001053033 001__ 1053033
001053033 005__ 20260129203534.0
001053033 0247_ $$2doi$$a10.3390/esa3010001
001053033 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01375
001053033 037__ $$aFZJ-2026-01375
001053033 1001_ $$0P:(DE-Juel1)207783$$aHampel, Niclas$$b0$$eCorresponding author$$ufzj
001053033 245__ $$aModel-Based Design and Operational Optimization of HPC Waste Heat Recovery and High-Temperature Aquifer Thermal Energy Storage in Existing Energy Infrastructures
001053033 260__ $$c2026
001053033 3367_ $$2DRIVER$$aarticle
001053033 3367_ $$2DataCite$$aOutput Types/Journal article
001053033 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769680300_2970
001053033 3367_ $$2BibTeX$$aARTICLE
001053033 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053033 3367_ $$00$$2EndNote$$aJournal Article
001053033 520__ $$aThe waste heat generated by high-performance computing (HPC) represents an opportunity for advancing the decarbonization of energy systems. Seasonal storage is necessary to regulate the balance between waste heat production and demand. High-temperature aquifer thermal energy storage (HT-ATES) is a particularly well-suited technology for this purpose due to its large storage capacity. However, integrating HT-ATES into energy systems for district heating is complex, affecting existing components. Therefore, this study applies a bi-objective mixed-integer quadratically constrained programming (MIQCP) approach to optimize the energy system at Forschungszentrum Jülich (FZJ) regarding total annualized costs (TAC) and global warming impact (GWI). The exascale computer Jupiter, which is hosted at FZJ, generates a substantial amount of renewable waste heat that is suitable for integration into district heating networks and seasonal storage. Case studies show that HT-ATES integration into the investigated system can reduce GWI by 20% and increase TAC by 1% compared to the reference case. Despite increased TAC from investments and heat pump (HP) operation, summer charging of the HT-ATES remains flexible and cost-effective. An idealized future scenario indicates that HT-ATES with a storage capacity of 16,990 MWh and HPs could cover most of the heating demand, reducing GWI by up to 91% while TAC increases by 6% relative to the reference system.
001053033 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001053033 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053033 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001053033 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001053033 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b1$$ufzj
001053033 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b2$$ufzj
001053033 773__ $$a10.3390/esa3010001$$gVol. 3, no. 1, p. 1 -$$n1$$p1 -$$v3$$y2026
001053033 8564_ $$uhttps://juser.fz-juelich.de/record/1053033/files/Full-paper%20%28Publicly%20available%29.pdf$$yOpenAccess
001053033 909CO $$ooai:juser.fz-juelich.de:1053033$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001053033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207783$$aForschungszentrum Jülich$$b0$$kFZJ
001053033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b1$$kFZJ
001053033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b2$$kFZJ
001053033 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001053033 9141_ $$y2026
001053033 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053033 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001053033 920__ $$lyes
001053033 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001053033 980__ $$ajournal
001053033 980__ $$aVDB
001053033 980__ $$aUNRESTRICTED
001053033 980__ $$aI:(DE-Juel1)ICE-1-20170217
001053033 9801_ $$aFullTexts