001     1053059
005     20260129203535.0
024 7 _ |a 10.1109/ICCEP65222.2025.11143761
|2 doi
037 _ _ |a FZJ-2026-01399
100 1 _ |a Zambrano, Holguer Humberto Noriega
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2025 International Conference on Clean Electrical Power (ICCEP)
|c Villasimius
|d 2025-06-24 - 2025-06-26
|w Italy
245 _ _ |a A Forecast-Driven Energy Management Methodology for Microgrids under Seasonal Variability
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1108-1114
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1769686627_32128
|2 PUB:(DE-HGF)
520 _ _ |a This paper introduces a dynamic energy management strategy based on model predictive control (MPC) for a microgrid with photovoltaic generation and an energy storage system. The strategy is designed to be able to acclimate to different seasonal situations. Moreover, to model realistic scenarios, some forecasting uncertainties are made current, using noise models for photovoltaic, load and cost variables. The performance of the MPC was also compared with an open-loop controller with pre-known trajectory prediction. Moreover, some week scenarios are carried out using real and processed solar generation data and load profiles from Milan, Italy, considering summer and winter periods. The results show the MPC strategy is able to optimize grid transactions, while the stability of the battery is kept even in hard and noisy scenarios.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 1
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 1
|u fzj
700 1 _ |a Lazzari, Riccardo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Piegari, Luigi
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/ICCEP65222.2025.11143761
856 4 _ |u https://ieeexplore.ieee.org/document/11143761
909 C O |o oai:juser.fz-juelich.de:1053059
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 2
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21