001053035 001__ 1053035
001053035 005__ 20260129203534.0
001053035 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01377
001053035 037__ $$aFZJ-2026-01377
001053035 041__ $$aEnglish
001053035 088__ $$2Other$$aEPM 22DIT02 FunSNM
001053035 1001_ $$aJohansen$$b0
001053035 245__ $$aGuidelines for data quality, measurement uncertainty, and traceability in sensor networks
001053035 260__ $$c2025
001053035 300__ $$a68 p.
001053035 3367_ $$2DRIVER$$areport
001053035 3367_ $$2ORCID$$aREPORT
001053035 3367_ $$010$$2EndNote$$aReport
001053035 3367_ $$2DataCite$$aOutput Types/Report
001053035 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$breport$$mreport$$s1769680153_4216
001053035 3367_ $$2BibTeX$$aTECHREPORT
001053035 520__ $$aAs sensor networks become easier to acquire and deploy, and consequently are morecommon in almost all industries and in everyday life, so ensuring the trustworthiness andreliability of measurements and data in such systems becomes more challenging. Not onlyas the numbers of sensors grow, but also as the inaccessibility of sensors means it isinfeasible to use established methods for their calibration, so the difficulties of assessingmeasurement uncertainty in sensor networks and establishing the traceability ofmeasurements made by such systems increases. Furthermore, due to the large volumes ofdata, it is a challenge to validate the quality of data collected from sensor networks, and it isinfeasible to do so without automated, efficient, and reliable methods.The purpose of this guide is to help address the challenge of ensuring data quality for sensornetworks. It is structured in two main parts, one related to data quality metrics and one totraceability.The part on data quality metrics (Section 2) provides guidance on the importance of dataquality when collecting large amounts of data from sensor networks where there is lesscontrol over the sensor environment as well as the management and architecture of thesensor network, for example, compared to a laboratory setup. This includes choosing whichdimensions of data quality are most important depending on the use case, managing datarequirements during the lifecycle of sensor nodes, and developing ways to measure andquantify data quality.Different use cases have different metrological needs when it comes to traceability. The parton traceability (Section 3) addresses SI-traceability in sensor networks, providing guidanceon different ways of calibrating sensors in sensor networks such as in-situ, self- and co-calibration. Furthermore, it addresses the challenge of making methods of analyzing sensordata uncertainty-aware, for example, for sensor fusion, and using different modellingtechniques, for example, digital shadows and digital twins.Different use cases are used as examples in different sections of the guide. The use casesare district heating networks, heat treatment of high-value components in advancedmanufacturing, gas flow meter networks, air quality monitoring sensor networks and smartbuildings. These are used to highlight certain challenges, needs, and both commonalities anddifferences in certain types of sensor networks within the different subjects covered in theguide.
001053035 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001053035 588__ $$aDataset connected to DataCite
001053035 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001053035 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001053035 7001_ $$aVaa, Mads 1 ORCID icon$$b1$$eContact person
001053035 7001_ $$aTabandeh, Michael1$$b2
001053035 7001_ $$aSöderblom, Shahin2 ORCID icon$$b3
001053035 7001_ $$aHarris, Henrik2$$b4
001053035 7001_ $$aPearce, Peter3$$b5
001053035 7001_ $$aLuo, Jonathan3 ORCID icon$$b6
001053035 7001_ $$aTucker, Yuhui3$$b7
001053035 7001_ $$aVedurmudi, Declan3 ORCID icon$$b8
001053035 7001_ $$aIturrate-Garcia, Anupam Prasad4 ORCID icon$$b9
001053035 7001_ $$0P:(DE-HGF)0$$aZaidan, Maitane5 ORCID icon$$b10
001053035 7001_ $$0P:(DE-HGF)0$$aDavidovic, Martha Arbayani6 ORCID icon$$b11
001053035 7001_ $$0P:(DE-Juel1)180106$$aHoltwerth, Alexander$$b12
001053035 7001_ $$0P:(DE-Juel1)179375$$aStock, Jan$$b13
001053035 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b14
001053035 7001_ $$aKok, André8 ORCID icon$$b15
001053035 7001_ $$aDijk, Gertjan ORCID icon van$$b16
001053035 7001_ $$aPires, Marcel9$$b17
001053035 7001_ $$aSousa, Carlos10$$b18
001053035 7001_ $$a, , João A.$$b19
001053035 8564_ $$uhttps://zenodo.org/records/17412254
001053035 8564_ $$uhttps://juser.fz-juelich.de/record/1053035/files/Full%20document%20%28publicly%20available%29.pdf$$yOpenAccess
001053035 909CO $$ooai:juser.fz-juelich.de:1053035$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001053035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179375$$aForschungszentrum Jülich$$b13$$kFZJ
001053035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b14$$kFZJ
001053035 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001053035 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053035 920__ $$lyes
001053035 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001053035 980__ $$areport
001053035 980__ $$aVDB
001053035 980__ $$aUNRESTRICTED
001053035 980__ $$aI:(DE-Juel1)IEK-10-20170217
001053035 9801_ $$aFullTexts