001053079 001__ 1053079
001053079 005__ 20260202125356.0
001053079 0247_ $$2doi$$a10.1103/8m2h-83zm
001053079 0247_ $$2ISSN$$a2475-9953
001053079 0247_ $$2ISSN$$a2476-0455
001053079 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01419
001053079 037__ $$aFZJ-2026-01419
001053079 041__ $$aEnglish
001053079 082__ $$a530
001053079 1001_ $$0P:(DE-Juel1)187581$$aKarthein, Jan$$b0$$eCorresponding author
001053079 245__ $$aControlling the magnetotransport properties of magnetic topological insulator Cr x ( Bi y Sb 1 − y ) 2 − x Te 3 thin films via molecular beam epitaxy
001053079 260__ $$aCollege Park, MD$$bAPS$$c2025
001053079 3367_ $$2DRIVER$$aarticle
001053079 3367_ $$2DataCite$$aOutput Types/Journal article
001053079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770030130_24251
001053079 3367_ $$2BibTeX$$aARTICLE
001053079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053079 3367_ $$00$$2EndNote$$aJournal Article
001053079 520__ $$aIn this work we present a systematic in-depth study of how we can alter the magnetotransport properties of magnetic topological insulator thin films by tuning the parameters of the molecular-beam epitaxy. First, we show how a varying substrate temperature changes the surface morphology and, when chosen properly, leads to a high crystal quality. Next, the effect of the chromium concentration on the film roughness and crystal quality is investigated. Finally, both the substrate temperature and the chromium concentration are investigated with respect to their effect on the magnetotransport properties of the magnetic topological insulator thin films. It becomes apparent that the substrate temperature and the chromium concentration can be used to tune the Fermi level of the film which allows to make the material intrinsically charge neutral. A very low chromium concentration furthermore allows to tune the magnetic topological insulator into a regime where strong superconducting correlations can be expected when combining the material with a superconductor.
001053079 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001053079 536__ $$0G:(GEPRIS)491798118$$aDFG project G:(GEPRIS)491798118 - Magnetische topologische Isolatoren für robuste Majorana Zustände (491798118)$$c491798118$$x1
001053079 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
001053079 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053079 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053079 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001053079 7001_ $$0P:(DE-Juel1)195799$$aBuchhorn, Jonas$$b1
001053079 7001_ $$0P:(DE-HGF)0$$aUnderwood, Kaycee$$b2
001053079 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b3
001053079 7001_ $$0P:(DE-Juel1)180356$$aVaßen-Carl, Max$$b4
001053079 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b5
001053079 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
001053079 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
001053079 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/8m2h-83zm$$gVol. 9, no. 12, p. 124202$$n12$$p124202$$tPhysical review materials$$v9$$x2475-9953$$y2025
001053079 8564_ $$uhttps://juser.fz-juelich.de/record/1053079/files/Karthein-PRMat-25.pdf$$yOpenAccess
001053079 909CO $$ooai:juser.fz-juelich.de:1053079$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187581$$aForschungszentrum Jülich$$b0$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195799$$aForschungszentrum Jülich$$b1$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b3$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180356$$aForschungszentrum Jülich$$b4$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b5$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
001053079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b7$$kFZJ
001053079 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001053079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001053079 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001053079 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2022$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053079 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001053079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001053079 920__ $$lyes
001053079 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053079 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001053079 980__ $$ajournal
001053079 980__ $$aVDB
001053079 980__ $$aUNRESTRICTED
001053079 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053079 980__ $$aI:(DE-Juel1)PGI-10-20170113
001053079 9801_ $$aFullTexts