001053101 001__ 1053101
001053101 005__ 20260202125356.0
001053101 0247_ $$2doi$$a10.1063/5.0281958
001053101 0247_ $$2ISSN$$a0021-8979
001053101 0247_ $$2ISSN$$a0148-6349
001053101 0247_ $$2ISSN$$a1089-7550
001053101 0247_ $$2ISSN$$a2163-5102
001053101 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01441
001053101 037__ $$aFZJ-2026-01441
001053101 082__ $$a530
001053101 1001_ $$0P:(DE-HGF)0$$aAagaard, Martin$$b0$$eCorresponding author
001053101 245__ $$aLuminescence properties of GeSn laser materials: Influence of buffered substrates
001053101 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2025
001053101 3367_ $$2DRIVER$$aarticle
001053101 3367_ $$2DataCite$$aOutput Types/Journal article
001053101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770030496_24248
001053101 3367_ $$2BibTeX$$aARTICLE
001053101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053101 3367_ $$00$$2EndNote$$aJournal Article
001053101 520__ $$aTime-resolved photoluminescence spectroscopy is used to measure the luminescence lifetime of two direct bandgap GeSn samples. The GeSn samples are similar in respect to the material properties, except for one being grown on a thin Ge-post-deposition annealed buffered layer, while the other is grown on a thick Ge virtual substrate. The total photoluminescence intensity and the lifetime of the samples are compared as a function of temperature between 20K and 300K and pump fluence between 2.5 × 1013 cm−2 and 1 × 1015 cm−2, showing little difference between the two samples. The luminescence lifetime varies only little with temperature, and calculations of the total photoluminescence intensity based on k·p-theory are compared to experimentally attained values, yielding a good functional agreement versus temperature. The results point to the L-valley as one of the primary inhibiting factors of the photoluminescence intensity at non-cryogenictemperatures.
001053101 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053101 536__ $$0G:(GEPRIS)299480227$$aDFG project G:(GEPRIS)299480227 - SiGeSn Laser für die Silizium Photonik (299480227)$$c299480227$$x1
001053101 536__ $$0G:(EU-Grant)101070208$$aLASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208)$$c101070208$$fHORIZON-CL4-2021-DIGITAL-EMERGING-01$$x2
001053101 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053101 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001053101 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001053101 7001_ $$0P:(DE-Juel1)188576$$aConcepción, Omar$$b1
001053101 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b2
001053101 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b3
001053101 7001_ $$0P:(DE-HGF)0$$aJulsgaard, Brian$$b4
001053101 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0281958$$gVol. 138, no. 10, p. 105701$$n10$$p105701$$tJournal of applied physics$$v138$$x0021-8979$$y2025
001053101 8564_ $$uhttps://juser.fz-juelich.de/record/1053101/files/105701_1_5.0281958.pdf$$yOpenAccess
001053101 909CO $$ooai:juser.fz-juelich.de:1053101$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001053101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b1$$kFZJ
001053101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b2$$kFZJ
001053101 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Leeds University$$b3
001053101 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Aarhus University$$b4
001053101 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-18
001053101 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001053101 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2022$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053101 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
001053101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001053101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001053101 920__ $$lyes
001053101 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053101 980__ $$ajournal
001053101 980__ $$aVDB
001053101 980__ $$aUNRESTRICTED
001053101 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053101 9801_ $$aFullTexts