suppression, even though they remained structurally intact in LiDAR and multispectral imagery.

432 A similar pattern was observed in 2023 with winter wheat, though in this case the stress was most likely attributed to
433 known underlying soil-root interactions that have caused water stress in the past. On June 13, the ET map revealed
434 broader and more pronounced spatial structures of suppressed transpiration that were not yet visible in the GAI or PAI
435 maps. By June 28, however, similar spatial patterns emerged in both GAI and PAI, confirming physiological and
436 structural canopy decline.



437

438 **Figure 15: Particular dates in the winter wheat 2023 season of Evapotranspiration (ET), green area index (GAI), plant area**
439 **index (PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field**
440 **related to soil layer properties and root depth on the 13th of June. On the 30th of June, stress reaction in pigment and canopy**
441 **structure can be seen with GAI and PAI.**

442 **4. Discussion**

443 **4.1. Thermal accuracy and impacts on spatial ET distribution**

444 TSEB-PT's strong sensitivity to land surface temperature (LST) is well established (e.g., Hoffmann et al., 2016), but
445 this study extends those findings using very-high-resolution UAV based thermal imagery under uniform crop cover.
446 Uncorrected LST exhibited a significant underestimation, consistent with prior UAV studies (e.g., Kelly et al., 2019;
447 Han et al., 2020; Wan et al., 2024; Tunca et al., 2023b; Liu et al., 2024). This bias led to systematic ET overestimation.
448 While R^2 declined slightly after correction, the improved thermal realism enhanced physical consistency in ET
449 estimates, particularly important for cumulative ET tracking and water balance assessments.

450 Thermal bias was most severe under high air temperature and wind speed, precisely when crops face peak transpiration
451 demand and are most vulnerable to stress. This trend aligns with Sagan et al. (2019), who reported increased UAV
452 TIR underestimation under warmer conditions. In our results, stressed areas showed amplified ET deviations with
453 LST correction, indicating greater sensitivity to thermal accuracy. Underestimated LST muted ET suppression signals,
454 reducing contrast between stressed and non-stressed zones and potentially misguiding irrigation responses. In addition,
455 corrected LST sharpened spatial gradients in ET by enhancing energy balance contrast, particularly under dominant
456 water or energy limitation conditions. This raised the standard deviation of ET values across the field and improved
457 spatial differentiation of stress signals.

458 Despite onboard radiometric correction and a heated shutter for non-uniformity calibration, ground based reference
459 targets remained essential for accurate LST and ET retrieval. When such targets are unavailable, alternate approaches
460 like the Dual-Temperature Difference (DTD) variant of TSEB-PT can help, though in our case, DTD yielded only
461 moderate improvements compared to ground-calibrated correction (results not shown).

462 **4.2. Implications of LAI and f_c source and sensitivity to plant physiological properties**

463 Both GAI and PAI served as effective LAI inputs for TSEB-PT during peak growth, when structural (PAI) and
464 pigment based (GAI) indicators are closely aligned, yielding similar ET estimates. This is consistent with a prior one-
465 source energy balance study showing LiDAR derived LAI can perform comparably to MS based LAI for ET
466 estimations (Wei et al., 2023). However, few studies have examined how model performance shifts under stress or
467 senescence, when canopy structure and function diverge.

468 Under these conditions, PAI remained high due to persistent canopy structure, which appears to contribute to higher
469 ET overestimation. In contrast, GAI, which reflects pigment concentration and photosynthetic activity, captured

470 physiological decline and produced more conservative estimations that better aligned with EC ET. This effect was
471 most pronounced in winter wheat, where structural density persisted even as transpiration decreased. While PAI and
472 ground based ceptometer LAI showed better agreement in absolute values, especially in dense canopies where GAI
473 saturates, neither completely captures declining physiological function. The results may indicate that GAI (functional
474 LAI) better reflected actual transpiration capacity, which could explain the improved model performance when it was
475 compared to PAI with f_g held constant at 1.

476 The automatic derivation of f_c from LAI in pyTSEB further complicates input selection. Because f_c governs the
477 radiation partitioning between soil and vegetation, LAI input type influences both energy distribution and canopy
478 resistance. GAI may underestimate shading in dense or senescent canopies, leading to lower f_c and thus lower modeled
479 ET, not only due to higher canopy resistance but also reduced radiation allocated to the vegetation component.
480 Conversely, PAI may overstate transpiration potential in structurally intact but functionally declining canopies. It is
481 possible that while both LAI inputs perform similarly under non-stressed conditions, GAI offers better physiological
482 realism during stress or senescence. Future implementations could benefit from testing the decoupling of f_c and LAI
483 inputs, using structural data (PAI) for f_c and pigment-sensitive indices (GAI) for functional canopy resistance.

484 **4.3. Role of f_g in differentiating functional transpiration from passive cooling**

485 Distinguishing passive canopy cooling from actual transpiration is critical in dense canopies like winter wheat, where
486 structure remains even as physiological function declines. Unlike eddy covariance systems, which directly measure
487 vapor flux, TSEB-PT relies on LST as a proxy. Without accounting for canopy function, models may incorrectly
488 attribute radiative cooling to transpiration. In this study, combining LiDAR based structural LAI (PAI) and MS derived
489 pigment-sensitive LAI (GAI) enabled the use of f_g to scale transpiration according to physiological status, improving
490 ET agreement with EC observations, particularly during early stress and senescence.

491 The f_g input proved effective even before visible signs of senescence (e.g. winter wheat), detecting early transpiration
492 suppression due to stress. Despite its value, f_g is not required in TSEB-PT and is typically omitted. Comparable scaling
493 is also lacking in models like SEBAL and METRIC, which treat vegetation as a single layer, an approach more suited
494 to satellite-scale applications where such structural-functional distinctions are impractical. UAV platforms, however,
495 not only offer the spatial resolution needed, but also provide new sensing capabilities, such as 3D structural mapping
496 from LiDAR, that facilitate the integration of inputs like f_g .

497 UAV based ET studies that exclude the use of f_g in their TSEB-PT implementation further supports the importance of
498 its inclusion. Gómez-Candón et al. (2021) reported overestimated ET (RMSE = 0.24 mm/h) in wheat without using
499 f_g . This overestimation is more apparent in the later season with senescence. This overestimation is nearly identical to
500 ours for winter wheat when we also excluded f_g . Similarly, Tunca et al. (2023a) observed overestimation in stressed
501 sorghum and proposed manually adjusting the Priestley–Taylor coefficient (α), while our results show that
502 incorporating f_g offers a more targeted and spatially dynamic alternative. Bozorgi et al. (2024) also identified

503 inaccurate assumptions about green canopy fraction as a source of TSEB bias, reinforcing the importance of function
504 based scaling.

505 As shown in Figure 12, f_g influenced spatial ET variability more strongly than LAI type alone, highlighting its
506 importance for accurate measurement. In winter wheat, this influence was limited, likely due to LAI saturation (>6),
507 where additional canopy does not meaningfully alter radiation interception through f_c . In contrast, sugar beet and
508 potato, with lower canopy density, showed greater f_g sensitivity. Given the strong link between f_c and f_g , improving f_c
509 parameterization beyond the fixed extinction coefficient of the Beer–Lambert law used within the model could be
510 valuable.

511 UAV LiDAR methods can now provide purely structural, high-resolution f_g estimates, avoiding pigment-related biases
512 inherent in reflectance-only approaches (Chirouze et al., 2014). Unlike maximum NDVI methods, which fail to
513 account for structural leaf loss during senescence, LiDAR derived f_g can explicitly track the green fraction relative to
514 total canopy volume, potentially reducing biases in ET partitioning. These capabilities should be more widely
515 integrated into UAV-based TSEB-PT workflows.

516 **4.4 Future considerations with UAV TSEB model implementation**

517 Satellite-based ET models have traditionally operated at coarse spatial scales, assuming simplified canopy structure
518 and uniform land cover. In nearly all TSEB-PT applications, the LAI input is based on green LAI or GAI (Chirouze
519 et al., 2014). Because f_c is often derived from LAI via the Beer–Lambert law in TSEB-PT (e.g. current pyTSEB), this
520 can bias flux estimates in stressed or senescent crops by excluding nonfunctioning foliage that still shades the soil,
521 leading to overestimation of soil heat flux (G) and soil-related flux components (Chirouze et al., 2014). While some
522 studies have used plant area index (PAI) for f_c (Guzinski et al., 2014; Guzinski et al., 2020), these are rarely derived
523 from purely structural metrics. As noted by Chirouze et al. (2014), f_c should reflect total canopy structure, whereas
524 LAI should represent only the photosynthetically active portion. UAVs now enable direct, high-resolution
525 measurements of both canopy structure and function. Leveraging structural LiDAR derived PAI for f_c (radiation
526 partitioning) and functional multispectral derived GAI for LAI (canopy resistance) could enhance physiological
527 realism in partitioning latent (LE_c) and sensible (H_c) heat fluxes, and warrants targeted testing.

528 Further sensor innovations could enhance the parameterization of ET models. For example, more detailed structural
529 information from the entire canopy could be used to derive multi-layer GF profiles (Bates et al., 2022), supporting
530 improved estimates of structural LAI. Additionally, LiDAR intensity, typically operating in the NIR range (Kim et
531 al., 2009), has shown physiological associations with crop LAI (Hütt et al., 2022) and biomass (Montzka et al., 2023),
532 offering potential as a dual-use input that integrates both structural and functional canopy traits into LAI and f_g
533 estimates. UAV LiDAR can also contribute to guiding the parameterization of surface roughness as adjustments made
534 to soil resistance coefficients has shown to be important (Li et al., 2019). Moreover, UAV-mounted radar systems,
535 including synthetic aperture radar (SAR) and ground-penetrating radar (GPR), may provide novel pathways for
536 assessing canopy or surface moisture conditions (Wu & Lambot et al., 2022), which are critical for accurate energy

537 flux partitioning. By leveraging the spatial precision and 3D reconstruction capabilities of UAV platforms, future
538 research can further refine ET model inputs and improve accuracy across structurally complex and heterogeneous
539 crop environments.

540 **4.5. Practical impacts and considerations for farming practices**

541 Physically based models like TSEB-PT offer major advantages over empirical or ML methods by simulating land–
542 atmosphere energy exchanges without requiring extensive training data. In this study, TSEB-PT achieved accurate ET
543 estimates using minimal ground measurements, just four control plots for LAI and h_c calibration and two thermal
544 reference targets early in the season. Even fewer control points may suffice, shifting greater importance to UAV sensor
545 quality and data type (e.g., LiDAR vs. MS). This highlights the operational value of TSEB-PT when paired with UAV
546 platforms that can resolve fine-scale canopy and surface variability not captured by satellites.

547 The spatial and temporal resolution of UAVs allows ET to be mapped at actionable scales. In this study, UAV TIR-
548 based ET estimations with TSEB-PT detected early signs of crop stress before they were visible in conventional means
549 with MS or LiDAR based metrics. This capability enables the possibility of targeted, timely irrigation interventions.
550 For instance, in the potato field, ET maps revealed under-irrigated zones just days after a hose reel event. In winter
551 wheat, suppressed ET matched shallow gravel layers, flagging naturally water-limited zones that experienced early
552 senescence. Such spatial detail would be difficult to detect through scouting or coarse-resolution remote sensing but
553 is vital for optimizing yield and water use efficiency.

554 ET maps derived from UAV and TSEB can be interpolated to daily totals and integrated with rainfall and irrigation
555 data to calculate crop water deficits or surpluses, supporting more precise irrigation scheduling. Several interpolation
556 methods for converting instantaneous ET to daily values merit further investigation, particularly in relation to thermal
557 sensor bias propagation, optimal overpass timing, and capturing the diurnal ET cycle through high-temporal UAV
558 data. While this study focused on single-time observations aligned with EC fluxes, it highlights the potential of very-
559 high-resolution UAV data and emerging sensor technologies to enhance spatial ET accuracy and inform future
560 methodological advances.

561 **5. Conclusion**

562 This study demonstrates the effectiveness of integrating very-high-resolution UAV multi-sensor data with the TSEB-
563 PT model for accurate, field-scale ET estimation across sugar beet, potato, and winter wheat over full growing seasons.
564 With minimal ground calibration of UAV inputs, the model showed strong agreement with EC measurements,
565 confirming its potential for operational use in precision irrigation and water management.

566 Among UAV derived inputs, TIR data was both the most influential and the most error-prone. Uncooled TIR sensors
567 systematically underestimated LST under high-temperature and high-VPD conditions, leading to ET overestimation.
568 Absolute LST correction using ground reference targets significantly improved both ET magnitude and spatial
569 contrast, emphasizing the need for accurate thermal data. Vegetation inputs were also critical. While LiDAR derived

570 PAI and MS derived GAI performed similarly as LAI inputs for TSEB-PT during peak growth, results showed GAI
571 more effectively reflected functional canopy decline under stress and senescence which may lead to a more accurate
572 ET estimation during such periods. To further improve physiological relevance, we provided a dynamic input for f_g ,
573 derived from LiDAR-MS fusion with a GAI:PAI ratio. This enhanced ET accuracy and spatial variability, particularly
574 in dense or senescing canopies, and proved valuable even before official senescence periods or visible signs of stress.
575 Its inclusion could address overestimation issues seen in previous UAV based studies that omitted a functional canopy
576 scaling parameter.

577 UAV platforms offer advantages over satellite systems by enabling fine-scale reconstruction of canopy structure using
578 3D LiDAR, along with thermal and spectral sensing for precise boundary layer characterization. These tools open new
579 opportunities for near real-time ET mapping and water use assessment at actionable scales.

580 Key contributions of this study include:

- 581 • Demonstrating the robustness of TSEB-PT with UAV inputs and minimal ground calibration.
- 582 • Underscoring the importance of accurate TIR calibration, especially during heat stress.
- 583 • Clarifying divergence between structural (PAI) and functional (GAI) LAI inputs under stress.
- 584 • Proposing a LiDAR-MS fusion approach to estimate f_g for dynamic transpiration scaling.
- 585 • Establishing the value of f_g in TSEB-PT to improve ET accuracy across varying physiological states.
- 586 • Identifying crop-specific modeling challenges, especially in dense canopies like winter wheat.
- 587 • Showing the potential of UAV TIR based ET mapping to detect early stress to guide targeted irrigation.

588 Ultimately, this study highlights the value of combining UAV sensing with physically based models such as TSEB-
589 PT for reliable, very-high-resolution ET monitoring. Future work should further explore the decoupling and type of
590 inputs for f_g and LAI from advancing UAV sensors. In addition, further testing and improving dynamic LiDAR-MS
591 based f_g integration across diverse cropping systems to enhance physiological realism and model scalability.

592 **Appendix A: Description of the TSEB-PT model implementation**

593 The Two-Source Energy Balance model with Priestley-Taylor formulation (TSEB-PT; Norman et al., 1995) was used
594 to estimate surface energy fluxes, particularly latent heat flux (LE), by partitioning soil and canopy contributions based
595 on radiometric surface temperature. The model was implemented in Python using the open-source pyTSEB package
596 (Nieto et al., 2018). For more detailed description of TSEB, please refer to Norman et al. (1995) and W. P. Kustas &
597 Norman (1999).

598 **A1. Energy balance equations**

599
$$R_n = LE + H + G \quad (A1)$$

600 Fluxes are partitioned into canopy and soil components:

601 $R_{nc} = H_c + LE_c$ (A2)

602 $R_{ns} = H_s + LE_s + G$ (A3)

603 Soil heat flux GGG is parameterized as a fraction of R_{ns} :

604 $G = c_g R_{ns}$ (A4)

605 Where $c_g = 0.35$ is an empirical constant (Choudhury et al., 1987; Kustas & Daughtry, 1990).

606 **A2. Sensible heat partitioning and air temperature**

607 The total sensible heat flux H is calculated as:

608 $H = H_c + H_s = \rho C_p \left[\frac{T_{ac} - T_c}{R_a} \right] = \rho C_p \left[\frac{T_c - T_{ac}}{R_x} + \frac{T_s - T_{ac}}{R_s} \right]$ (A5)

609 Where T_{ac} = within-canopy air temperature (Kelvin); T_c and T_s = canopy and soil surface temperature components
 610 derived from UAV thermal imagery; ρ = air density (kg m^{-3}); C_p = heat capacity of the air at constant pressure (J/kg K);
 611 R_a , R_s , and R_x = aerodynamic resistances (s m^{-1}).

612 The in-canopy air temperature is:

613 $T_{AC} = \frac{\frac{T_A}{R_a} + \frac{T_c}{R_x} + \frac{T_s}{R_s}}{\frac{1}{R_a} + \frac{1}{R_x} + \frac{1}{R_s}}$ (A6)

614 **A3. Resistance parameterizations**

615 Soil boundary layer resistance (Kustas & Norman, 1999):

616 $R_s = \frac{1}{c(T_s - T_A)^{\frac{1}{3}} + bu_s}$ (A7)

617 With the semi-empirical constants, b and c left at their default values. u_{su} represents wind speed near the soil surface.

618 Canopy resistance (Norman et al., 1995):

619 $R_x = \frac{C'}{LAI} \left(\frac{S}{u_{d_0} + z_{0m}} \right)^{\frac{1}{2}}$ (A8)

620 Where $C'(\text{s}^{1/2} \text{ m}^{-1}) = 90 \text{ s}^{1/2} \text{ m}^{-1}$; LAI = leaf area index estimated from either UAV multispectral GAI or LiDAR PAI;

621 S (m) = characteristic leaf size; $u_{d_0} + z_{0m}$ is the wind speed at the height reference height; $d_0 + z_{0m}$ as d_0 is the zero-

622 plane displacement height and z_{0m} is the roughness length for moment estimated from UAV derived crop height.

623
$$R_a = \frac{\ln\left(\frac{z_T - d_0}{z_{0H}}\right) - \psi_h\left(\frac{z_T - d_0}{L}\right) + \psi_h\left(\frac{z_{0H}}{L}\right)}{k' u_*} \quad (A9)$$

624 z_T is the measurement heights for wind speed u (ms⁻¹). d_0 is the zero-plane displacement height, z_{0H} is the roughness
 625 length for momentum and heat transport with $z_{0H} = z_{0m}$ (-kB-1). The ψ (ζ) terms in Eqs. 7a and are the adiabatic
 626 correction factors for momentum. L being the Monin-Obukhov length (m).

627 **A4. Radiometric temperature decomposition**

628 The observed directional radiometric temperature T_{RAD} is decomposed as:

629
$$T_{RAD}(\theta) = [f_c(\theta)T_c^4 + (1 - f_c(\theta))T_s^4]^{1/4} \quad (A10)$$

630 Where $f_c(\theta)$ = vegetation fractional from the viewing angle (θ) calculated from UAV based multispectral.

631 **A5. Priestley-Taylor approach to canopy transpiration**

632 The initial estimate of LE_c uses the Priestley-Taylor formulation:

633
$$LE_c = \alpha_{PT} f_g \frac{\Delta}{\Delta + \gamma} R_{nc} \quad (A11)$$

634 Where $\alpha_{PT} = 1.26$ (iteratively reduced if needed to achieve plausible solution $LE_s > 0$; see W. Kustas & Anderson
 635 (2009)); f_g = fraction of green LAI derived from UAV based hybrid combination of multispectral and LiDAR data;
 636 Δ = slope of saturation vapor pressure curve (kPa K⁻¹); γ = psychrometric constant (kPa K⁻¹).

637
$$f_c(\theta) = 1 - \exp [-k_{be}(\theta) LAI] \quad (A12)$$

638 with k_{be} being the extension coefficient of canopy with a leaf angle distribution defined by the Campbell (1990)
 639 parameter.

640
$$k_{be} = \frac{\sqrt{\chi^2 + \tan^2 \theta}}{\chi + 1.774 (\chi + 1.182)^{-0.733}} \quad (A13)$$

641

642 **Appendix B: Sensor derived metrics**

643 **B1. Green area index (multispectral)**

644
$$FVC = \frac{NDVI - NDVI_s}{NDVI_v - NDVI_s} \quad (B1)$$

645 with $NDVI_s$ being the upper threshold for NDVI values representing soil pixels and $NDVI_v$ representing the upper
 646 threshold of healthy vegetation.

647
$$GAI = \frac{-\log(1-FVC)}{k(\theta)} \quad (B2)$$

648 $k(\theta)$ = extinction coefficient, parametrized using SunScan ceptometer LAI measurements. k was adjusted once
 649 between early and mid-late season and then held constant through senescence.

650 **B2. Plant area index (LiDAR)**

651
$$GF = \frac{n_{ground}}{n} \quad (B3)$$

652 n_{ground} = number of LiDAR returns classified as ground. n = total number of returns (ground + vegetation) in the
 653 pixel.

654
$$PAI = -\frac{\cos(\theta) \ln(GF)}{k} \quad (B4)$$

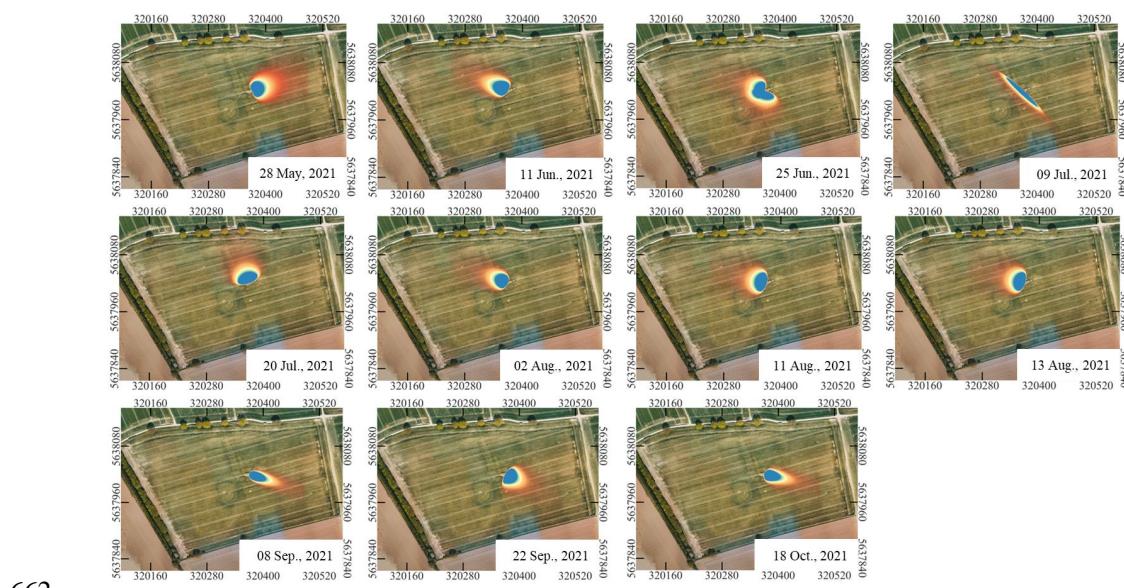
655 θ = LiDAR scan angle ; GF = gap fraction from previous equation; k = extinction coefficient (same as above),
 656 adjusted once mid-season and then held constant.

657 **B2. Crop height (LiDAR)**

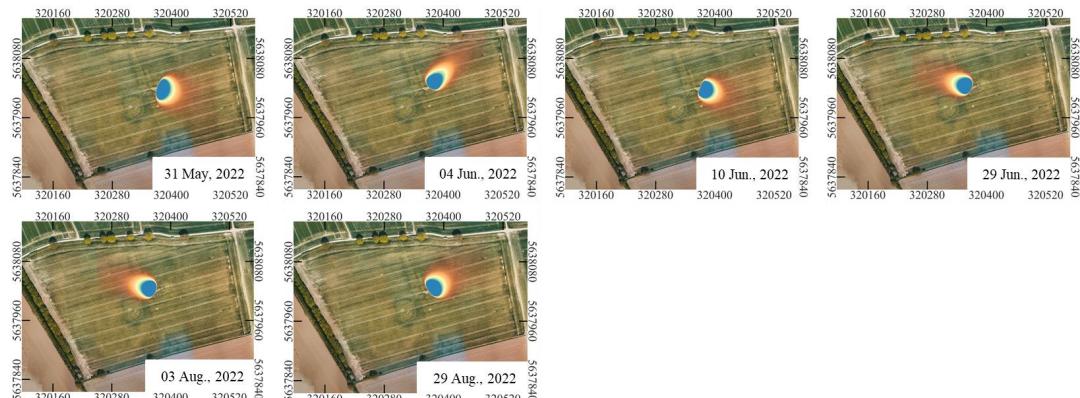
658
$$h_c = DSM_d - DTM_0 \quad (B5)$$

659 DSM_d = digital surface model from the crop canopy (per flight date); DTM_0 = digital terrain model from the bare soil
 660 pre-emergence flight.

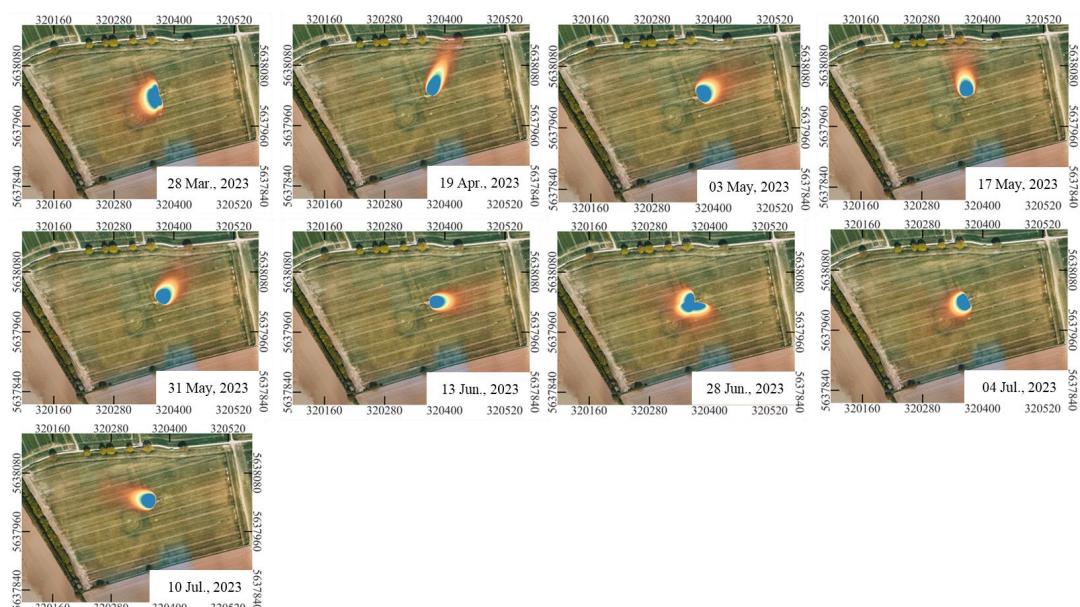
661 **Appendix C: Supplemental material**



663

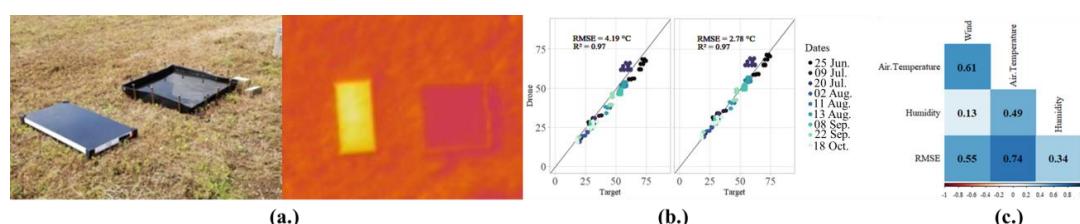


664



665

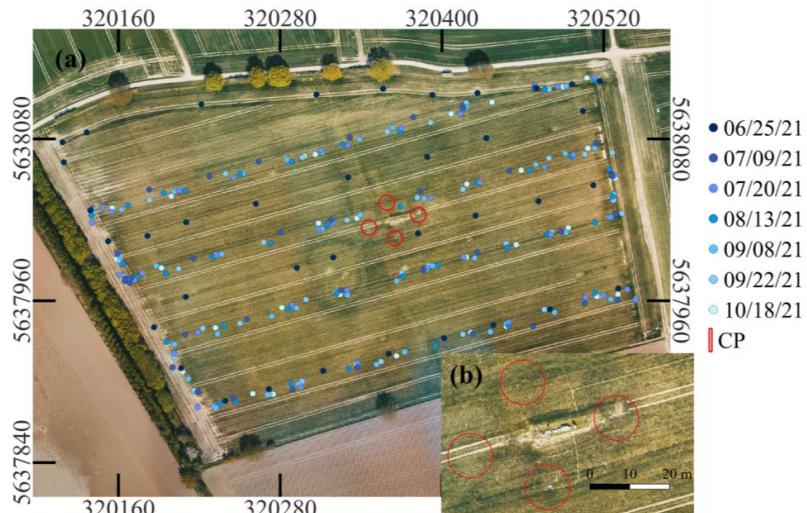
Figure C1: The estimated EC footprints for each TIR campaign flight time interval to be used to compare the TSEB-PT ET values within this spatial extent to the EC ET estimations.



667

Figure C2 (a.) ground photo and aerial TIR view of the hot and cold temperature ground reference targets (b.)

669 pre-correction and post-correction graphed RMSE of TIR images in the 2021 season (c.) correlation of weather
670 factors with RMSE.



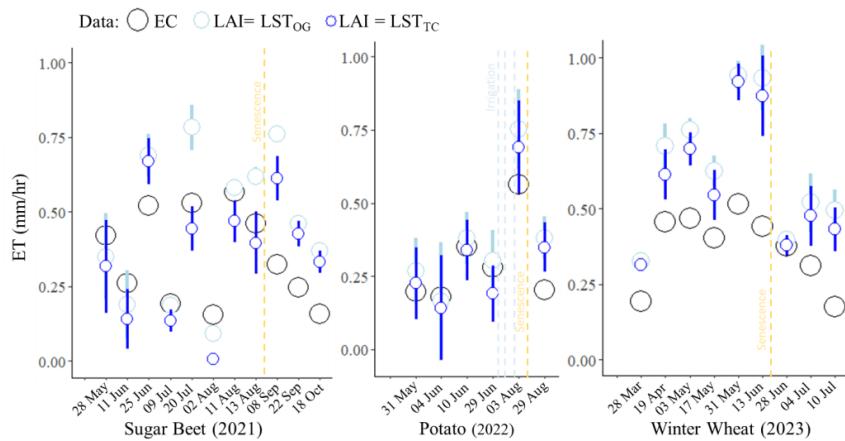
671
672 **Figure C3:** (Left) Location of continuous measurement plots (CP) around climate station in the middle of the
673 experiment field site. (Right) Crop height measuring locations for the listed 2021 campaigns by color.

674 **Table C1:** The following TIR and MS collection dates with the relevant weather conditions during each flight
675 that may have contributing factors on the accuracy of the observations.

Date	FLIR/MS Flights	LiDAR Flights	Start Time	End Time	Wind (m/s)	Air_Temp. (°C)	Humidity (%)	Wind_Direction (°)
5/28/2021	X	X	1310	1425	1.4	16.1	8.1	73
6/11/2021	X	X	1514	1619	2.3	25.9	11.9	295
6/25/2021	X	X	1228	1324	1.8	20.2	9.4	260
7/9/2021	X	X	1126	1233	1.2	17.8	13.1	304
7/20/2021	X		1328	1358	1.4	20.9	10	309
7/23/2021	X	X						
8/02/2021	X		1143	1212	0.9	15.4	10.6	299
8/11/2021	X		1400	1430	1.2	22.5	13.6	246
8/13/2021	X	X	1251	1328	2	22.5	12.7	287
9/08/2021	X		1328	1402	2.5	25.5	11.8	123
9/09/2021		X						
9/22/2021	X		1148	1227	0.9	16.7	8.6	133
9/28/2021		X						
10/18/2021	X		1400	1430	1.9	15.5	9.1	102
5/31/2022	X		1209	1251	0.8	15.3	8.2	102
6/04/2022	X	X	1447	1513	2.6	24.3	11.5	46
6/10/2022	X		1419	1448	1.3	22.1	11	226
6/29/2022	X	X	1512	1550	1.4	27.1	9.46	113

8/03/2022	X	X	1503	1533	1.9	31.7	10.7	292
8/29/2022	X	X	1508	1542	1.6	23.0	8.8	46
3/28/2023	X	X	1158	1235	0.9	6.6	3.8	250
4/19/2023	X	X	1323	1356	1.4	14.1	5.5	22
5/03/2023	X	X	1327	1341	1.2	14.3	6.5	55
5/17/2023	X	X	1350	1403	1.3	14.3	6.5	350
5/31/2023	X	X	1208	1240	1.5	22.2	9.4	38
6/13/2023	X	X	1257	1324	1.6	24.8	9.1	90
6/28/2023	X	X	1341	1410	1.4	20.5	11.5	225
7/04/2023	X		1243	1313	1.4	21.1	9.2	235
7/10/2023	X		1220	1251	1.6	24.7	11.3	283

676



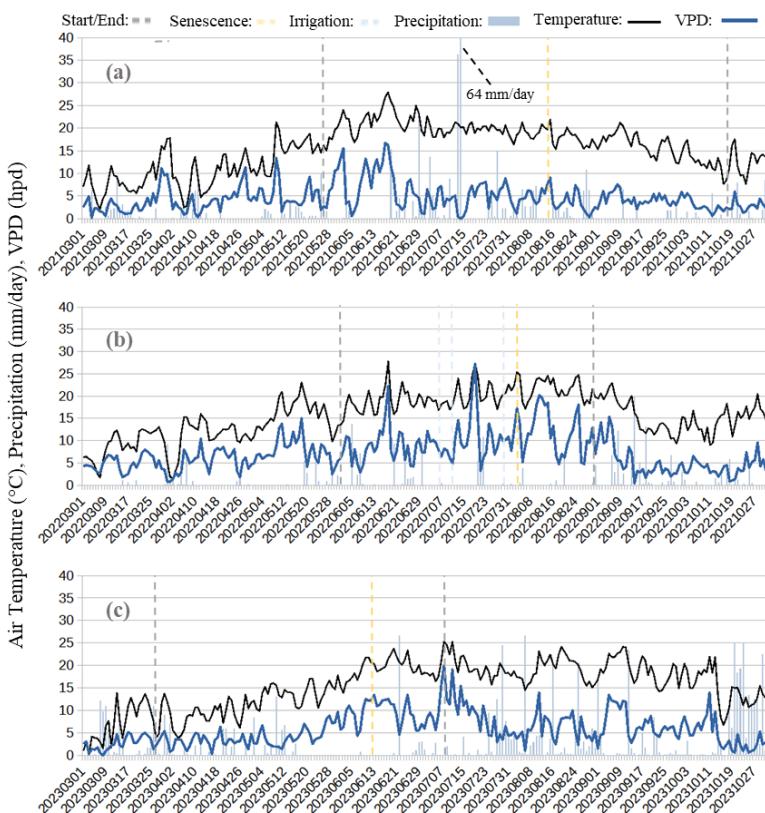
677

678 **Figure C4: Field averages of the TSEB-PT ET estimations comparing the change between using LST_{OG} and**
 679 **LST_{TC} in comparisons to the EC ET estimations with (a) sugar beet in 2021 (b) potato in 2022 (c) winter**
 680 **wheat 2023.**



681

682 **Figure C5: Field averages of the TSEB-PT ET estimations comparing the change between using GAI and PAI**
683 **and the use of f_g in senescence stages in comparison to the EC ET estimations with (a) sugar beet in 2021 (b)**
684 **potato in 2022 (c) winter wheat 2023.**



685

686 **Figure C6: Daily air temperature, precipitation, and vapor pressure deficit (VPD) for the following years (a)**
687 **2021 (b) 2022 (c) 2023.**

688

689 **Code availability**

690 Data will be available upon request.

691

692 **Credit authorship contribution statement**

693 **Jordan Steven Bates:** Writing – review & editing, Writing – original draft, Visualization, Software, Methodology,
694 Investigation, Formal analysis, Conceptualization. **Carsten Montzka:** Writing – review & editing, Methodology,
695 Investigation, Conceptualization. **Harry Vereecken:** Writing – review & editing, Methodology. **Francois Jonard:**
696 Funding Acquisition, Writing – review & editing, Methodology, Investigation, Conceptualization, Supervision.

697

698 **Declaration of competing interest**

699 There is no conflict of interest.

700 **Acknowledgments**

701 The study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
702 Germany's Excellence Strategy—EXC 2070—390732324 and the Helmholtz Association Modular Observation
703 Solutions for Earth Systems (MOSES) Initiative. Thank you to Marius Schmidt and his team for the LAI and crop
704 height ground based validation measurements.

705

706 **References**

707

708 Ali, M., Montzka, C., Stadler, A., Menz, G., Thonfeld, F., & Vereecken, H. (2015). Estimation and Validation of
709 RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany). *Remote Sensing*,
710 7(3), Article 3.

711

712 Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and Drainage Paper No.56. *Food and*
713 *Agriculture Organization*.

714

715 Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for
716 estimating evapotranspiration using remote sensing and ground-based data. *Agricultural Water Management*, 284,
717 108324. DOI:10.1016/j.agwat.2023.108324

718

719 Amin, E., Verrelst, J., Rivera-Caicedo, J. P., Pipia, L., Ruiz-Verdú, A., & Moreno, J. (2021). Prototyping Sentinel-2
720 green LAI and brown LAI products for cropland monitoring. *Remote Sensing of Environment*, 255, 112168.

721

722 Anderson, M. C., Kustas, W. P., Norman, J. M., Diak, G. T., Hain, C. R., Gao, F., Yang, Y., Knipper, K. R., Xue, J.,
723 Yang, Y., Crow, W. T., Holmes, T. R. H., Nieto, H., Guzinski, R., Otkin, J. A., Mecikalski, J. R., Cammalleri, C.,
724 Torres-Rua, A. T., Zhan, X., ... Agam, N. (2024). A brief history of the thermal IR-based Two-Source Energy Balance
725 (TSEB) model – diagnosing evapotranspiration from plant to global scales. *Agricultural and Forest Meteorology*, 350,
726 109951.

727

728 Bates, J., Jonard, F., Bajracharya, R., Vereecken, H., & Montzka, C. (2022). Machine Learning with UAS LiDAR for
729 Winter Wheat Biomass Estimations. *AGILE: GIScience Series*, 3, 1–4.

730

731 Bates, J. S., Montzka, C., Schmidt, M., & Jonard, F. (2021). Estimating Canopy Density Parameters Time-Series for
732 Winter Wheat Using UAS Mounted LiDAR. *Remote Sensing*, 13(4), Article 4.
733

734 Bellvert, J., Jofre-Ćekalović, C., Pelechá, A., Mata, M., & Nieto, H. (2020). Feasibility of Using the Two-Source
735 Energy Balance Model (TSEB) with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of
736 Vine Water Status in a Vineyard. *Remote Sensing*, 12(14), Article 14.
737

738 Bozorgi, M., Cristóbal, J., & Pàmies-Sans, M. (2024). Evaluating the Two-Source Energy Balance Model Using
739 MODIS Data for Estimating Evapotranspiration Time Series on a Regional Scale. *Remote Sensing*, 16(23), Article
740 23.
741

742 Brenner, C., Zeeman, M., Bernhardt, M., & Schulz, K. (2018). Estimation of evapotranspiration of temperate grassland
743 based on high-resolution thermal and visible range imagery from unmanned aerial systems. *International Journal of
744 Remote Sensing*, 39(15–16), 5141–5174.
745

746 Brogi, C., Huisman, J. A., Herbst, M., Weihermüller, L., Klosterhalfen, A., Montzka, C., Reichenau, T. G., &
747 Vereecken, H. (2020). Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling
748 and geophysics-based quantitative soil information. *Vadose Zone Journal*, 19(1), e20009.
749

750 Budzier, H., & Gerlach, G. (2015). Calibration of uncooled thermal infrared cameras. *Journal of Sensors and Sensor
751 Systems*, 4(1), 187–197.
752

753 Bukowiecki, J., Rose, T., Ehlers, R., & Kage, H. (2020). High-Throughput Prediction of Whole Season Green Area
754 Index in Winter Wheat With an Airborne Multispectral Sensor. *Frontiers in Plant Science*, 10.
755

756 Campbell, G. S. (1990). Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions.
757 Agricultural and Forest Meteorology, 49(3), 173–176.
758

759 Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., & Ruan, H. (2019). Comparison of UAV LiDAR and Digital Aerial
760 Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. *Forests*,
761 10(2), Article 2.
762

763 Chandel, A. K., Molaei, B., Khot, L. R., Peters, R. T., & Stöckle, C. O. (2020). High Resolution Geospatial
764 Evapotranspiration Mapping of Irrigated Field Crops Using Multispectral and Thermal Infrared Imagery with
765 METRIC Energy Balance Model. *Drones*, 4(3), Article 3.
766

767 Chirouze, J., Boulet, G., Jarlan, L., Fieuzal, R., Rodriguez, J. C., Ezzahar, J., Er-Raki, S., Bigeard, G., Merlin, O.,
768 Garatuza-Payan, J., Watts, C., & Chehbouni, G. (2014). Intercomparison of four remote-sensing-based energy balance
769 methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. *Hydrology and
770 Earth System Sciences*, 18(3), 1165–1188.
771

772 Choudhury, B. J., Idso, S. B., & Reginato, R. J. (1987). Analysis of an empirical model for soil heat flux under a
773 growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation.
774 *Agricultural and Forest Meteorology*, 39(4), 283–297.
775

776 Colaizzi, P. (2016). Advances in a Two-Source Energy Balance Model: Partitioning of Evaporation and Transpiration
777 for Cotton. *Trans. ASABE*, 59, 181–197.
778

779 Colaizzi, P. D., Agam, N., Tolk, J. A., Evett, S. R., & Howell, T. A. (2014). Two-Source Energy Balance Model to
780 Calculate E, T, and ET: Comparison of Priestley-Taylor and Penman-Monteith Formulations and Two Time Scaling
781 Methods. *Transactions of the ASABE*, 479–498.
782

783 de Lima, G. S. A., Ferreira, M. E., Sales, J. C., de Souza Passos, J., Maggiotto, S. R., Madari, B. E., de Melo Carvalho,
784 M. T., & de Almeida Machado, P. L. O. (2024). Evapotranspiration measurements in pasture, crops, and native
785 Brazilian Cerrado based on UAV-borne multispectral sensor. *Environmental Monitoring and Assessment*, 196(11),
786 1105

787
788 Derardja, B., Khadra, R., Abdelmoneim, A. A. A., El-Shirbeny, M. A., Valsamidis, T., De Pasquale, V., Deflorio, A.
789 M., & Volden, E. (2024). Advancements in Remote Sensing for Evapotranspiration Estimation: A Comprehensive
790 Review of Temperature-Based Models. *Remote Sensing*, 16(11), Article 11. <https://doi.org/10.3390/rs16111927>

791
792 Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in
793 different terrestrial ecosystems. *Computers and Electronics in Agriculture*, 148, 95–106.
794 <https://doi.org/10.1016/j.compag.2018.03.03>

795
796 Elfarkh, J., Ezzahar, J., Er-Raki, S., Simonneaux, V., Ait Hssaine, B., Rachidi, S., Brut, A., Rivalland, V., Khabba, S.,
797 Chehbouni, A., & Jarlan, L. (2020). Multi-Scale Evaluation of the TSEB Model over a Complex Agricultural
798 Landscape in Morocco. *Remote Sensing*, 12(7), Article 7.

799
800 Ellsäßer, F., Röll, A., Stiegler, C., Hendrayanto, & Hölscher, D. (2020). Introducing QWaterModel, a QGIS plugin
801 for predicting evapotranspiration from land surface temperatures. *Environmental Modelling & Software*, 130, 104739.

802
803 Gao, R., Torres-Rua, A. F., Nieto, H., Zahn, E., Hipps, L., Kustas, W. P., Alsina, M. M., Bambach, N., Castro, S. J.,
804 Prueger, J. H., Alfieri, J., McKee, L. G., White, W. A., Gao, F., McElrone, A. J., Anderson, M., Knipper, K.,
805 Coopmans, C., Gowing, I., ... Dokoozlian, N. (2023). ET Partitioning Assessment Using the TSEB Model and sUAS
806 Information across California Central Valley Vineyards. *Remote Sensing*, 15(3), 756.

807
808 Gao, R., Torres-Rua, A., Nassar, A., Alfieri, J., Aboutalebi, M., Hipps, L., Ortiz, N. B., McElrone, A. J., Coopmans,
809 C., Kustas, W., White, W., McKee, L., Alsina, M. del M., Dokoozlian, N., Sanchez, L., Prueger, J. H., Nieto, H., &
810 Agam, N. (2021). Evapotranspiration partitioning assessment using a machine-learning-based leaf area index and the
811 two-source energy balance model with sUAV information. *Autonomous Air and Ground Sensing Systems for
812 Agricultural Optimization and Phenotyping VI*, 11747, 117470N.

813
814 García-Santos, V., Sánchez, J. M., & Cuxart, J. (2022). Evapotranspiration Acquired with Remote Sensing Thermal-
815 Based Algorithms: A State-of-the-Art Review. *Remote Sensing*, 14(14), Article 14.

816
817 Ghiat, I., Mackey, H. R., & Al-Ansari, T. (2021). A Review of Evapotranspiration Measurement Models, Techniques
818 and Methods for Open and Closed Agricultural Field Applications. *Water*, 13(18), Article 18.

819
820 Gogler, S., Madura, H., Krupiński, M., Biesczad, G., & Sosnowski, T. (2014). Non-Uniformity Correction in
821 Microbolometer Array with Temperature Influence Compensation. *Metrology and Measurement Systems; 2014; No
822 4*; 709-718.

823
824 Gómez-Candón, D., Bellvert, J., & Royo, C. (2021). Performance of the Two-Source Energy Balance (TSEB) Model
825 as a Tool for Monitoring the Response of Durum Wheat to Drought by High-Throughput Field Phenotyping. *Frontiers
826 in Plant Science*, 12.

827
828 Guzinski, R., Nieto, H., Jensen, R., & Mendiguren, G. (2014). Remotely sensed land-surface energy fluxes at sub-
829 field scale in heterogeneous agricultural landscape and coniferous plantation. *Biogeosciences*, 11(18), 5021–5046.

830
831 Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling High-Resolution Actual
832 Evapotranspiration through Sentinel-2 and Sentinel-3 Data Fusion. *Remote Sensing*, 12(9), Article 9.
833 <https://doi.org/10.3390/rs12091433>

834
835 Han, X., Thomasson, J. A., Swaminathan, V., Wang, T., Siegfried, J., Raman, R., Rajan, N., & Neely, H. (2020).
836 Field-Based Calibration of Unmanned Aerial Vehicle Thermal Infrared Imagery with Temperature-Controlled
837 References. *Sensors*, 20(24), Article 24.

838
839 Hirschi, M., Michel, D., Lehner, I., & Seneviratne, S. I. (2017). A site-level comparison of lysimeter and eddy
840 covariance flux measurements of evapotranspiration. *Hydrology and Earth System Sciences*, 21(3), 1809–1825.
841 <https://doi.org/10.5194/hess-21-1809-2017>

842
843

843 Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2016). Estimating evaporation
844 with thermal UAV data and two-source energy balance models. *Hydrology and Earth System Sciences*, 20(2), 697–
845 713.

846

847 Hunt Jr., E. R., & Daughtry, C. S. T. (2018). What good are unmanned aircraft systems for agricultural remote sensing
848 and precision agriculture? *International Journal of Remote Sensing*, 39(15–16), 5345–5376.

849

850 Hütt, C., Bolten, A., Hüging, H., & Bareth, G. (2022). UAV LiDAR Metrics for Monitoring Crop Height, Biomass
851 and Nitrogen Uptake: A Case Study on a Winter Wheat Field Trial. *PFG – Journal of Photogrammetry, Remote
852 Sensing and Geoinformation Science*, 91(2), 65–76. <https://doi.org/10.1007/s41064-022-00228-6>

853

854 Jaafar, H. H., Mourad, R. M., Kustas, W. P., & Anderson, M. C. (2022). A Global Implementation of Single- and
855 Dual-Source Surface Energy Balance Models for Estimating Actual Evapotranspiration at 30-m Resolution Using
856 Google Earth Engine. *Water Resources Research*, 58(11), e2022WR032800. <https://doi.org/10.1029/2022WR032800>

857

858 Jia, K., Li, Y., Liang, S., Wei, X., & Yao, Y. (2017). Combining Estimation of Green Vegetation Fraction in an Arid
859 Region from Landsat 7 ETM+ Data. *Remote Sensing*, 9(11), Article 11.

860

861 Kavya, B. M., & Mahadevaiah, T. (2024). Enhancing Estimation Of Evapotranspiration In Sugarcane Cultivation
862 Using Lysimeter Data And Deep Learning Techniques. *International Journal of Intelligent Systems and Applications
863 in Engineering*, 12(23s), Article 23s.

864

865 Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., & Eklundh, L. (2019).
866 Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera.
867 *Remote Sensing*, 11(5), Article 5.

868

869 Kim, S., McGaughey, R. J., Andersen, H.-E., & Schreuder, G. (2009). Tree species differentiation using intensity data
870 derived from leaf-on and leaf-off airborne laser scanner data. *Remote Sensing of Environment*, 113(8), 1575–1586.
871 <https://doi.org/10.1016/j.rse.2009.03.017>

872

873 Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux
874 Footprint Prediction (FFP). *Geoscientific Model Development*, 8(11), 3695–3713.

875

876 Kondo, J., & Ishida, S. (1997). Sensible Heat Flux from the Earth's Surface under Natural Convective Conditions.
877 *Journal of the Atmospheric Sciences*, 54(4), 498–509.

878

879 Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in the
880 estimation of vertical canopy cover, angular canopy closure and leaf area index. *Remote Sensing of Environment*,
881 115(4), 1065–1080.

882

883 Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for land surface modeling.
884 *Agricultural and Forest Meteorology*, 149(12), 2071–2081.

885

886 Kustas, W. P., & Daughtry, C. S. T. (1990). Estimation of the soil heat flux/net radiation ratio from spectral data.
887 *Agricultural and Forest Meteorology*, 49(3), 205–223.

888

889 Kustas, W. P., Nieto, H., Morillas, L., Anderson, M. C., Alfieri, J. G., Hipps, L. E., Villagarcía, L., Domingo, F., &
890 Garcia, M. (2016). Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in
891 Mediterranean drylands from a two-source perspective.” *Remote Sensing of Environment*, 184, 645–653.

892

893 Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-
894 source model with radiometric temperatures for partial canopy cover. *Agricultural and Forest Meteorology*, 94(1),
895 13–29.

896

897 Li, Y., Kustas, W. P., Huang, C., Nieto, H., Haghghi, E., Anderson, M. C., Domingo, F., Garcia, M., & Scott, R. L.
898 (2019). Evaluating Soil Resistance Formulations in Thermal-Based Two-Source Energy Balance (TSEB) Model:
899 Implications for Heterogeneous Semiarid and Arid Regions. *Water Resources Research*, 55(2), 1059–1078.

900

901 Liu, H., Song, W., Lv, J., Gui, R., Shi, Y., Lu, Y., Li, M., Chen, L., & Chen, X. (2024). Precise Drought Threshold
902 Monitoring in Winter Wheat Using the Unmanned Aerial Vehicle Thermal Method. *Remote Sensing*, 16(4), Article
903 4. <https://doi.org/10.3390/rs16040710>

904

905 Liu, Y., Zhang, S., Zhang, J., Tang, L., & Bai, Y. (2021). Assessment and Comparison of Six Machine Learning
906 Models in Estimating Evapotranspiration over Croplands Using Remote Sensing and Meteorological Factors. *Remote*
907 *Sensing*, 13(19), Article 19. <https://doi.org/10.3390/rs13193838>

908

909 Liyew, C. M., Ferraris, S., Di Nardo, E., & Meo, R. (2025). A review of feature selection methods for actual
910 evapotranspiration prediction. *Artificial Intelligence Review*, 58(10), 292. <https://doi.org/10.1007/s10462-025-11298-4>

911

912 Mendiguren, G., Koch, J., & Stisen, S. (2017). Spatial pattern evaluation of a calibrated national hydrological model
913 – a remote-sensing-based diagnostic approach. *Hydrology and Earth System Sciences*, 21(12), 5987–6005.

914

915 Mohan, M. M. P., Kanchirapuzha, R., & Varma, M. R. R. (2020). Review of approaches for the estimation of sensible
916 heat flux in remote sensing-based evapotranspiration models. *Journal of Applied Remote Sensing*, 14(4), 041501.

917

918 Mokhtari, A., Ahmadi, A., Daccache, A., & Drechsler, K. (2021). Actual Evapotranspiration from UAV Images: A
919 Multi-Sensor Data Fusion Approach. *Remote Sensing*, 13(12), Article 12.

920

921 Montzka, C., Donat, M., Raj, R., Welter, P., & Bates, J. S. (2023). Sensitivity of LiDAR Parameters to Aboveground
922 Biomass in Winter Spelt. *Drones*, 7(2), Article 2.

923

924 Nassar, A., Torres-Rua, A., Kustas, W., Nieto, H., McKee, M., Hipps, L., Stevens, D., Alfieri, J., Alsina, M., McKee,
925 L., Coopmans, C., Sanchez, L., & Dokoozlian, N. (2020). Influence of Model Grid Size on the Estimation of Surface
926 Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in Vineyards. *Remote Sensing*, 12, 342.

927

928 Nassar, A., Torres-Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M. M., White, W., McKee,
929 L., Coopmans, C., Sanchez, L., & Dokoozlian, N. (2021). Assessing Daily Evapotranspiration Methodologies from
930 One-Time-of-Day sUAS and EC Information in the GRAPEX Project. *Remote Sensing*, 13(15), Article 15.

931

932 Nassar, A., Torres-Rua, A., Hipps, L., Kustas, W., McKee, M., Stevens, D., Nieto, H., Keller, D., Gowing, I., &
933 Coopmans, C. (2022). Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to Analyze
934 Evapotranspiration Modeling in a Natural Ecosystem. *Remote Sensing*, 14(2), Article 2.

935

936 Nieto, H., Guzinski, R., & Kustas, W. P. (2018). pyTSEB: A python Two Source Energy Balance model for estimation
937 of evapotranspiration with remote sensing data (Version 2.2) [Computer software].
938 <https://doi.org/10.5281/zenodo.594732>

939

940 Nieto, H., Kustas, W. P., Torres-Rúa, A., Alfieri, J. G., Gao, F., Anderson, M. C., White, W. A., Song, L., Alsina, M.
941 del M., Prueger, J. H., McKee, M., Elarab, M., & McKee, L. G. (2019). Evaluation of TSEB turbulent fluxes using
942 different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral
943 imagery. *Irrigation Science*, 37(3), 389–406.

944

945 Nieto, H., Alsina, M. M., Kustas, W. P., García-Tejera, O., Chen, F., Bambach, N., Gao, F., Alfieri, J. G., Hipps, L.
946 E., Prueger, J. H., McKee, L. G., Zahn, E., Bou-Zeid, E., McElrone, A. J., Castro, S. J., & Dokoozlian, N. (2022).
947 Evaluating different metrics from the thermal-based two-source energy balance model for monitoring grapevine water
948 stress. *Irrigation Science*, 40(4), 697–713. <https://doi.org/10.1007/s00271-022-00790-2>

949

950 Niu, H., Hollenbeck, D., Zhao, T., Wang, D., & Chen, Y. (2020). Evapotranspiration Estimation with Small UAVs in
951 Precision Agriculture. *Sensors*, 20(22), 6427.

952

953
954 Niu, H., Zhao, T., Wang, D., & Chen, Y. (2019). Evapotranspiration Estimation with UAVs in Agriculture: A
955 Review. *Preprints*.

956
957 Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy
958 fluxes in observations of directional radiometric surface temperature. *Agricultural and Forest Meteorology*, 77(3),
959 263–293.

960
961 Oguntunde, P., Olukunle, O. J., Fasimmirin, J., & Abiolu, O. A. (2012). Performance of the SunScan canopy analysis
962 system in estimating leaf area index of maize. *Agricultural Engineering International: The CIGR Journal*.

963
964 Ortiz, M. S., Ducati, J. R., Espinoza, J., & Monteiro, C. (2019). Evapotranspiration Estimate Using Energy Balance
965 Two Source Model With UAV Images: A Study in Vineyard. *American Journal of Engineering Research*, 11.

966
967 Park, S., Ryu, D., Fuentes, S., Chung, H., O'Connell, M., & Kim, J. (2021). Mapping Very-High-Resolution
968 Evapotranspiration from Unmanned Aerial Vehicle (UAV) Imagery. *ISPRS International Journal of Geo-Information*,
969 10(4), Article 4.

970
971 Pereira, A., & Pires, L. (2011). *Evapotranspiration and Water Management for Crop Production*.

972
973 Sagan, V., Maimaitijiang, M., Sidiqe, P., Ebliimit, K., Peterson, K. T., Hartling, S., Esposito, F., Khanal, K., Newcomb,
974 M., Pauli, D., Ward, R., Fritschi, F., Shakoor, N., & Mockler, T. (2019). UAV-Based High Resolution Thermal
975 Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap
976 Cameras. *Remote Sensing*, 11(3), Article 3.

977
978 Tan, C.-W., Zhang, P.-P., Zhou, X.-X., Wang, Z.-X., Xu, Z.-Q., Mao, W., Li, W.-X., Huo, Z.-Y., Guo, W.-S., & Yun,
979 F. (2020). Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-
980 Lambert law. *Scientific Reports*, 10(1), Article 1.

981
982 Tanner, C. B. (1963). Plant Temperatures. *Agronomy Journal*, 55(2), 210–211.

983
984 Thorp, K. R., Hunsaker, D. J., & French, A. N. (2010). Assimilating Leaf Area Index Estimates from Remote Sensing
985 into the Simulations of a Cropping Systems Model. *Transactions of the ASABE*, 53(1), 251–262.

986
987 Tao, S., Song, L., Zhao, G., & Zhao, L. (2024). Simulation and Assessment of Daily Evapotranspiration in the Heihe
988 River Basin over a Long Time Series Based on TSEB-SM. *Remote Sensing*, 16(3), Article 3.
989 <https://doi.org/10.3390/rs16030462>

990
991 Tunca, E. (2023a). Evaluating the performance of the TSEB model for sorghum evapotranspiration estimation using
992 time series UAV imagery. *Irrigation Science*, 42(5), 977–994. <https://doi.org/10.1007/s00271-023-00887-2>

993
994 Tunca, E., Köksal, E. S., & Taner, S. Ç. (2023b). Calibrating UAV thermal sensors using machine learning methods
995 for improved accuracy in agricultural applications. *Infrared Physics & Technology*, 133, 104804.
996 <https://doi.org/10.1016/j.infrared.2023.104804>

997
998 Virtue, J., Turner, D., Williams, G., Zeliadt, S., McCabe, M., & Lucieer, A. (2021). Thermal Sensor Calibration for
999 Unmanned Aerial Systems Using an External Heated Shutter. *Drones*, 5(4), Article 4.

1000
1001 Wan, Q., Smigaj, M., Brede, B., & Kooistra, L. (2024). Optimizing UAV-based uncooled thermal cameras in field
1002 conditions for precision agriculture. *International Journal of Applied Earth Observation and Geoinformation*, 134,
1003 104184. <https://doi.org/10.1016/j.jag.2024.104184>

1004
1005 Wang, W., Zou, S., Luo, Z., Zhang, W., Chen, D., & Kong, J. (2014). Prediction of the Reference Evapotranspiration
1006 Using a Chaotic Approach. *The Scientific World Journal*, 2014, e347625.

1007

1008 Wei, J., Dong, W., Liu, S., Song, L., Zhou, J., Xu, Z., Wang, Z., Xu, T., He, X., & Sun, J. (2023). Mapping super high
1009 resolution evapotranspiration in oasis-desert areas using UAV multi-sensor data. *Agricultural Water Management*,
1010 287, 108466.

1011
1012 Wu, K., & Lambot, S. (2022). Digital Soil Mapping Using Drone-Borne Ground-Penetrating Radar. In A. Di Mauro,
1013 A. Scorzari, & F. Soldovieri (Eds.), *Instrumentation and Measurement Technologies for Water Cycle Management*
1014 (pp. 417–436). Springer International Publishing. https://doi.org/10.1007/978-3-031-08262-7_17

1015
1016 Xia, T., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Gao, F., McKee, L., Prueger, J. H., Geli, H. M. E., Neale, C.
1017 M. U., Sanchez, L., Alsina, M. M., & Wang, Z. (2016). Mapping evapotranspiration with high-resolution aircraft
1018 imagery over vineyards using one- and two-source modeling schemes. *Hydrology and Earth System Sciences*, 20(4),
1019 1523–1545.

1020
1021 Yang, Y. (2019). Remotely Sensed Evapotranspiration. In X. Li & H. Vereecken (Eds.), *Observation and*
1022 *Measurement of Ecohydrological Processes* (Vol. 2, pp. 155–200). Springer Berlin Heidelberg.

1023
1024 Yang, Y., Qiu, J., Zhang, R., Huang, S., Chen, S., Wang, H., Luo, J., & Fan, Y. (2018). Intercomparison of Three
1025 Two-Source Energy Balance Models for Partitioning Evaporation and Transpiration in Semiarid Climates. *Remote*
1026 *Sensing*, 10(7), Article 7.

1027
1028 Yao, Y., Liang, S., Yu, J., Chen, J., Liu, S., Lin, Y., Fisher, J. B., McVicar, T. R., Cheng, J., Jia, K., Zhang, X., Xie,
1029 X., Jiang, B., & Sun, L. (2017). A simple temperature domain two-source model for estimating agricultural field
1030 surface energy fluxes from Landsat images: Simple ET Method. *Journal of Geophysical Research: Atmospheres*,
1031 122(10), 5211–5236. <https://doi.org/10.1002/2016JD026370>

1032
1033 Yue, J., Guo, W., Yang, G., Zhou, C., Feng, H., & Qiao, H. (2021). Method for accurate multi-growth-stage estimation
1034 of fractional vegetation cover using unmanned aerial vehicle remote sensing. *Plant Methods*, 17(1), 51.

1035
1036 Zhang, L., Zhang, H., Niu, Y., & Han, W. (2019). Mapping Maize Water Stress Based on UAV Multispectral Remote
1037 Sensing. *Remote Sensing*, 11(6), Article 6.

1038