| Hauptseite > Publikationsdatenbank > Luminescence properties of GeSn laser materials: Influence of buffered substrates > print |
| 001 | 1053101 | ||
| 005 | 20260202125356.0 | ||
| 024 | 7 | _ | |a 10.1063/5.0281958 |2 doi |
| 024 | 7 | _ | |a 0021-8979 |2 ISSN |
| 024 | 7 | _ | |a 0148-6349 |2 ISSN |
| 024 | 7 | _ | |a 1089-7550 |2 ISSN |
| 024 | 7 | _ | |a 2163-5102 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-01441 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-01441 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Aagaard, Martin |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Luminescence properties of GeSn laser materials: Influence of buffered substrates |
| 260 | _ | _ | |a Melville, NY |c 2025 |b American Inst. of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1770030496_24248 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Time-resolved photoluminescence spectroscopy is used to measure the luminescence lifetime of two direct bandgap GeSn samples. The GeSn samples are similar in respect to the material properties, except for one being grown on a thin Ge-post-deposition annealed buffered layer, while the other is grown on a thick Ge virtual substrate. The total photoluminescence intensity and the lifetime of the samples are compared as a function of temperature between 20K and 300K and pump fluence between 2.5 × 1013 cm−2 and 1 × 1015 cm−2, showing little difference between the two samples. The luminescence lifetime varies only little with temperature, and calculations of the total photoluminescence intensity based on k·p-theory are compared to experimentally attained values, yielding a good functional agreement versus temperature. The results point to the L-valley as one of the primary inhibiting factors of the photoluminescence intensity at non-cryogenictemperatures. |
| 536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)299480227 - SiGeSn Laser für die Silizium Photonik (299480227) |0 G:(GEPRIS)299480227 |c 299480227 |x 1 |
| 536 | _ | _ | |a LASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208) |0 G:(EU-Grant)101070208 |c 101070208 |f HORIZON-CL4-2021-DIGITAL-EMERGING-01 |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
| 700 | 1 | _ | |a Concepción, Omar |0 P:(DE-Juel1)188576 |b 1 |
| 700 | 1 | _ | |a Buca, Dan |0 P:(DE-Juel1)125569 |b 2 |
| 700 | 1 | _ | |a Ikonic, Zoran |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Julsgaard, Brian |0 P:(DE-HGF)0 |b 4 |
| 773 | _ | _ | |a 10.1063/5.0281958 |g Vol. 138, no. 10, p. 105701 |0 PERI:(DE-600)1476463-5 |n 10 |p 105701 |t Journal of applied physics |v 138 |y 2025 |x 0021-8979 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1053101/files/105701_1_5.0281958.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1053101 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188576 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)125569 |
| 910 | 1 | _ | |a Leeds University |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Aarhus University |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-12-18 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J APPL PHYS : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-18 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|