001     1053101
005     20260202125356.0
024 7 _ |a 10.1063/5.0281958
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a 2163-5102
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-01441
|2 datacite_doi
037 _ _ |a FZJ-2026-01441
082 _ _ |a 530
100 1 _ |a Aagaard, Martin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Luminescence properties of GeSn laser materials: Influence of buffered substrates
260 _ _ |a Melville, NY
|c 2025
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770030496_24248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Time-resolved photoluminescence spectroscopy is used to measure the luminescence lifetime of two direct bandgap GeSn samples. The GeSn samples are similar in respect to the material properties, except for one being grown on a thin Ge-post-deposition annealed buffered layer, while the other is grown on a thick Ge virtual substrate. The total photoluminescence intensity and the lifetime of the samples are compared as a function of temperature between 20K and 300K and pump fluence between 2.5 × 1013 cm−2 and 1 × 1015 cm−2, showing little difference between the two samples. The luminescence lifetime varies only little with temperature, and calculations of the total photoluminescence intensity based on k·p-theory are compared to experimentally attained values, yielding a good functional agreement versus temperature. The results point to the L-valley as one of the primary inhibiting factors of the photoluminescence intensity at non-cryogenictemperatures.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)299480227 - SiGeSn Laser für die Silizium Photonik (299480227)
|0 G:(GEPRIS)299480227
|c 299480227
|x 1
536 _ _ |a LASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208)
|0 G:(EU-Grant)101070208
|c 101070208
|f HORIZON-CL4-2021-DIGITAL-EMERGING-01
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Concepción, Omar
|0 P:(DE-Juel1)188576
|b 1
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 2
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Julsgaard, Brian
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1063/5.0281958
|g Vol. 138, no. 10, p. 105701
|0 PERI:(DE-600)1476463-5
|n 10
|p 105701
|t Journal of applied physics
|v 138
|y 2025
|x 0021-8979
856 4 _ |u https://juser.fz-juelich.de/record/1053101/files/105701_1_5.0281958.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1053101
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)125569
910 1 _ |a Leeds University
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Aarhus University
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2022
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21