| Home > Publications database > Superconductive Coupling and Josephson Diode Effect in Multi-Terminal Hybrid Structures based on Topological Insulators > print |
| 001 | 1053016 | ||
| 005 | 20260202125355.0 | ||
| 037 | _ | _ | |a FZJ-2026-01360 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a International Workshop on Hybrid Quantum Materials, Sciences, and Technologies 2025 |g HQMST2025 |c Matsue |d 2025-10-27 - 2025-10-29 |w Japan |
| 245 | _ | _ | |a Superconductive Coupling and Josephson Diode Effect in Multi-Terminal Hybrid Structures based on Topological Insulators |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1770021132_21302 |2 PUB:(DE-HGF) |x Invited |
| 520 | _ | _ | |a Combining s-type superconductors with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum circuits based on Majorana braiding. The braiding mechanism is built around a three-terminal Josephson junction. However, implementing this concept requires a deeper understanding of the underlying mechanisms in topological insulator nanoribbon networks equipped with superconducting electrodes. Our devices are fabricated using a combination of selective-area growth of the topological insulator and shadow mask evaporation of the superconductor. Firstly, we investigate nanoribbon kinks and T-junctions of the topological insulator. In kink structures we observed a π-periodic change in conductance depending on the direction of an in-plane magnetic field. We attribute this phenomenon to an orbital effect that leads to the alignment or misalignment of phase-coherent states on the lower and upper surfaces of the kink branches, depending on the orientation of the magnetic field. Next, we measure the transport properties of three-terminal topological insulator-based Josephson junctions and analyze the junctions' cross-coupling. When an out-of-plane magnetic field is applied, a multi-terminal geometry-induced diode effect is observed. Work done in collaboration with: Gerrit Behner, Abdur Rehman Jalil, Kristof Moors, Michael Schleenvoigt, Erik Zimmermann, Alina Rupp, Justus Teller, Franz Fischer, Peter Schüffelgen, Makoto Kohda, Hans Lüth, Detlev Grützmacher. |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a EXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769) |0 G:(BMBF)390534769 |c 390534769 |x 1 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)491798118 - Magnetische topologische Isolatoren für robuste Majorana Zustände (491798118) |0 G:(GEPRIS)491798118 |c 491798118 |x 2 |
| 650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
| 856 | 4 | _ | |u https://jointquantum2025.jp/ |
| 909 | C | O | |o oai:juser.fz-juelich.de:1053016 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)128634 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|