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Abstract: Field-scale estimation of evapotranspiration (ET) using high-resolution data supports water conservation 11 

and yield optimization by enabling localized water use monitoring and early detection of crop stress. This study applies 12 

the Priestley–Taylor Two-Source Energy Balance (TSEB-PT) model at 15 cm resolution using unmanned aerial 13 

vehicle (UAV) data over a 10-hectare field across three seasons: sugar beet (2021), potato (2022), and winter wheat 14 

(2023). Key inputs included thermal infrared (TIR) for land surface temperature (LST), multispectral (MS) and LiDAR 15 

data for canopy characterization, and a fusion of MS derived green area index (GAI) and LiDAR derived plant area 16 

index (PAI) to derive the fraction of green LAI (fg). Model outputs were validated against eddy covariance (EC) flux 17 

data using footprint modeling. Results showed high sensitivity to LST, emphasizing the importance of accurate 18 

thermal calibration. While both GAI and PAI provided comparable LAI inputs during peak growth, GAI better 19 

captured functional canopy decline during stress and senescence, especially in winter wheat, where dense structure 20 

led to cooling effects unrelated to transpiration. Dynamic fg improved ET accuracy across all crops, particularly under 21 

declining canopy function. Overall, TSEB-PT showed strong agreement with EC measurements (RMSE = 0.14 mm/h, 22 

R² = 0.49; R² = 0.81 excluding senescence). UAV TIR based ET maps also revealed early stress signals prior to 23 

changes in MS or LiDAR based metrics. This study demonstrates the value of integrating very-high-resolution UAV 24 

data with the TSEB-PT model for multi-crop and season-long ET monitoring and early stress detection. 25 
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1. Introduction 32 

Evapotranspiration (ET), the combined loss of water through soil evaporation and plant transpiration, is the second-33 

largest flux in the hydrological cycle after precipitation (Allen et al., 1998). ET plays a critical role in water resource 34 

allocation and irrigation scheduling (Wang et al., 2014). Plant health and biomass production is closely linked to 35 

transpiration, which depends on soil water availability and is regulated by stomatal and environmental conditions. 36 

Accurate, timely estimation of ET at the field scale is essential for optimizing irrigation schedules, improving water 37 

use efficiency (WUE) (Pereira & Pires, 2011), and supporting sustainable agriculture amid increasing water scarcity 38 

and climate variability (Colaizzi, 2016). 39 

Conventional ET measurement methods, such as lysimeters, sap flow sensors, and eddy covariance (EC) systems 40 

(Yang et al., 2019), offer high temporal resolution but are limited in spatial coverage, making them inadequate for 41 

capturing within-field variability critical to precision irrigation Yao et al., 2017). Additionally, these systems are 42 

costly, making large-scale monitoring impractical (Yao et al., 2017). Satellite and airborne remote sensing approaches 43 

improve spatial coverage but often lack the resolution needed for dynamic crop monitoring. Manned aircraft, while 44 

capable of very-high-resolution observations, are costly and operationally demanding (Bellvert et al., 2020; Hunt Jr. 45 

& Daughtry, 2018). 46 

Recent advances in unmanned aerial vehicles (UAV) and lightweight, very-high-resolution uncooled thermal infrared 47 

(TIR) sensors now enable on-demand, field-scale ET monitoring. UAV platforms offer both high spatial and temporal 48 

resolution, allowing for detailed detection of crop water stress and rapid changes in canopy function (Niu et al., 2020). 49 

TIR remote sensing in the 8–14 µm range is a key component of energy balance models, as land surface temperature 50 

(LST) serves as a direct proxy for canopy transpiration and stomatal regulation if crop aerodynamics are known 51 

(Tanner, 1963). Anderson et al. (2024) further reviewed the development of TIR based energy balance models, which 52 

link vertical temperature gradients to sensible heat flux by modeling resistance, surface, and vegetation interactions. 53 

Popular and widely used models such as SEBAL and METRIC estimate ET using TIR derived LST and LAI data 54 

(Mohan et al., 2020), but their one-source energy balance formulations treat the land surface as a single layer. They 55 

rely on hot/cold (not transpiring/ fully transpiring) anchor pixels to infer ET extremes, with no explicit representation 56 

of soil–canopy interactions or functional canopy condition. This oversimplification can lead to inaccuracies (Niu et 57 

al., 2020), especially in heterogeneous or partially senescent fields, where vegetation structure and function vary 58 

spatially. However, even though these models are typically used with satellite based remote sensing, they have also 59 

been applied with UAV studies (Chandel et al., 2020; Mokhtari et al., 2021; Niu et al., 2019). Some UAV based 60 

studies have applied simplified alternatives such as the Deriving Atmosphere Turbulent Transport Useful To Dummies 61 

Using Temperature (DATTUTDUT) (Ellsäßer et al., 2020) or the Simple Algorithm for Evapotranspiration Retrieving 62 

(SAFER) (de Lima et al., 2024) but have similar constraints for very-high-resolution data at field scale.  63 

Alternatively, Two-Source Energy Balance (TSEB) models partition energy fluxes between soil and vegetation, each 64 

with distinct resistances (Norman et al., 1995). It is considered one of the most robust and widely used (Nieto, 2022; 65 
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Nassar et al., 2020) while often outperforming OSEB models like SEBAL or METRIC when compared (Guzinski et 66 

al., 2020; Brenner et al., 2018; Jaafar et al., 2022; Tao et al., 2024; Xia et al., 2016) especially in variable and sparse 67 

vegetation cover (García-Santos et al., 2022; Derardja et al., 2024). There are several versions but the most commonly 68 

used is the Priestley-Taylor version (TSEB-PT) (Colaizzi et al., 2014). Additionally, TSEB-PT incorporates fraction 69 

of green LAI (fg) within the Priestley-Taylor formulation which allows the model to dynamically scale transpiration 70 

based on the fraction of functioning canopy. This makes it especially suitable for modeling at high spatial resolution 71 

with heterogeneous canopy covers from partial stress and senescence conditions.  Furthermore, TSEB-PT version 72 

avoids uncertainties tied to vapor pressure as opposed to the Penman–Monteith (TSEB-PM) version, which simplifies 73 

deployment for UAV based applications (Colaizzi et al., 2014). The TSEB-PT model has been used with several UAV 74 

crop studies including wheat (Gómez-Candón et al., 2021), Barley (Hoffmann et al., 2016); Sorghum (Tunca et al., 75 

2023a), Pomegranate (Niu et al., 2019), but with most being vineyards (Gao et al., 2021, 2023; Nassar et al., 2020, 76 

2021, 2022; Nieto et al., 2019; Ortiz et al., 2019; Xia et al., 2016).  77 

Recently, machine learning (ML) methods have been applied to ET estimation using multispectral, thermal, and 78 

auxiliary data (Amani et al., 2023; Liyew et al., 2025). ML models often depend on large, high-quality ground data 79 

such as lysimeters (Kavya and Mahadevaiah et al., 2024) or eddy covariance systems (Liu et al., 2021), resources that 80 

are expensive, sparse, and highly site-specific, limiting their scalability for field-scale operational use 81 

(Hirschi et al., 2017) and are time consuming (García-Santos et al., 2022). Moreover, ML models struggle to transfer 82 

accurately to different locations or crop systems (Shi, 2024). In contrast, physically based models like TSEB-PT, when 83 

paired with UAV-sensor inputs, offer robust, interpretable, and transferable ET estimations across different crops and 84 

environments. 85 

With these considerations in mind, we apply the TSEB-PT model for robust, multi-season UAV based ET estimation 86 

using very-high-resolution thermal infrared (TIR), multispectral (MS), and LiDAR data. However, small-uncooled 87 

TIR sensors are prone to radiometric drift and environmental noise, often requiring ground references to correct LST 88 

biases (Kelly et al., 2019). Modeling canopy resistance also hinges on reliable LAI estimates. MS derived green area 89 

index (GAI), which reflects pigment concentration, is widely used but susceptible to saturation in dense canopies 90 

(Bukowiecki et al., 2020; Zheng & Moskal, 2009). In contrast, LiDAR is increasingly being used for crop LAI type 91 

estimations (Bates et al., 2021; Hütt et al., 2022; Dreier et al., 2025). LiDAR derived plant area index (PAI) captures 92 

structural canopy density and reduces saturation-related errors (Bates et al., 2021; Ma et al., 2021). The fraction of 93 

green LAI (fg), an indicator of photosynthetically active canopy, is rarely used in UAV based TSEB-PT studies. When 94 

included, it is typically assumed spatially constant (Hoffmann et al., 2016) or derived from sparse ground samples (Li 95 

et al., 2019) or NDVI based estimates, which lack structural depth (Nassar et al., 2022; Mendiguren et al., 2017). In 96 

this study, we leverage the complementary strengths of MS (GAI) and LiDAR (PAI) to generate dynamic, spatially 97 

explicit fg estimates at pixel level. This has the potential to improved transpiration modeling that accounts for both 98 

canopy structure and physiological function. 99 
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Our study expands UAV based TSEB-PT modeling across three crop types, sugar beet, potato, and winter wheat, 100 

spanning full growing seasons, with validation against EC data. Beyond validation, we evaluate how the model 101 

captures field-scale ET variability and early signals of water stress. Specifically, we assess the sensitivity of ET to 102 

thermal calibration, compare GAI and PAI as LAI inputs, and test the impact of incorporating fg derived from MS-103 

LiDAR fusion. By testing these components under operational UAV conditions, this work advances the use of TSEB-104 

PT for spatially adaptive, near real-time irrigation management in precision agriculture. 105 

2. Methods 106 

2.1. Study area 107 

The study was conducted at the ICOS Class 1 ecosystem site DE-RuS within the TERENO Eifel Rur observatory in 108 

Selhausen, Germany (50°51′56″N, 6°27′03″E) (https://ddp.tereno.net/ddp/). The 10-hectare field is situated at 101–109 

103 m above mean sea level with the soil consisting of Pleistocene loess, Holocene translocated loess, with sand and 110 

gravel at deeper levels (Brogi et al., 2020). The western section has shallower sand and gravel deposits, creating spatial 111 

variability in crop growth, especially during water-scarce periods. Weather conditions including precipitation and air 112 

temperature, during the experiment periods can be found in the appendix (see Tab. C1 & Fig. C6). 113 

 114 

 Figure 1: The field experiment site (left) with the EC and meteorological station located in the center of the field. The 115 

different crop cover type for each year (right) with example images of plant structure and fraction of vegetation coverage 116 

over the field throughout each growing season.  117 

The field experiment site, shown in Fig. 1, was monitored over three growing seasons with different crops each year. 118 

In 2021, sugar beet was planted from May to October, starting with 20% vegetation cover and reaching 98% by 119 

harvest. In 2022, potatoes were grown from May to August, beginning with 5% cover and closing at 87%, with ridges 120 

between rows. In 2023, winter wheat was planted from April to July, maintaining 94-98% cover, with senescence 121 

marked by visible leaf browning. Only the potato crop was irrigated, receiving three 30 mm applications in July. These 122 

crop and soil variations provide a basis to evaluate the robustness of very-high-resolution UAV data in ET models 123 

like TSEB-PT. 124 

2.2. UAV measurements and processing  125 
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Two DJI Matrice 600 UAV were used, one carrying a LiDAR payload and the other a combined MS and TIR setup 126 

(Fig. 2). The LiDAR system included a YellowScan Surveyor with a Velodyne VLP-16 scanner and Applanix APX15 127 

GNSS-IMU, capturing 300,000 pulses/sec at 903 nm with ~4 cm precision. Flights were conducted at 50 m altitude 128 

and 8 m/s with 50% side overlap. A Septentrio Altus NR3 GNSS base station was used for georeferencing. LiDAR 129 

data were processed using POSPac (v8.6) and YellowScan’s  CloudStation.  130 

 131 

Figure 2: View of the DJI Matrice 600 UAV platforms that were used while flying over the field experiment site. (a) The 132 

M600 mounted with the YellowScan LiDAR Surveyor and DJI Zenmuse X1 RGB sensor. (b) The M600 with the FLIR Vue 133 

Pro R thermal IR modified with a ThermalCapture external heated shutter and Micasense Red-edge M multispectral 134 

sensors mounted on a 3-axis gyro system for nadir imagery.   135 

The TIR sensor, a FLIR Vue Pro R 640 (13 mm), covered the 7.5–13.5 µm range with ±5°C accuracy and was modified 136 

with a heated shutter (ThermalCapture, AirRobot® GmbH & Co.) for improved inflight calibration. The MS sensor, 137 

a MicaSense RedEdge-M (AgEagle Aerial Systems Inc.), captured five spectral bands; red (663–673 nm) and NIR 138 

(820–860 nm) bands were used to calculate NDVI. Both sensors were mounted on a 3-axis gimbal and flown at 100 139 

m altitude and 6 m/s, with approximately 90% image overlap. TIR calibration used internal corrections and ground 140 

temperature reference targets, while MS data were calibrated using a reflectance panel. Data from both platforms were 141 

processed in Pix4D.  Flight campaign details are in the appendix (Tab. C1). 142 

2.4. UAV data products and model implementation 143 

TSEB-PT inputs fall into two categories: (1) surface boundary conditions derived from UAV data, including land 144 

surface temperature (LST), fractional vegetation cover (fc), leaf area index (LAI), canopy height (hc), and the fraction 145 

of green LAI (fg); and (2) meteorological forcing variables, including air temperature (Ta), wind speed (u), vapor 146 

pressure (ea), and incoming solar radiation (Rn). UAV derived variables were processed and calibrated using ground 147 

measurements, with detailed methods outlined in Sections 2.4.1–2.4.5. Data processing and raster manipulation were 148 

conducted in RStudio using the raster and lidR packages. All datasets were resampled to a common 15 cm ground 149 

sampling distance (GSD). The full UAV processing and model integration workflow is illustrated in Fig. 3.  150 
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 151 

Figure 3: Workflow of the study, showing sensor data integration and input variations used in the TSEB-PT model. The 152 

model incorporates two categories of inputs: (1) surface boundary conditions and (2) meteorological forcing variables. Key 153 

UAV derived inputs, LST (original vs. corrected), LAI (LiDAR derived PAI vs. MS derived GAI), and fg (default = 1 vs. 154 

UAV derived), were varied across model runs to assess their impact. Section 3.2 compares ET outputs using different LST 155 

inputs; Section 3.3 evaluates the influence of LAI source and the inclusion of fg during senescence. Final ET estimates 156 

(mm/h) are validated against eddy covariance (EC) flux measurements within the modeled EC footprint area. 157 

2.4.1. Land surface temperature (LST) maps 158 

To convert incoming longwave radiance from the TIR microbolometers into LST, surface emissivity values were 159 

required. Constant emissivity values were assigned to each crop type based on a literature review. Although vegetation 160 

and bare soil exhibit different emissivity values, their differences were deemed negligible for the purposes of this 161 

study. Additional radiometric calibration parameters including air temperature, relative humidity, and the distance 162 

from the sensor to the target surface were input into the FLIR Vue Pro R sensor prior to each flight. 163 

Uncooled thermal sensors on UAV platforms, such as the FLIR Vue Pro R, are prone to radiometric instability. This 164 

is largely due to inconsistencies in the default internal non-uniformity correction (NUC) applied to the microbolometer 165 

focal plane array. To improve calibration consistency, an external heated shutter was employed. Previous studies have 166 

reported that the use of such shutters can increase temperature measurement accuracy by up to 70% (Virtue et al., 167 

2021). Another major source of radiometric noise arises from the sensor’s own temperature and its interaction with 168 

the environment. Up to fourfold of the total signal noise can be attributed to sensor self-heating (Budzier & Gerlach, 169 
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2015; Gogler et al., 2014; Sagan et al., 2019). In addition, Kelly et al. (2019) demonstrated that wind exposure can 170 

destabilize sensor readings. To mitigate these effects, the thermal sensor was housed within a custom 3D-printed 171 

enclosure designed for thermal insulation and wind shielding. Furthermore, flights were conducted at reduced speeds 172 

to minimize wind-induced variability in sensor temperature. 173 

Once radiometric calibration and sensor stability were addressed, LST accuracy was assessed using ground based 174 

reference targets. In the 2021 field season, a hot blackbody target (metallic surface) and a cold water body were 175 

deployed, and thermal images were captured before and after each flight at 100 meters AGL (Fig. C2). Notably, Virtue 176 

et al. (2021) reported that with the use of an external heated shutter, reference targets are no longer essential throughout 177 

the entire flight but just one reference image due to improved thermal stability. A consistent temperature offset was 178 

observed. To correct for this in subsequent seasons, a multiple linear regression model was developed using the 2021 179 

reference data. This model incorporated environmental variables (wind speed, air temperature, and humidity) to 180 

generate corrected temperature offsets. Two types of LST inputs were ultimately used in the TSEB model: (1) the 181 

original temperature (OG), based solely on the sensor’s internal radiometric calibration, and (2) the target-corrected 182 

temperature (TC), which applied the offset corrections derived from reference targets and the regression model. 183 

2.4.2. Leaf area index (LAI) 184 

Two types of LAI inputs were used in the TSEB-PT model: multispectral (MS) based green area index (GAI) and 185 

LiDAR based plant area index (PAI). GAI is derived from spectral reflectance and represents the photosynthetically 186 

active portion of the canopy (Park et al., 2021; Wei et al., 2023), while PAI is derived from LiDAR returns and reflects 187 

the total canopy structure, essentially independent of pigment content (Bates et al., 2021). Both metrics serve as 188 

proxies for LAI, before senescence onset, due to their established relationships with leaf biophysical traits (Tan et al., 189 

2020; Ma et al., 2021). 190 

GAI and PAI were calculated using a modified Beer–Lambert law, a widely used approach for modeling light 191 

attenuation in plant canopies (Ali et al., 2015; Thorp et al., 2010). GAI was estimated from MS derived fractional 192 

vegetation cover (FVC) (See Eq. B1 in appendix), while PAI was derived from LiDAR based gap fraction (GF) (See 193 

Eq. B3 in appendix). A commonly used pixel based approach was used to estimate FVC (Jia et al., 2017; Yue et al., 194 

2021; Zhang et al., 2019). NDVI was applied to differentiate vegetation amounts and soil, with thresholds determined 195 

using NDVI histograms spanning the entire growing season. GF is defined as the proportion of laser pulses reaching 196 

the ground relative to total canopy returns within each raster cell. The extinction coefficient (k) was calibrated using 197 

proven (Oguntunde et al., 2012) in-field SunScan ceptometer LAI measurements and applied inversely to solve for 198 

GAI and PAI (see Eq. B2 & B4 in appendix B). Given limited ground samples per date (four CP zones), this semi-199 

empirical method offered a balance with the limited ground LAI samples available.  200 

Due to known variability in k across growth stages, especially during early canopy development, 2–3 k values were 201 

assigned per growing season, as recommended by Brogi et al. (2020) and Bates et al. (2021). Adjustments were 202 
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typically made after the first 2–3 sampling dates when canopy architecture changed rapidly. Thereafter, k was held 203 

constant through peak growth and harvest. 204 

2.4.3. Fraction of green LAI (fg) 205 

To capitalize on the functional and structural canopy signals captured by GAI and PAI, we computed the fraction of 206 

green LAI (fg), defined as the proportion of the total canopy (PAI) that remains photosynthetically active and capable 207 

of transpiring. fg was calculated as the ratio of GAI to PAI: 208 

𝑓𝑔 =  𝐺𝐴𝐼 𝑃𝐴𝐼⁄ = (
−𝑙𝑜𝑔(1−𝐹𝑉𝐶)

𝑘𝑚𝑎𝑥
) ( 

− cos(𝜃) ln(𝐺𝐹)

𝑘𝑚𝑎𝑥
)⁄                                                                                                            (1) 209 

where 𝜃  is the LiDAR scan angle, and 𝑘𝑚𝑎𝑥 is the extinction coefficient derived from peak LAI prior to senescence. 210 

This formulation enables fg to dynamically reflect changes in both pigment based canopy function and structural 211 

density. 212 

The fg input was set to 1 before senescence, assuming full canopy greenness and maximum transpiration capacity. 213 

After senescence onset, fg values dropped based on relative differences between GAI and PAI, allowing the model to 214 

scale transpiration potential accordingly. Senescence timing varied by crop and was identified from field observations 215 

and GAI trends. For sugar beet (2021), senescence began after August 13 (three late-season dates); for potato (2022), 216 

after August 3 (one senescence date); and for winter wheat (2023), senescence onset was spatially variable and 217 

occurred as early as May 13, with six identified dates. 218 

2.4.4. Fractional cover (fc)  219 

In TSEB-PT, fc can be specified directly, however, when a LAI input is provided the model automatically computes 220 

fc via the Beer–Lambert law (see Eq. A11 in appendix). This internal derivation maintains consistency in how net 221 

radiation is partitioned between soil and canopy, directly linking canopy area (whether structural or pigment‐derived) 222 

to modeled fluxes. From the TSEB perspective, fc should represent physical cover (Norman et al., 1995) as it governs 223 

canopy shading and soil radiation exposure which would best be based on structural LAI (PAI) as opposed to GAI. 224 

Therefore, in our fg implementation we use PAI as the LAI input to ensure fc better reflects actual canopy geometry 225 

and shading. 226 

2.4.5. Crop height (hc) 227 

A method of difference of digital elevation models (DoD) was used to produce the hc also commonly referred to as 228 

canopy height model (CHM) (see Eq. B5 in appendix B). A flight campaign was conducted before the emergence of 229 

the crops for a bare soil measurement to determine the digital terrain model (𝐷𝑇𝑀0). The remaining campaigns were 230 

those with crop surface structures to derive the digital surface model (𝐷𝑆𝑀𝑑) for that particular campaign date. Having 231 

bare soil terrain data rather than using the ground points of the LiDAR for each campaign is better in decreasing 232 
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needed interpolations that would decrease the overall accuracy (Cao et al., 2019). The maximum values per pixel were 233 

taken when subtracting the 𝐷𝑇𝑀0 from the 𝐷𝑆𝑀𝑑. 234 

2.4.6 TSEB-PT model and contributions of UAV Derived Inputs  235 

The TSEB-PT model partitions net radiation (Rn) into latent (LE), sensible (H), and ground (G) heat fluxes, with LE 236 

converted to evapotranspiration (ET, mm/h). The model was implemented using the pyTSEB library (Nieto et al., 237 

2018). Figure 4 and Table 1 illustrate how each UAV derived variable informs distinct model components and their 238 

representation of surface–atmosphere interactions. Model equations are detailed in Eq. A1–A13 in the appendix and 239 

Norman et al., (1995). 240 

Table 1: UAV derived model inputs, their influences within the model, and equation with which they are used. 241 

UAV Input Role in Model Equation(s) 

Surface temperature (Tc,Ts) Drives partitioning and energy balance A5, A6, A10 

Fractional cover (fc) Radiative separation of canopy/soil temps A10 

Leaf Area Index (LAI) Canopy resistance and transpiration estimation A8, A11 

Green LAI fraction (fg) Controls LEc in Priestley–Taylor term A11 

Crop height (hc) Aerodynamic roughness estimation A8, A9 (via d0, z0) 

LST is a primary driver of H, representing the radiometric temperature of the combined canopy and soil surface. In 242 

vegetated areas, it influences aerodynamic surface temperature and temperature gradients critical for energy balance 243 

closure. LST, in conjunction with vapor pressure deficit (VPD), helps detect plant water stress, elevated LST and low 244 

transpiration under high VPD suggest stress. The fc partitions energy fluxes between soil and vegetation. Higher fc 245 

increases the canopy’s contribution to Rn and LE, thus generally elevating ET while reducing G and Hs. 246 

The LAI input, MS-GAI or LiDAR-PAI in this use case, affects aerodynamic (Ra) and canopy (Rx) resistances; higher 247 

LAI (more stomata) reduces Rx enhancing transpiration and LE. The fg input captures the proportion of active 248 

vegetation within the structural LAI. It adjusts the Priestley-Taylor coefficient (α_PT) to reduce LE estimates during 249 

senescence or stress, preventing overestimation of transpiration. This is especially relevant in dense and tall crops, 250 

where inner canopy cooling can be misattributed to transpiration without accurate fg representation (Elfarkh et al., 251 

2020; Kustas et al., 2016).   252 

The hc input influences Ra by determining surface roughness (z₀) and displacement height (d), key variables for 253 

modeling turbulent heat exchange with the atmosphere. Taller canopies enhance aerodynamic coupling and energy 254 

dissipation, favoring higher ET. In contrast, shorter vegetation limits this exchange, increasing sensible heat flux (H) 255 

and reducing evaporative cooling. Also, hc indirectly affects Rx, for defining boundary-layer development and vertical 256 

wind attenuation. 257 
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 258 

Figure 4: Schematic and data illustration of UAV derived inputs used in the TSEB-PT model. The left panel shows the 259 

model architecture, highlighting the partitioning of net radiation (Rn) into latent (LE), sensible (H), and ground (G) heat 260 

fluxes, and how UAV derived variables (color coded) influence each component. Key inputs include land surface 261 

temperature (LST), leaf area index (LAI), fraction of green LAI (fg), fractional vegetation cover (fc), and canopy height (hc). 262 

The right panel displays spatial maps of LST, fc, GAI, PAI, and fg, along with a sample transect of the LiDAR 3D point 263 

cloud used to derive hc and PAI. Data are shown for a sugar beet field, illustrating seasonal transitions in vegetation 264 

structure and function. Together, these inputs improve spatially explicit energy balance partitioning and ET estimation, 265 

particularly under variable vegetation conditions, such as during senescence. Abbreviations: Ra (s/m): aerodynamic 266 

resistance; Rx (s/m): canopy (bulk stomatal) resistance; Rs (s/m): soil resistance; Tc (K): canopy temperature; Ts (K): soil 267 

surface temperature; u (m/s): wind speed; ea (kPa): actual vapor pressure; z0 (m): surface roughness length; d (m): zero-268 

plane displacement height; α_PT (–): Priestley–Taylor coefficient (modified here by fg); LEc, Hc (W/m²): Component fluxes 269 

from canopy; LEs, Hs (W/m²): Component fluxes from soil.  270 

2.4.7 Weather station, EC ET, and flux footprints validations  271 

Ground measurements were obtained from various instruments to support UAV data validation and model calibration. 272 

EC flux data, processed according to ICOS standards, were used to validate UAV derived ET estimates. EC 273 

measurements, including wind speed, direction, and water vapor concentration, were used to compute vertical fluxes 274 

related to ET (Ghiat et al., 2021). The footprint of the EC flux station was estimated using the footprint prediction 275 

model (FPP) in RStudio (Kljun et al., 2015), which accounts for micro-meteorological conditions and surface 276 

roughness. These footprints were calculated in correspondence within the duration of each UAV flight. UAV based 277 

TSEB-PT evapotranspiration (ET) estimates were compared to eddy covariance (EC) measurements by extracting the 278 

weighted average of raster pixel values within the 90% flux footprint extent. Each flux footprint can be seen in 279 

Appendix C with Fig. C1.  280 

3. Results 281 

3.1. UAV data derived model inputs 282 
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The thermal infrared (TIR) data collected by the UAV consistently underestimated ground surface temperature when 283 

compared to in-field reference targets during the 2021 season. The uncorrected TIR data showed a mean RMSE of 284 

4.19 °C relative to thermometer readings but maintained strong agreement in relative temperature patterns across dates 285 

(R² = 0.97). After applying corrections using ground reference targets, the seasonal RMSE improved to 2.78 °C. 286 

Sensor offset (RMSE) was most strongly correlated with increased air temperature (0.74), followed by higher wind 287 

speed (0.55) and denser humidity (0.34). Based on these relationships, a multiple linear regression model was 288 

developed to predict and correct TIR sensor bias. This model was applied to subsequent field seasons, resulting in an 289 

average increase of 2.2 °C in the LST orthomosaics to improve temporal consistency across acquisition dates. These 290 

shifts in LST values before and after correction are illustrated in Fig. 5. 291 

 292 

Figure 5: (a) The comparison of UAV average temperatures of the ground targets as compared to the average of the 293 

recorded temperatures of the thermometers. (b) Correlation of weather conditions with the difference (delta) between the 294 

thermal sensor and actual temperature of ground thermal targets for each date. 295 

For LAI estimation, both multispectral derived green area index (GAI) and LiDAR derived plant area index (PAI) 296 

were evaluated against ground based ceptometer LAI measurements. Across all three crops, PAI estimates were 297 

consistently more accurate, with lower RMSE values and higher correlation to field observations. Specifically, PAI 298 

achieved R² values of 0.99 for all three crops and an overall RMSE of 0.27 m²/m², whereas GAI showed greater 299 

variability, especially in winter wheat, resulting in an overall RMSE of 1.02 m²/m² and R² of 0.88. The discrepancy 300 

between GAI and PAI was most evident during senescence, when chlorophyll degradation reduced the spectral signal 301 

used in GAI estimation, while LiDAR still captured high canopy structural density. These results highlight the 302 

functional–structural divergence between optical and structural measurements of LAI, especially under changing 303 

vegetation conditions. A comparison of GAI and PAI estimates against ground LAI measurements at the field scale is 304 

shown in Fig. 6. 305 

 306 
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 307 

Figure 6: Field averaged UAV derived green area index (GAI) and plant area index (PAI) compared to ground based 308 

ceptometer LAI measurements across each campaign for three growing seasons. Ground measurements conclude prior to 309 

the onset of senescence, during which divergence between GAI and PAI becomes more pronounced due to declining 310 

pigment content in the canopy. 311 

UAV derived canopy height (hc) showed strong agreement with ground based measuring stick observations across all 312 

crops. In the 2023 winter wheat season, where canopy structure was most uniform, hc estimation achieved excellent 313 

accuracy (RMSE = 0.01 m, R² = 0.99). Lower accuracy was observed in potato (RMSE = 0.12 m), likely due to the 314 

effects of ridge planting and heterogeneous canopy closure within sampled areas. Despite this, the UAV LiDAR 315 

system provided reliable height estimates across all crops, with an overall RMSE of 0.06 m and R² = 0.90. These 316 

results support the suitability of UAV based hc for use in aerodynamic roughness parameterization within the TSEB-317 

PT model. A comparison of UAV derived and ground measured canopy heights is shown in Fig. 7. 318 

 319 

Figure 7: Comparison of UAV LiDAR derived canopy height (hc) and ground based measuring stick data for each season. 320 

UAV derived values represent field wide averages, while ground measurements reflect averages within designated control 321 

point (CP) zones.  322 

3.2. Accuracy and sensitivity of TSEB-PT ET estimates from UAV thermal corrections 323 

To assess the impact of radiometric calibration on ET model performance, we compared TSEB-PT estimates derived 324 

from original (LSTOG) and target corrected (LSTTC) UAV thermal imagery against EC derived ET values across all 325 

three crop seasons as seen in Fig. 8.  326 
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 327 

Figure 8: Comparison of UAV derived TSEB-PT ET estimates for each season using two different TIR inputs: uncorrected 328 

original (OG) and target corrected (TC) LST data. ET outputs are compared against eddy covariance (EC) measurements 329 

within the corresponding flux footprint for each campaign. 330 

 331 

Figure 9: RMSE and R² between modeled TSEB-PT ET and EC derived ET, averaged over the EC flux footprint. Two 332 

TSEB-PT model runs are compared based on land surface temperature (LST) input: original (OG) and target corrected 333 

(TC). Statistical metrics are presented for the entire growing season and excluding senescence periods, highlighting the 334 

influence of canopy condition on model performance. 335 

Referring to Fig. 9, across all three crops, the use of target corrected LST (LSTTC) inputs reduced overall RMSE, 336 

indicating improved absolute agreement between TSEB-PT ET estimates and EC observations. For example, both 337 

sugar beet and winter wheat showed seasonal RMSE reductions of approximately 0.5 mm/h. However, while thermal 338 

correction enhanced the absolute accuracy of LST and the resulting ET values, it also introduced temporal smoothing, 339 

which in some cases reduced the model’s sensitivity to short-term variability. This was most evident in the 2021 sugar 340 

beet season, where R² declined from 0.50 (LSTOG) to 0.32 (LSTTC) despite improved RMSE. Although R² decreased 341 

slightly, the improved thermal realism from corrected LST values enhances the physical accuracy of ET estimates. 342 

In all three crop seasons, omitting campaign dates during crop senescence, showed that the model estimations 343 

performed significantly better before physiological decline of the crops. The most pronounced improvement was 344 
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observed in sugar beet, where RMSE decreased from 0.16 to 0.11 mm/h and R² increased from 0.32 to 0.79 when 345 

using LSTTC.  346 

3.3. Accuracy and sensitivity of TSEB-PT ET estimations from different UAV based LAI inputs 347 

Building on the thermal correction analysis, we next evaluated how the choice of LAI input, multispectral derived 348 

GAI versus LiDAR derived PAI, influences TSEB-PT ET estimates as seen in Fig 10. In addition, we used GAI/PAI 349 

to compute the fraction of green LAI (fg), allowing dynamic scaling of the Priestley–Taylor coefficient (α_PT) to 350 

account for senescence or stressed vegetation. Model runs using fg were compared to a baseline with no scaling of 351 

α_PT (i.e., assuming fg = 1), to assess their impact on ET estimates under varying canopy conditions.  352 

 353 

Figure 10: TSEB-PT evapotranspiration (ET) estimates were evaluated using different leaf area index (LAI) inputs: MS 354 

derived green area index (GAI), LiDAR derived plant area index (PAI), and their ratio, representing the fraction of green 355 

LAI (fg), during periods of known senescence. UAV derived ET was compared against eddy covariance (EC) measurements 356 

within the EC flux footprint to assess model sensitivity to LAI input type. Notably, fg scaling was introduced earlier for 357 

winter wheat in the model than the officially declared onset of senescence to account for localized early decline observed in 358 

the western portion of the field due to water deficits. 359 

 360 

 361 
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Figure 11: RMSE and R² between TSEB-PT modeled ET and EC derived ET, averaged over the EC flux footprint. Two 362 

different LAI inputs were evaluated: green area index (GAI) and plant area index (PAI). Statistical metrics are shown for 363 

all campaign dates and separately for dates excluding senescence. During senescence periods, a third approach using the 364 

fraction of green LAI (fg = GAI/PAI) was also evaluated to scale transpiration according to functional canopy condition. 365 

During early to mid-season growth, when canopies were predominantly green and structurally uniform, the choice of 366 

LAI input, GAI or PAI, had minimal effect on model performance. Excluding senescent dates, ET estimates from both 367 

types of LAI inputs were in close agreement with EC measurements across all three crops. Coefficients of 368 

determination (R²) were also similar, with the exception of winter wheat, where GAI yielded a noticeably higher R² 369 

despite equivalent RMSE.  370 

However, during senescence, discrepancies between GAI and PAI based LAI inputs became more pronounced, 371 

particularly in winter wheat. While PAI values remained elevated due to the persistence of canopy structure, GAI 372 

declined in response to chlorophyll degradation as seen in Fig. 6. These differences had a notable impact on model 373 

accuracy over the whole growing season of winter winter wheat, where LAI = PAI estimates exhibited a higher 374 

overestimation with a RMSE of 0.29 mm/h and lower R² (0.32), while LAI = GAI inputs improved performance with 375 

an RMSE of 0.26 mm/h and R² of 0.56.  376 

 Incorporating fg significantly reduced ET overestimation during senescence and improved agreement with EC 377 

measurements in every season. Because of the significant and early physiological decline in in winter wheat, these 378 

improvements were even more significant. In winter wheat the RMSE decreased from 0.29 mm/h with LAI = PAI and 379 

fg = 1 to 0.17 mm/h LAI = PAI and fg = GAI/PAI.  380 

3.4. Input impacts on resulting magnitude of ET map spatial variability  381 

This study revealed that TSEB-PT derived ET with very-high-resolution data varied with both magnitude and spatial 382 

distribution across campaign dates influenced by the choice of UAV derived inputs. Appendix Figures B10 and B11 383 

present field averaged ET values along with their standard deviations, demonstrating how input configurations affect 384 

field spatial variability in modeled ET. To explore the sensitivity of ET spatial variability to input differences, we 385 

analyzed the changes in the coefficient of variation (CV) of ET in response to modifications in key model inputs. 386 

Specifically, Figure 12  shows how ET CV responds to the differences in input CV for LST (TIROG CV – TIRTC CV), 387 

LAI sources (GAI CV – PAI CV), and fg (fg = 1 CV - GAI/PAI derived fg CV). These comparisons help establish the 388 

connection between input variability and the spatial behavior of ET estimates, providing insight into which inputs 389 

most strongly influence the spatial characteristics of TSEB-PT outputs across varying crop and environmental 390 

conditions.  391 
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 392 

Figure 12: Comparison of average differences in the coefficient of variation (CV) between key TSEB-PT input variables 393 

(LST, LAI, fg) and the resulting ET estimates across three crop types. This highlights how changes in the spatial variability 394 

of each input affect the spatial variability of modeled ET. The CV difference for fg reflects the transition from a uniform 395 

value (fg = 1) to a spatially variable product derived from the fusion of GAI and PAI.   396 

Notably, with a uniform increase in average LST resulted in significant shifts in the spatial distribution of TSEB-PT 397 

ET estimates. In contrast, despite greater coefficient of variation (CV) between MS derived GAI and LiDAR derived 398 

PAI inputs, their influence on ET spatial variability was comparatively limited. The incorporation of a dynamic fg, 399 

derived from the fusion of GAI and PAI, substantially altered the spatial representation of ET, underscoring the 400 

importance of this parameter.  401 

Given the substantial change in ET spatial variability resulting from an essentially uniform shift in LST inputs, we 402 

further examined the corresponding ET maps for potato in early season (low vegetation cover) and late season maps 403 

(variability in vegetation state). This was to characterize the different spatial magnitudes of ET change were spatially 404 

distributed with uniforms shifts in LST. These comparisons are presented in Fig. 13 where the LSTOG ET (lower LST 405 

and higher resulting ET) results were subtracted from those when LSTTC inputs were used. 406 

 407 

Figure 13: Difference in TSEB-PT ET estimates using original land surface temperature (LSTOG) ET minus reference target 408 

corrected (LSTTC) ET. The maps illustrate how the magnitude and spatial pattern of ET differences vary depending on the 409 

dominant evaporative source (soil vs. canopy) and the presence of crop water stress.  410 
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Two key characteristics on how increased LST offset changes spatial variability in TSEB-PT ET outputs were 411 

observed. First, in early-season conditions with lower fc, the dominant flux, whether from soil evaporation or canopy 412 

transpiration varied across dates and increased the contrast between soil and canopy with the increased temperature 413 

from LSTTC. Second, later in the growing season, the magnitude of ET change differed significantly depending on 414 

presence of stressed vegetation. In these cases, stressed vegetation showed a substantially larger ET reduction after 415 

LST correction. This shows thermal correction reshaped the spatial structure of modeled water use, amplifying 416 

contrasts between stressed and non-stressed zones.  417 

3.5. Precise early identification of crop water stress with high-res ET maps 418 

One of the most practical advantages of TIR based UAV derived ET modeling is its capacity to detect early signals of 419 

crop water stress before structural or spectral changes manifest in traditional vegetation indices. In the 2022 potato 420 

and 2023 winter wheat seasons, this capability was clearly demonstrated as seen in Fig. 14 & 15. 421 

 422 

Figure 14:  Particular dates in the potato 2022 season of Evapotranspiration (ET), green area index (GAI), plant area index 423 

(PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field related 424 
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to irrigation patterns on the 3rd of August more so than with GAI and PAI.  On the 29th of August, consequences in pigment 425 

and canopy structure can be seen with GAI and PAI.  426 

Comparisons between the August 3 and August 29 UAV campaigns in 2022 revealed that, despite minimal changes 427 

in both GAI and PAI, the ET maps captured pronounced declines in water use across specific sections of the field. 428 

These reductions aligned with known zones of reduced irrigation coverage caused by limitations of the hose reel 429 

sprinkler system. Notably, areas along the northwest corner and adjacent to irrigation lanes exhibited significant ET 430 

suppression, even though they remained structurally intact in LiDAR and multispectral imagery.  431 

A similar pattern was observed in 2023 with winter wheat, though in this case the stress was most likely attributed to 432 

known underlying soil–root interactions that have caused water stress in the past. On June 13, the ET map revealed 433 

broader and more pronounced spatial structures of suppressed transpiration that were not yet visible in the GAI or PAI 434 

maps. By June 28, however, similar spatial patterns emerged in both GAI and PAI, confirming physiological and 435 

structural canopy decline.  436 

 437 
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Figure 15: Particular dates in the winter wheat 2023 season of Evapotranspiration (ET), green area index (GAI), plant area 438 

index (PAI) comparisons around moments of potential water related stress. ET map shows clear structures within field 439 

related to soil layer properties and root depth on the 13th of June. On the 30th of June, stress reaction in pigment and canopy 440 

structure can be seen with GAI and PAI. 441 

4. Discussion 442 

4.1. Thermal accuracy and impacts on spatial ET distribution 443 

TSEB-PT’s strong sensitivity to land surface temperature (LST) is well established (e.g., Hoffmann et al., 2016), but 444 

this study extends those findings using very-high-resolution UAV based thermal imagery under uniform crop cover. 445 

Uncorrected LST exhibited a significant underestimation, consistent with prior UAV studies (e.g., Kelly et al., 2019; 446 

Han et al., 2020; Wan et al., 2024; Tunca et al., 2023b; Liu et al., 2024). This bias led to systematic ET overestimation. 447 

While R² declined slightly after correction, the improved thermal realism enhanced physical consistency in ET 448 

estimates, particularly important for cumulative ET tracking and water balance assessments. 449 

Thermal bias was most severe under high air temperature and wind speed, precisely when crops face peak transpiration 450 

demand and are most vulnerable to stress. This trend aligns with Sagan et al. (2019), who reported increased UAV 451 

TIR underestimation under warmer conditions. In our results, stressed areas showed amplified ET deviations with 452 

LST correction, indicating greater sensitivity to thermal accuracy. Underestimated LST muted ET suppression signals, 453 

reducing contrast between stressed and non-stressed zones and potentially misguiding irrigation responses. In addition, 454 

corrected LST sharpened spatial gradients in ET by enhancing energy balance contrast, particularly under dominant 455 

water or energy limitation conditions. This raised the standard deviation of ET values across the field and improved 456 

spatial differentiation of stress signals. 457 

Despite onboard radiometric correction and a heated shutter for non-uniformity calibration, ground based reference 458 

targets remained essential for accurate LST and ET retrieval. When such targets are unavailable, alternate approaches 459 

like the Dual-Temperature Difference (DTD) variant of TSEB-PT can help, though in our case, DTD yielded only 460 

moderate improvements compared to ground-calibrated correction (results not shown). 461 

4.2. Implications of LAI and fc source and sensitivity to plant physiological properties 462 

Both GAI and PAI served as effective LAI inputs for TSEB-PT during peak growth, when structural (PAI) and 463 

pigment based (GAI) indicators are closely aligned, yielding similar ET estimates. This is consistent with a prior one-464 

source energy balance study showing LiDAR derived LAI can perform comparably to MS based LAI for ET 465 

estimations (Wei et al., 2023). However, few studies have examined how model performance shifts under stress or 466 

senescence, when canopy structure and function diverge. 467 

Under these conditions, PAI remained high due to persistent canopy structure, which appears to contribute to higher 468 

ET overestimation. In contrast, GAI, which reflects pigment concentration and photosynthetic activity, captured 469 
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physiological decline and produced more conservative estimations that better aligned with EC ET. This effect was 470 

most pronounced in winter wheat, where structural density persisted even as transpiration decreased. While PAI and 471 

ground based ceptometer LAI showed better agreement in absolute values, especially in dense canopies where GAI 472 

saturates, neither completely captures declining physiological function. The results may indicate that GAI (functional 473 

LAI) better reflected actual transpiration capacity, which could explain the improved model performance when it was 474 

compared to PAI with fg held constant at 1. 475 

The automatic derivation of fc from LAI in pyTSEB further complicates input selection. Because fc governs the 476 

radiation partitioning between soil and vegetation, LAI input type influences both energy distribution and canopy 477 

resistance. GAI may underestimate shading in dense or senescent canopies, leading to lower fc and thus lower modeled 478 

ET, not only due to higher canopy resistance but also reduced radiation allocated to the vegetation component. 479 

Conversely, PAI may overstate transpiration potential in structurally intact but functionally declining canopies. It is 480 

possible that while both LAI inputs perform similarly under non-stressed conditions, GAI offers better physiological 481 

realism during stress or senescence. Future implementations could benefit from testing the decoupling of fc and LAI 482 

inputs, using structural data (PAI) for fc and pigment-sensitive indices (GAI) for functional canopy resistance. 483 

4.3. Role of fg in differentiating functional transpiration from passive cooling 484 

Distinguishing passive canopy cooling from actual transpiration is critical in dense canopies like winter wheat, where 485 

structure remains even as physiological function declines. Unlike eddy covariance systems, which directly measure 486 

vapor flux, TSEB-PT relies on LST as a proxy. Without accounting for canopy function, models may incorrectly 487 

attribute radiative cooling to transpiration. In this study, combining LiDAR based structural LAI (PAI) and MS derived 488 

pigment-sensitive LAI (GAI) enabled the use of fg to scale transpiration according to physiological status, improving 489 

ET agreement with EC observations, particularly during early stress and senescence. 490 

The fg input proved effective even before visible signs of senescence (e.g. winter wheat), detecting early transpiration 491 

suppression due to stress. Despite its value, fg is not required in TSEB-PT and is typically omitted. Comparable scaling 492 

is also lacking in models like SEBAL and METRIC, which treat vegetation as a single layer, an approach more suited 493 

to satellite-scale applications where such structural-functional distinctions are impractical. UAV platforms, however, 494 

not only offer the spatial resolution needed, but also provide new sensing capabilities, such as 3D structural mapping 495 

from LiDAR, that facilitate the integration of inputs like fg. 496 

UAV based ET studies that exclude the use of fg in their TSEB-PT implementation further supports the importance of 497 

its inclusion. Gómez-Candón et al. (2021) reported overestimated ET (RMSE = 0.24 mm/h) in wheat without using 498 

fg. This overestimation is more apparent in the later season with senescence. This overestimation is nearly identical to 499 

ours for winter wheat when we also excluded fg. Similarly, Tunca et al. (2023a) observed overestimation in stressed 500 

sorghum and proposed manually adjusting the Priestley–Taylor coefficient (α), while our results show that 501 

incorporating fg offers a more targeted and spatially dynamic alternative. Bozorgi et al. (2024) also identified 502 
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inaccurate assumptions about green canopy fraction as a source of TSEB bias, reinforcing the importance of function 503 

based scaling. 504 

As shown in Figure 12, fg influenced spatial ET variability more strongly than LAI type alone, highlighting its 505 

importance for accurate measurement. In winter wheat, this influence was limited, likely due to LAI saturation (>6), 506 

where additional canopy does not meaningfully alter radiation interception through fc. In contrast, sugar beet and 507 

potato, with lower canopy density, showed greater fg sensitivity. Given the strong link between fc and fg, improving fc 508 

parameterization beyond the fixed extinction coefficient of the Beer–Lambert law used within the model could be 509 

valuable.  510 

UAV LiDAR methods can now provide purely structural, high-resolution fg estimates, avoiding pigment-related biases 511 

inherent in reflectance-only approaches (Chirouze et al., 2014). Unlike maximum NDVI methods, which fail to 512 

account for structural leaf loss during senescence, LiDAR derived fg can explicitly track the green fraction relative to 513 

total canopy volume, potentially reducing biases in ET partitioning. These capabilities should be more widely 514 

integrated into UAV-based TSEB-PT workflows. 515 

4.4 Future considerations with UAV TSEB model implementation 516 

Satellite-based ET models have traditionally operated at coarse spatial scales, assuming simplified canopy structure 517 

and uniform land cover. In nearly all TSEB-PT applications, the LAI input is based on green LAI or GAI (Chirouze 518 

et al., 2014). Because fc is often derived from LAI via the Beer–Lambert law in TSEB-PT (e.g. current pyTSEB), this 519 

can bias flux estimates in stressed or senescent crops by excluding nonfunctioning foliage that still shades the soil, 520 

leading to overestimation of soil heat flux (G) and soil-related flux components (Chirouze et al., 2014). While some 521 

studies have used plant area index (PAI) for fc (Guzinski et al., 2014; Guzinski et al., 2020), these are rarely derived 522 

from purely structural metrics. As noted by Chirouze et al. (2014), fc should reflect total canopy structure, whereas 523 

LAI should represent only the photosynthetically active portion. UAVs now enable direct, high-resolution 524 

measurements of both canopy structure and function. Leveraging structural LiDAR derived PAI for fc (radiation 525 

partitioning) and functional multispectral derived GAI for LAI (canopy resistance) could enhance physiological 526 

realism in partitioning latent (LEc) and sensible (Hc) heat fluxes, and warrants targeted testing. 527 

Further sensor innovations could enhance the parameterization of ET models. For example, more detailed structural 528 

information from the entire canopy could be used to derive multi-layer GF profiles (Bates et al., 2022), supporting 529 

improved estimates of structural LAI. Additionally, LiDAR intensity, typically operating in the NIR range (Kim et 530 

al., 2009), has shown physiological associations with crop LAI (Hütt et al., 2022) and biomass (Montzka et al., 2023), 531 

offering potential as a dual-use input that integrates both structural and functional canopy traits into LAI and fg 532 

estimates. UAV LiDAR can also contribute to guiding the parameterization of surface roughness as adjustments made 533 

to soil resistance coefficients has shown to be important (Li et al., 2019). Moreover, UAV-mounted radar systems, 534 

including synthetic aperture radar (SAR) and ground-penetrating radar (GPR), may provide novel pathways for 535 

assessing canopy or surface moisture conditions (Wu & Lambot et al., 2022), which are critical for accurate energy 536 
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flux partitioning. By leveraging the spatial precision and 3D reconstruction capabilities of UAV platforms, future 537 

research can further refine ET model inputs and improve accuracy across structurally complex and heterogeneous 538 

crop environments. 539 

4.5. Practical impacts and considerations for farming practices 540 

Physically based models like TSEB-PT offer major advantages over empirical or ML methods by simulating land–541 

atmosphere energy exchanges without requiring extensive training data. In this study, TSEB-PT achieved accurate ET 542 

estimates using minimal ground measurements, just four control plots for LAI and hc calibration and two thermal 543 

reference targets early in the season. Even fewer control points may suffice, shifting greater importance to UAV sensor 544 

quality and data type (e.g., LiDAR vs. MS). This highlights the operational value of TSEB-PT when paired with UAV 545 

platforms that can resolve fine-scale canopy and surface variability not captured by satellites. 546 

The spatial and temporal resolution of UAVs allows ET to be mapped at actionable scales. In this study, UAV TIR-547 

based ET estimations with TSEB-PT detected early signs of crop stress before they were visible in conventional means 548 

with MS or LiDAR based metrics. This capability enables the possibility of targeted, timely irrigation interventions. 549 

For instance, in the potato field, ET maps revealed under-irrigated zones just days after a hose reel event. In winter 550 

wheat, suppressed ET matched shallow gravel layers, flagging naturally water-limited zones that experienced early 551 

senescence. Such spatial detail would be difficult to detect through scouting or coarse-resolution remote sensing but 552 

is vital for optimizing yield and water use efficiency. 553 

ET maps derived from UAV and TSEB can be interpolated to daily totals and integrated with rainfall and irrigation 554 

data to calculate crop water deficits or surpluses, supporting more precise irrigation scheduling. Several interpolation 555 

methods for converting instantaneous ET to daily values merit further investigation, particularly in relation to thermal 556 

sensor bias propagation, optimal overpass timing, and capturing the diurnal ET cycle through high-temporal UAV 557 

data. While this study focused on single-time observations aligned with EC fluxes, it highlights the potential of very-558 

high-resolution UAV data and emerging sensor technologies to enhance spatial ET accuracy and inform future 559 

methodological advances. 560 

5. Conclusion 561 

This study demonstrates the effectiveness of integrating very-high-resolution UAV multi-sensor data with the TSEB-562 

PT model for accurate, field-scale ET estimation across sugar beet, potato, and winter wheat over full growing seasons. 563 

With minimal ground calibration of UAV inputs, the model showed strong agreement with EC measurements, 564 

confirming its potential for operational use in precision irrigation and water management.  565 

Among UAV derived inputs, TIR data was both the most influential and the most error-prone. Uncooled TIR sensors 566 

systematically underestimated LST under high-temperature and high-VPD conditions, leading to ET overestimation. 567 

Absolute LST correction using ground reference targets significantly improved both ET magnitude and spatial 568 

contrast, emphasizing the need for accurate thermal data. Vegetation inputs were also critical. While LiDAR derived 569 
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PAI and MS derived GAI performed similarly as LAI inputs for TSEB-PT during peak growth, results showed GAI 570 

more effectively reflected functional canopy decline under stress and senescence which may lead to a more accurate 571 

ET estimation during such periods. To further improve physiological relevance, we provided a dynamic input for fg, 572 

derived from LiDAR-MS fusion with a GAI:PAI ratio. This enhanced ET accuracy and spatial variability, particularly 573 

in dense or senescing canopies, and proved valuable even before official senescence periods or visible signs of stress. 574 

Its inclusion could address overestimation issues seen in previous UAV based studies that omitted a functional canopy 575 

scaling parameter. 576 

UAV platforms offer advantages over satellite systems by enabling fine-scale reconstruction of canopy structure using 577 

3D LiDAR, along with thermal and spectral sensing for precise boundary layer characterization. These tools open new 578 

opportunities for near real-time ET mapping and water use assessment at actionable scales. 579 

Key contributions of this study include: 580 

 Demonstrating the robustness of TSEB-PT with UAV inputs and minimal ground calibration. 581 

 Underscoring the importance of accurate TIR calibration, especially during heat stress. 582 

 Clarifying divergence between structural (PAI) and functional (GAI) LAI inputs under stress. 583 

 Proposing a LiDAR-MS fusion approach to estimate fg for dynamic transpiration scaling. 584 

 Establishing the value of fg in TSEB-PT to improve ET accuracy across varying physiological states. 585 

 Identifying crop-specific modeling challenges, especially in dense canopies like winter wheat. 586 

 Showing the potential of UAV TIR based ET mapping to detect early stress to guide targeted irrigation. 587 

Ultimately, this study highlights the value of combining UAV sensing with physically based models such as TSEB-588 

PT for reliable, very-high-resolution ET monitoring. Future work should further explore the decoupling and type of 589 

inputs for fc and LAI from advancing UAV sensors. In addition, further testing and improving dynamic LiDAR-MS 590 

based fg integration across diverse cropping systems to enhance physiological realism and model scalability. 591 

Appendix A: Description of the TSEB-PT model implementation 592 

The Two-Source Energy Balance model with Priestley-Taylor formulation (TSEB-PT; Norman et al., 1995) was used 593 

to estimate surface energy fluxes, particularly latent heat flux (LE), by partitioning soil and canopy contributions based 594 

on radiometric surface temperature. The model was implemented in Python using the open-source pyTSEB package 595 

(Nieto et al., 2018). For more detailed description of TSEB, please refer to Norman et al. (1995) and W. P. Kustas & 596 

Norman (1999).   597 

A1. Energy balance equations 598 

𝑅𝑛 = 𝐿𝐸 + 𝐻 + 𝐺                                                                                                             (A1) 599 

Fluxes are partitioned into canopy and soil components: 600 
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𝑅𝑛𝑐 = 𝐻𝑐 + 𝐿𝐸𝑐                                                                                                   (A2) 601 

𝑅𝑛𝑠 =  𝐻𝑠  +  𝐿𝐸𝑠 +  𝐺                                                                                                  (A3) 602 

Soil heat flux GGG is parameterized as a fraction of Rns: 603 

𝐺 = 𝑐𝑔𝑅𝑛𝑠                                                                                                  (A4) 604 

Where cg=0.35 is an empirical constant (Choudhury et al., 1987; Kustas & Daughtry, 1990). 605 

A2. Sensible heat partitioning and air temperature 606 

The total sensible heat flux H is calculated as: 607 

𝐻 = 𝐻𝑐 + 𝐻𝑠 = 𝜌𝐶𝜌 [
𝑇𝑎𝑐−𝑇𝑐

𝑅𝑎
] = 𝜌𝐶𝜌 [

𝑇𝑐−𝑇𝑎𝑐

𝑅𝑥
+

𝑇𝑠−𝑇𝑎𝑐

𝑅𝑠
]                                                                                  (A5) 608 

Where   𝑇𝑎𝑐 = within-canopy air temperature (Kelvin); 𝑇𝑐 and 𝑇𝑠 = canopy and soil  surface temperature components 609 

derived from UAV thermal imagery; ρ = air density (kg m−3); 𝐶𝜌 = heat capacity of the air at constant pressure (J/kg/ 610 

K); 𝑅𝑎, 𝑅𝑠, and 𝑅𝑥 = aerodynamic resistances (s m-1). 611 

The in-canopy air temperature is: 612 

𝑇𝐴𝐶 =

𝑇𝐴
𝑅𝑎

+
𝑇𝐶
𝑅𝑥

+
𝑇𝑆
𝑅𝑠

1

𝑅𝑎
+

1

𝑅𝑥
+

1

𝑅𝑠

                                                                 (A6) 613 

A3. Resistance parameterizations 614 

Soil boundary layer resistance (Kustas & Norman, 1999): 615 

𝑅𝑠 =
1

𝑐(𝑇𝑠−𝑇𝐴)
1
3+𝑏𝑢𝑠

                   (A7) 616 

With the semi-empirical constants, b and c left at their default values. usu represents wind speed near the soil surface. 617 

Canopy resistance (Norman et al., 1995): 618 

𝑅𝑥 =
𝐶′

𝐿𝐴𝐼
(

𝑆

𝑢𝑑0+𝑧0𝑚

)

1

2
                 (A8) 619 

Where 𝐶′(s1/2 m-1) = 90 s1/2 m-1 ; LAI = leaf area index estimated from either UAV multispectral GAI or LiDAR PAI;  620 

S (m) = characteristic leaf size; 𝑢𝑑0
 + 𝑧0𝑚

 is the wind speed at the height reference height; 𝑑0 + 𝑧0𝑚
 as 𝑑0 is the zero-621 

plane displacement height and 𝑧0𝑚
 is the roughness length for moment estimated from UAV derived crop height.  622 
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𝑅𝑎 =
ln(

𝑧𝑇−𝑑0
𝑧0𝐻

)−𝛹ℎ(
𝑧𝑇−𝑑0

𝐿
)+𝛹ℎ(

𝑧0𝐻
𝐿

)

𝑘′𝑢∗
                                                                                             (A9) 623 

 zT is the measurement heights for wind speed u (ms−1). d0 is the zero-plane displacement height, z0H is the roughness 624 

length for momentum and heat transport with 𝑧0𝐻
 = 𝑧0𝑚

 (−kB−1). The ψ (ζ) terms in Eqs. 7a and are the adiabatic 625 

correction factors for momentum. 𝐿 being the Monin–Obukhov length (m). 626 

A4. Radiometric temperature decomposition 627 

The observed directional radiometric temperature TRAD is decomposed as: 628 

𝑇𝑅𝐴𝐷(𝜃) =  [𝑓𝑐(𝜃)𝑇𝐶
4 + (1 − 𝑓𝑐(𝜃)𝑇𝑆

4]1/4                   (A10) 629 

Where 𝑓𝑐(𝜃) = vegetation fractional from the viewing angle (𝜃) calculated from UAV based multispectral.  630 

A5. Priestley-Taylor approach to canopy transpiration 631 

The initial estimate of LEc  uses the Priestley-Taylor formulation: 632 

𝐿𝐸𝑐 = 𝛼𝑃𝑇𝑓𝑔
∆

∆+𝛾
𝑅𝑛𝑐                                                                                                    (A11) 633 

Where 𝛼𝑃𝑇 = 1.26 (iteratively reduced if needed to achieve plausible solution LEs >0; see W. Kustas & Anderson 634 

(2009)); 𝑓𝑔 = fraction of green LAI derived from UAV based hybrid combination of multispectral and LiDAR data; 635 

Δ = slope of saturation vapor pressure curve (kPa K-1); γ = psychrometric constant (kPa K-1).  636 

𝑓𝑐 (𝜃) = 1 − 𝑒𝑥𝑝 [−𝑘𝑏𝑒(𝜃)𝐿𝐴𝐼]                                                      (A12) 637 

with 𝑘𝑏𝑒 being the extension coefficient of canopy with a leaf angle distribution defined by the Campbell (1990) 638 

parameter. 639 

𝑘𝑏𝑒 =  
√χ2+𝑡𝑎𝑛2 𝜃

χ+1.774 (χ+1.182)−0.733                                                                                (A13) 640 

 641 

Appendix B: Sensor derived metrics 642 

B1. Green area index (multispectral) 643 

𝐹𝑉𝐶 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠
                                                                                 (B1) 644 

with 𝑁𝐷𝑉𝐼𝑠 being the upper threshold for NDVI values representing soil pixels and 𝑁𝐷𝑉𝐼𝑣 representing the upper 645 

threshold of healthy vegetation.  646 

𝐺𝐴𝐼 =
−𝑙𝑜𝑔(1−𝐹𝑉𝐶)

𝑘(𝜃)
                                                                      (B2) 647 
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k(θ) = extinction coefficient, parametrized using SunScan ceptometer LAI measurements. k was adjusted once 648 

between early and mid-late season and then held constant through senescence. 649 

B2. Plant area index (LiDAR) 650 

𝐺𝐹 =  
𝑛𝑔𝑟𝑜𝑢𝑛𝑑

𝑛
                                                                                       (B3) 651 

𝑛ground  = number of LiDAR returns classified as ground.  n = total number of returns (ground + vegetation) in the 652 

pixel. 653 

𝑃𝐴𝐼 = −
𝑐𝑜𝑠 (𝜃) 𝑙𝑛 (𝐺𝐹)

𝑘
                                                                        (B4) 654 

𝜃 = LiDAR scan angle ; GF = gap fraction from previous equation; k = extinction coefficient (same as above), 655 

adjusted once mid-season and then held constant. 656 

B2. Crop height (LiDAR) 657 

ℎ𝑐 = 𝐷𝑆𝑀𝑑– 𝐷𝑇𝑀0                                                                     (B5) 658 

DSMd = digital surface model from the crop canopy (per flight date); DTM0 = digital terrain model from the bare soil 659 
pre-emergence flight. 660 

Appendix C: Supplemental material 661 

 662 
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 663 

 664 

Figure C1: The estimated EC footprints for each TIR campaign flight time interval to be used to compare the 665 

TSEB-PT ET values within this spatial extent to the EC ET estimations. 666 

667 

Figure C2 (a.) ground photo and aerial TIR view of the hot and cold temperature ground reference targets (b.) 668 
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pre-correction and post-correction graphed RMSE of TIR images in the 2021 season (c.) correlation of weather 669 

factors with RMSE.  670 

 671 

Figure C3: (Left) Location of continuous measurement plots (CP) around climate station in the middle of the 672 

experiment field site. (Right) Crop height measuring locations for the listed 2021 campaigns by color. 673 

Table C1: The following TIR and MS collection dates with the relevant weather conditions during each flight 674 

that may have contributing factors on the accuracy of the observations. 675 

Date FLIR/MS 

Flights 

LiDAR 

Flights 

Start 

Time 

End 

Time 

Wind 

(m/s) 

Air_Temp.

(°C) 

Humidity 

(%) 

Wind_Direction 

(°) 

5/28/2021 X X 1310 1425 1.4 16.1 8.1 73 

6/11/2021 X X 1514 1619 2.3 25.9 11.9 295 

6/25/2021 X X 1228 1324 1.8 20.2 9.4 260 

7/9/2021 X X 1126 1233 1.2 17.8 13.1 304 

7/20/2021 X  1328 1358 1.4 20.9 10 309 

7/23/2021 X X       

8/02/2021 X  1143 1212 0.9 15.4 10.6 299 

8/11/2021 X  1400 1430 1.2 22.5 13.6 246 

8/13/2021 X X 1251 1328 2 22.5 12.7 287 

9/08/2021 X  1328 1402 2.5 25.5 11.8 123 

9/09/2021  X       

9/22/2021 X  1148 1227 0.9 16.7 8.6 133 

9/28/2021  X       

10/18/2021 X  1400 1430 1.9 15.5 9.1 102 

5/31/2022 X  1209 1251 0.8 15.3 8.2 102 

6/04/2022 X X 1447 1513 2.6 24.3 11.5 46 

6/10/2022 X  1419 1448 1.3 22.1 11 226 

6/29/2022 X X 1512 1550 1.4 27.1 9.46 113 
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8/03/2022 X X 1503 1533 1.9 31.7 10.7 292 

8/29/2022 X X 1508 1542 1.6 23.0 8.8 46 

3/28/2023 X X 1158 1235 0.9 6.6 3.8 250 

4/19/2023 X X 1323 1356 1.4 14.1 5.5 22 

5/03/2023 X X 1327 1341 1.2 14.3 6.5 55 

5/17/2023 X X 1350 1403 1.3 14.3 6.5 350 

5/31/2023 X X 1208 1240 1.5 22.2 9.4 38 

6/13/2023 X X 1257 1324 1.6 24.8 9.1 90 

6/28/2023 X X 1341 1410 1.4 20.5 11.5 225 

7/04/2023 X  1243 1313 1.4 21.1 9.2 235 

7/10/2023 X  1220 1251 1.6 24.7 11.3 283 

 676 

 677 

Figure C4: Field averages of the TSEB-PT ET estimations comparing the change between using LSTOG and 678 

LSTTC in comparisons to the EC ET estimations with (a) sugar beet in 2021 (b) potato in 2022 (c) winter 679 

wheat 2023. 680 
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 681 

Figure C5: Field averages of the TSEB-PT ET estimations comparing the change between using GAI and PAI 682 

and the use of fg in senescence stages in comparison to the EC ET estimations with (a) sugar beet in 2021 (b) 683 

potato in 2022 (c) winter wheat 2023. 684 

 685 
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Figure C6: Daily air temperature, precipitation, and vapor pressure deficit (VPD) for the following years (a) 686 

2021 (b) 2022 (c) 2023. 687 

 688 

Code availability 689 

Data will be available upon request. 690 
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