001053017 001__ 1053017
001053017 005__ 20260202125355.0
001053017 037__ $$aFZJ-2026-01361
001053017 041__ $$aEnglish
001053017 1001_ $$0P:(DE-HGF)0$$aBehner, Gerrit$$b0
001053017 1112_ $$aMallorca Topological Quantum Matter$$cPalma de Mallorca$$d2025-05-06 - 2025-05-09$$gMTQM2025$$wSpain
001053017 245__ $$aSuperconducting diode effect in Josephson junctions based on topological insulator nanoribbons
001053017 260__ $$c2025
001053017 3367_ $$033$$2EndNote$$aConference Paper
001053017 3367_ $$2DataCite$$aOther
001053017 3367_ $$2BibTeX$$aINPROCEEDINGS
001053017 3367_ $$2DRIVER$$aconferenceObject
001053017 3367_ $$2ORCID$$aLECTURE_SPEECH
001053017 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1770028939_1152$$xInvited
001053017 520__ $$aRecently, the superconducting diode effect has attracted a lot of attention [1]. A characteristic of the diode effect is that the magnitude of the critical supercurrent depends on the direction in which the current is driven. The Josephson diode effect occurs when both inversion and time-reversal symmetry are broken. For Josephson junctions with a semiconducting [2] or topological insulator [3] weak link, this can be accomplished by the presence of spin-orbit coupling in conjunction with an external magnetic field for the time-reversal symmetry breaking. Recently, the device layout asymmetry in a multi-terminal Josephson junction also led to a diode effect, either by keeping one of the superconducting electrodes floating [4,5] or by phase biasing the respective junctions [6]. We present measurements in both two- and multi-terminal Josephson junctions that clearly demonstrate the Josephson diode effect and underline the high quality of the devices fabricated. The fabrication is based on a combination of selective-area growth of the ternary topological insulator Bi0.8 Sb1.2 Te3 and shadow mask evaporation of the parent superconductor Nb. For the multi-terminal junctions we map out the transport properties as a function of bias currents and prove the coupling of the junctions by the observation of the multi-terminal geometry induced Josephson diode effect. The experimental findings are supported by simulations based on the resistively and capacitively shunted junction network model [4]. Regarding the single junction a pronounced Josephson diode effect is observed when an in-plane magnetic field is applied perpendicular to the junction current. Our analysis of the temperature dependence of the critical current indicates that the supercurrent is largely carried by topological surface states which in turn are responsible for the Josephson diode effect.[1] M. Nadeem, M.S. Fuhrer and X. Wang, Nature Reviews Physics 10, 558-577 (2023) [2] C. Baumgartner, L. Fuchs, A. Costa et al., Nature Nanotechnology 1, 39-44 (2022). [3] B. Lu, S. Ikegaya, P. Burset, Y. Tanaka and N. Nagaosa, Phys. Rev. Lett. 131, 096001 (2023) [4] M. Gupta, G. Graziano, M. Pendharkar, J. Dong, C. Dempsey, C. Palmström, V. Pribiag, Nature Communications, 14, 2041-1723 (2023) [5] G. Behner, A. R. Jalil, A. Rupp, H. Lüth, D. Grützmacher, Th. Schäpers, ACS Nano, accepted, 2025, arXiv:2410.19311 [6] M. Coraiola, A. Svetogorov, D. Haxell et al., ACS Nano, 18, 9221-9231 (2024)
001053017 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001053017 536__ $$0G:(GEPRIS)491798118$$aDFG project G:(GEPRIS)491798118 - Magnetische topologische Isolatoren für robuste Majorana Zustände (491798118)$$c491798118$$x1
001053017 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
001053017 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053017 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001053017 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b1
001053017 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b2
001053017 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b3$$eCorresponding author
001053017 909CO $$ooai:juser.fz-juelich.de:1053017$$pVDB
001053017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001053017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
001053017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b2$$kFZJ
001053017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b3$$kFZJ
001053017 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001053017 920__ $$lyes
001053017 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053017 980__ $$aconf
001053017 980__ $$aVDB
001053017 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053017 980__ $$aUNRESTRICTED