001053034 001__ 1053034
001053034 005__ 20260202125355.0
001053034 037__ $$aFZJ-2026-01376
001053034 041__ $$aEnglish
001053034 1001_ $$0P:(DE-Juel1)187581$$aKarthein, Jan$$b0$$eCorresponding author
001053034 1112_ $$aDPG Frühjahrstagung$$cRegensburg$$d2025-03-16 - 2025-03-21$$wGermany
001053034 245__ $$aMagnetotransport measurements on magnetic topological insulator nanostructures fabricated with shadow wall epitaxy
001053034 260__ $$c2025
001053034 3367_ $$033$$2EndNote$$aConference Paper
001053034 3367_ $$2DataCite$$aOther
001053034 3367_ $$2BibTeX$$aINPROCEEDINGS
001053034 3367_ $$2DRIVER$$aconferenceObject
001053034 3367_ $$2ORCID$$aLECTURE_SPEECH
001053034 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1770031837_2132$$xAfter Call
001053034 520__ $$aWe present a novel way to fabricate magnetic topological insulator nanostructures based on digital alloying and shadow wall epitaxy. The combination of these two techniques allows the preparation of structures in the micrometer and nanometer range without the need for lithography and etching steps on the material under investigation. The magnetotransport properties of micro and nano Hall bars fabricated in this way are investigated at cryogenic temperatures and in high magnetic fields. Different sizes of Hall bars are measured and their magnetic properties are studied. An anomalous Hall effect is observed, indicating the successful preparation of Hall bars based on magnetic topological insulator thin films. The Curie temperature of Hall bars with different widths is extracted and found to be systematically dependent on the dimensions.
001053034 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001053034 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001053034 536__ $$0G:(GEPRIS)491798118$$aDFG project G:(GEPRIS)491798118 - Magnetische topologische Isolatoren für robuste Majorana Zustände (491798118)$$c491798118$$x2
001053034 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053034 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001053034 7001_ $$0P:(DE-Juel1)201477$$aToehgiono, Gion$$b1
001053034 7001_ $$0P:(DE-Juel1)180356$$aVaßen-Carl, Max$$b2
001053034 7001_ $$0P:(DE-HGF)0$$aKawano, T.$$b3
001053034 7001_ $$0P:(DE-HGF)0$$aOtsubo, S.$$b4
001053034 7001_ $$0P:(DE-HGF)0$$aKohda, M.$$b5
001053034 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b6
001053034 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
001053034 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8
001053034 909CO $$ooai:juser.fz-juelich.de:1053034$$pVDB
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187581$$aForschungszentrum Jülich$$b0$$kFZJ
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201477$$aForschungszentrum Jülich$$b1$$kFZJ
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180356$$aForschungszentrum Jülich$$b2$$kFZJ
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b6$$kFZJ
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001053034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
001053034 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001053034 920__ $$lyes
001053034 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053034 980__ $$aconf
001053034 980__ $$aVDB
001053034 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053034 980__ $$aUNRESTRICTED