001053049 001__ 1053049
001053049 005__ 20260202125356.0
001053049 037__ $$aFZJ-2026-01389
001053049 041__ $$aEnglish
001053049 1001_ $$0P:(DE-Juel1)187581$$aKarthein, Jan$$b0$$eCorresponding author
001053049 1112_ $$aInternational Workshop on Hybrid Quantum Materials, Sciences, and Technologies 2025$$cMatsue$$d2025-10-27 - 2025-10-29$$gHQMST2025$$wJapan
001053049 245__ $$aOptimization of Magnetic Topological Insulators for Superconducting Applications
001053049 260__ $$c2025
001053049 3367_ $$033$$2EndNote$$aConference Paper
001053049 3367_ $$2BibTeX$$aINPROCEEDINGS
001053049 3367_ $$2DRIVER$$aconferenceObject
001053049 3367_ $$2ORCID$$aCONFERENCE_POSTER
001053049 3367_ $$2DataCite$$aOutput Types/Conference Poster
001053049 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1770029008_4951$$xAfter Call
001053049 520__ $$aMagnetic topological insulators are predicted to be a promising platform for scalable topological quantum computation [1,2]. In the one-dimensional limit the chiral edge modes on opposite sides of a quantum anomalous Hall system hybridize to form a single helical conducting channel. Proximitizing this channel with an s-wave superconductor leads to the appearance of Majorana zero modes. This work makes an effort to optimize the magnetic topological insulator, composed out of Cr-doped (BixSb1-x)2Te3, for these superconducting applications. One approach is to modify the magnetic properties of the films via controlling the parameters during molecular beam epitaxy growth. Van der Pauw measurements are performed on magnetic topological insulator thin films with different material compositions. This approach allows for a fast optimization of the material and a systematic study of the interplay between growth parameters and magneto-transport signatures. We show how the material can be made charge neutral either by varying the substrate temperature during growth or, more directly, by varying the chromium concentration of the thin films in small amounts to compensate for the residual charges in the underlying (BixSb1-x)2Te3. Furthermore, by lowering the chromium concentration to values much smaller than those typically used for quantum anomalous Hall systems [3] the material can be tuned into a parameter space that, according to theoretical proposals, is beneficial for maximizing the induced superconducting gap [4]. The magnetotransport measurements on these weakly-doped thin films indicate that even at very low chromium concentrations of around 2%, the anomalous Hall resistance can reach up to 60% of the quantized value at a temperature of 1.2 K. This suggests that it may be possible to enter the quantum anomalous Hall regime even with low intrinsic magnetizations. In addition to the material optimization, novel ways to fabricate nanometer-sized magnetic topological insulator/superconductor hybrid devices based on shadow walls and stencil masks are being explored. These techniques avoid lithography and etching steps that are otherwise known to be harmful for the material. Based on this, Hall bars from Cr-doped (BixSb1-x)2Te3 are fabricated in the micrometer and nanometer size ranges and their electric and magnetic properties are investigated. No significant difference was found between the micrometer- and nanometer-sized Hall bars, indicating that the fabrication technique does not change the material composition. This hypothesis is supported by transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements.[1] C.-Z. Chen, et al., Physical Review B 97, 104504 (2018).[2] X.-L. Qi, et al., Physical Review B 82, 184516 (2010).[3] C.-Z. Chang, et al., Advanced materials 25, 1065 (2013).[4] D. Burke, et al., Phys. Rev. B 109, 045138 (2024).
001053049 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001053049 536__ $$0G:(GEPRIS)491798118$$aDFG project G:(GEPRIS)491798118 - Magnetische topologische Isolatoren für robuste Majorana Zustände (491798118)$$c491798118$$x1
001053049 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
001053049 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053049 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001053049 7001_ $$0P:(DE-Juel1)195799$$aBuchhorn, Jonas$$b1
001053049 7001_ $$0P:(DE-Juel1)201477$$aToehgiono, Gion$$b2
001053049 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b3
001053049 7001_ $$0P:(DE-Juel1)180356$$aVaßen-Carl, Max$$b4
001053049 7001_ $$0P:(DE-HGF)0$$aUnderwood, Kaycee$$b5
001053049 7001_ $$0P:(DE-HGF)0$$aKawano, T.$$b6
001053049 7001_ $$0P:(DE-HGF)0$$aOtsubo, S.$$b7
001053049 7001_ $$0P:(DE-HGF)0$$aIshihara, J.$$b8
001053049 7001_ $$0P:(DE-HGF)0$$aKohda, M.$$b9
001053049 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b10
001053049 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11
001053049 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b12
001053049 8564_ $$uhttps://jointquantum2025.jp/
001053049 909CO $$ooai:juser.fz-juelich.de:1053049$$pVDB
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187581$$aForschungszentrum Jülich$$b0$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195799$$aForschungszentrum Jülich$$b1$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201477$$aForschungszentrum Jülich$$b2$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b3$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180356$$aForschungszentrum Jülich$$b4$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b10$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
001053049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b12$$kFZJ
001053049 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001053049 920__ $$lyes
001053049 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053049 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001053049 980__ $$aposter
001053049 980__ $$aVDB
001053049 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053049 980__ $$aI:(DE-Juel1)PGI-10-20170113
001053049 980__ $$aUNRESTRICTED